Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние давления на величину равновесных концентраций

    На СТОЙКОСТЬ и активность катализатора большое влияние оказывает температура. В качестве ее допустимой верхней границы обычно принимают величину 550°С, однако при длительной и интенсивной работе она не должна превышать 520°С. Оптимальное значение скорости образования аммиака при определенной температуре зависит от давления и концентрации аммиака в данной точке реактора. На рис. 1V-20 кривая 7 характеризует зависимость оптимального содержания аммиака в смеси от температуры. Кривая 2 относится к равновесным условиям, т. е. характеризует [c.330]


    В химических системах, где равновесное состояние определяется отношением активностей веществ—компонентов системы, выражаемым соответствующей константой равновесия, новое состояние равновесия (т. е. снова ДС = 0) возникает благодаря перераспределению величин активностей в результате изменения количеств веществ в реакционной смеси. Это перераспределение и есть нарастающее в системе противодействие . Оно может реализоваться при неизменной константе равновесия (влияние давления и концентраций ( 3)) или благодаря ее изменению (температурная зависимость ( 4)). [c.194]

    ВЛИЯНИЕ ДАВЛЕНИЯ НА ВЕЛИЧИНУ РАВНОВЕСНЫХ КОНЦЕНТРАЦИЙ [c.335]

    Это значит, что можно произвольно изменять два параметра, при определенных значениях которых фиксируется равновесное состояние системы давление и температура. Если система состоит из конденсированных фаз (твердой и жидкой), то адсорбируется растворенное вещество н число компонентов в ней будет равно 3. Обычно для конденсированной системы пренебрегают влиянием давления, и тогда в ней число степеней свободы также оказывается равным 2 концентрация и температура. Таким образом, любой из параметров системы однозначно может быть определен как минимум через два других параметра. Как следует из приведенных примеров, этими параметрами могут быть концентрация (давление) адсорбата и температура. Относительно величины адсорбции А уравнение состояния имеет следующий общий вид  [c.33]

    Это означает, что величину р можно изменять или за счет давления р в системе при неизменном ее составе, или за счет состава системы N1) при неизменном давлении. Поэтому в процессах, для которых повышение давления благоприятно, введение инертного газа будет сказываться отрицательно если же, наоборот, благоприятен вакуум, то наличие инертных газов полезно наконец, при нечувствительности системы к изменению давления наличие или отсутствие инертного газа не сказывается на результатах. Важно подчеркнуть, что речь идет о равновесном составе, а не о скорости его достижения ясно, что скорость процесса с уменьшением концентрации реагирующих веществ в результате введения инертных добавок будет падать. Итак, влияние инертного газа противоположно влиянию давления. [c.134]

    При проведении процесса жидкостной экстракции обычно температура не изменяется, а давление на равновесие в системе жидкость - жидкость практически не оказывает влияния. Поэтому для экстракции величина и = 0. Тогда для трехкомпонентной системы жидкость-распределяемое вещество-жидкость С = 1 (К = 3, Ф = 2, и = 0), и в ней можно изменять концентрацию одной из фаз без нарушения равновесия. При этом у = f x), т.е. данной концентрации распределяемого вещества х в одной фазе в состоянии равновесия соответствует определенная концентрация у вещества в другой фазе. Эта связь следует так называемому закону распределения отношение равновесных концентраций распределяемого между двумя жидкими фазами вещества при постоянной температуре есть величина постоянная  [c.145]


    Как указывалось в гл. X, давление, под которым идет перегонка, оказывает влияние на величину равновесных концентраций спирто-водных систем. [c.410]

    Полученные экспериментальные данные по влиянию указанных элементов на пороговое давление и растворимость алмаза (см. рис. 120, 121) позволяют (в предположении, что углерод образует в расплаве указанных металлов идеальный раствор) рассчитывать как значение Сг, так и абсолютное пересыщение ЛС=Сг—Са, где Сг и Са — равновесные концентрации углерода по отношению к графику и алмазу. Кроме этого, по величине порогового давления можно оценить степень вклада поверхностной энергии в работу образования критического зародыша. [c.347]

    Эта точка зрения подкрепляется тем фактом, что некоторые газы особенно эффективно увеличивают скорости мономолекулярных реакций, доводя их до скорости, характерной для высокого давления. Например, в присутствии водорода скорости разложения пропионового альдегида и других альдегидов и эфиров остаются высокими даже при значительном снижении парциального давления реагирующих веществ. С другой стороны, добавление азота или гелия оказывает лишь сравнительно небольшое влияние на падение скорости реакции, наблюдаемое при низких давлениях. Влияние добавляемых газов изучалось в различных мономолекулярных реакциях, и было найдено, что никакое количество газа не может увеличить удельную скорость реакции на величину большую, чем ее предельное значение при высоких давлениях. Отсюда следует думать, что добавление посторонних молекул не сказывается на результате суммарной химической реакции и что нх функция состоит лишь в том, чтобы поддерживать равновесную концентрацию [c.282]

    Влияние исходных продуктов и химического состава раствора на кристаллизацию кварца исследовалось ранее только для содового раствора во время проведения экспериментальных работ по определению растворимости 5102 в условиях роста кристаллов кварца. Было установлено, что равновесная концентрация 5102 в этих условиях мало зависит от начальной концентрации соды и в разных растворах имеет примерно одинаковое значение — около 7 г/л при 350 °С и давлении 35 МПа. На основании этого можно было бы предполагать, что скорость роста кварца не должна зависеть от начальной концентрации содового раствора. Опыт, однако, показывает, что состав растворов в условиях роста мало отличается по содержанию 5102, но существенно отличается по концентрации свободной щелочи. Определение щелочности отработанных растворов показывает, что чем выше концентрация соды в исходном растворе, тем выше концентрация свободной щелочи в условиях роста, несмотря на осаждение сравнительно большого количества тяжелой фазы. Это, вероятно, объясняется тем, что при сравнительно быстром нагревании автоклава во время ввода его в заданный режим равновесное состояние между реагентами не достигается, что приводит к более высокой остаточной концентрации соды. Более высокая остаточная концентрация свободной щелочи, безусловно, должна оказывать влияние на величину pH раствора, а это, в свою очередь, должно влиять на скорость роста кристаллов. [c.42]

    На адсорбционное равновесие большое влияние оказывает температура. С повышением температуры адсорбция уменьшается в результате усиления теплового движения молекул. Понижение температуры, наоборот, приводит к увеличению адсорбции. Поэтому адсорбционное равновесие всегда рассматривают при постоянной температуре. Графическая зависимость величины адсорбции от равновесного давления (концентрации) при постоянной температуре называется изотермой адсорбции. [c.164]

    Адсорбция на ровной поверхности зависит в основном от природы адсорбента и адсорбата, ет их взаимного сродства. Необло-димо различать влияние этих факторов на величину адсорбции. 4 и на константу адсорбционного равновесия К- Чем сильнее взаимодействие адсорбент — адсорбат, тем больше К и тем большая величина мономолекулярной адсорбции А достигается при тех >i e равновесных давлениях 1глн концентрациях. Обычно считают, что сродство адсорбента к адсорбату (илп К) тем сильнее, чем больЛс-нх склонность к образованию связей одной природы, нанример, к дисперсионному взаимодействию, нли к диполь-динольному, или к образованию водородных связей, или к сильным химическим взаимодействиям. [c.124]

    Следует отметить, что условие разбавленности растворов необходимо учитывать по двум причинам. Во-первых, оно требуется для того, чтобы имелась возможность заменить величины активностей на концентрации и, таким образом, определить равновесные концентрации исходя из уравнения (2.3.3). Во-вторых, что условие позволяет пренебречь влиянием давления на величины химических потенциалов компонентов, электрохимические потенциалы которых определены в (2.3.2). Вследствие различия концентраций ионов в растворах 1 и 2 осмотическое давление в обеих фазах не одинаково. Поэтому эта разность давлений должна быть скомпенсирована внешним давлением. Подробно влияние давления рассмотрено в книге [9] и на с. 191 монографии [18]. [c.27]


    В выражении константы равновесия величины [Вг 1 и [СГ] представляют собой активности соответствующих ионов в растворах. Можно принять, что влияние всех ионов, находящихся в растворе, на одинаковые по структуре и мало различающиеся по радиусу ионы Вг и СГ единообразно, вследствие чего коэффициенты активности их в одном и том же растворе одинаковы. Это позволяет заменить в уравнении константы равновесия отношение активностей ионов брома и хлора отношением их концентраций. Вг.д и С1.2 в выражении константы равновесия обозначают равновесные парциальные давления их над растворами. [c.134]

    Исследования с пленками из водных растворов электролитов [И, 12] подтвердили теорию Дерягина — Ландау об электростатической составляющей расклинивающего давления Г47]. Это дает новые возможности для исследования диффузных электрических слоев и характеризующего их фо-потенциала. Возможность подбирать условия эксперимента с равновесными пленками так, чтобы они соответствовали надежному и простому применению теории, позволяет таким путем получать гораздо более полные данные фо, чем те, которые дают измерение электрокинетического потенциала. Эти возможности еще далеко не использованы и соответствующие исследования пока лишь начаты. До настоящего времени удалось определить надежно фо для чистой воды (около 20 мв), а также исследовать влияние некоторых ПАВ на величину Фо [48]. Оказалось, что зависимость фо от концентрации ПАВ качественно совпадает с кривой насыщения, найденной ранее [51, и что максимальные значения фо для различных ПАВ различны. К сожалению, пока еще не удалось найти ПАВ, адсорбция которого выражалась бы простой адсорбционной изотермой и давала достаточно высокие Фо для того чтобы проверить и интерпретировать количественно зависимость Фо 0т степени насыщения адсорбционного слоя. Эта задача, как и многие другие, ожидает своего решен-ния . [c.55]

    Адсорбция на ровной поверхности зависит в основном от природы адсорбента и адсорбата, от их взаимного сродства. Необходимо различать влияние этого фактора на величину адсорбции Л и на константу адсорбционного равновесия /(. Чем сильнее взаимодействие адсорбент-адсорбат, тем больше К и тем большая величина мономолекулярной адсорбции Л достигается при равновесных давлениях или концентрациях. Обычно считают, что сродство адсорбента к адсорбату (или К) тем сильнее, чем резче выражена их склонность к образованию связей одной природы, например, к дисперсионному взаимодействию, или к диполь-дипольному, или к образованию водородных связей, нли к сильным химическим взаимодействиям. [c.148]

    При увеличении плотности изделия увеличивается количество выделяющегося тепла и средняя температура полиуретановой композиции. Это приводит к увеличению равновесного давления паров фреона и, следовательно, к снижению б . Однако одновременно идет и другой процесс с ростом экспоненциально возрастает давление в системе (рис. 28), что, напротив, способствует конденсации паров газообразователя. По-видимому, последнее воздействие является более сильным, поскольку по данным [412, 415] с ростом Ри наблюдается все же линейное увеличение б (рис. 30). Аналогичным — двойственным — является влияние концентрации газообразователя на величину б , однако и в этом случае решающим фактором является не увеличение давления столба 82 [c.82]

Рис. 87. Влияние температуры прокаливания (отжига) на концентрацию свободных электронов в dS при комнатной температуре (а) и на ее зависимость от давления паров кадмия (б) сплошные кривые — равновесные значения п, найденным путем термодинамического расчета штриховая линия — величины, вычисленные по экспериментальным данным, заимствованным из работы [82] Рис. 87. <a href="/info/15368">Влияние температуры</a> прокаливания (отжига) на <a href="/info/576539">концентрацию свободных</a> электронов в dS при <a href="/info/22443">комнатной температуре</a> (а) и на ее зависимость от <a href="/info/1150443">давления паров кадмия</a> (б) сплошные кривые — <a href="/info/73343">равновесные значения</a> п, найденным путем <a href="/info/15643">термодинамического расчета</a> штриховая линия — величины, вычисленные по <a href="/info/304050">экспериментальным данным</a>, заимствованным из работы [82]
    Элементы расчета абсорбционных и хемосорбционных процессов рассмотрены в ч. I, гл. V. Основные технологические показатели абсорбционной очистки степень очистки (к. п. д.) т] и коэффициент массопередачи k определяются растворимостью таза, гидродинамическим режимом в реакторе (Г, Р, w) и другими факторами, в частности равновесием и скоростью реакций при хемосорбции. При протекании реакций в жидкой фазе величина k выше, чем при физической абсорбции. При хемосорбции резко меняются равновесные соотношения, в частности влияние равновесия на движущую силу абсорбции. В предельном случае для необратимых реакций в жидкой фазе (нейтрализация) образующееся соединение имеет практически нулевое давление паров над раствором. Однако такие хемосорбционные процессы не, цикличны (поглотительный раствор не может быть вновь возвращен на очистку) и целесообразны лишь при возможности использования полученных растворов иным путем. Большинство хемосорбционных процессов, применяемых в промышленности, обратимы и экзотермичны, поэтому при повышении температуры раствора новое соединение разлагается с выделением исходных компонентов. Этот прием положен в основу регенерации хемосорбентов в циклической схеме, тем более, что их химическая емкость мало зависит от давления. Хемосорбционные процессы особенно целесообразны такнм образом для тонкой очистки газов, содержащих сравнительно малые концентрации примесей. [c.264]

    Грегор [25] первый четко указал на то, что явление ионного обмена в смолах можно рассматривать как пример доннанов-ского равновесия, причем осмотическое давление внутреннего раствора уравновешивается механическим давлением напряженной полимерной сетки. Основная идея этой концепции, однако, принадлежит Проктору и Вильсону (1916 г.), которые использовали ее для объяснения влияния pH на набухание желатины, Незаряженный сшитый гель набухает в подходящем растворителе до равновесного объема, определяемого главным образом отношением объема, приходящегося на одну поперечную связь, к молярному объему растворителя и величиной термодинамического коэффициента взаимодействия между полимером и растворителем для степени набухания можно вывести термодинамические или статистические формулы (см., например, [26]), причем свободная энергия смешивания уравновешивается свободной энергией растяжения полимерных цепочек. Эта теория, однако, не нашла применения для ионообменных смол, используемых на практике, во-первых, ввиду того, что степень их сшивки достаточно высока, а во-вторых, потому, что свободная энергия растворения сшитой смолы относительно невелика по сравнению с энергией смешивания растворителя с диссоциированными ионами. Если рассматривать фазу набухшей смолы как раствор, то станет очевидным, что молярная концентрация ионов несравнимо больше, чем концентрация полимера таким образом, ответственными за понижение химического потенциала растворителя в среде являются главным образом противоионы. Следовательно, вода из внешнего раствора имеет тенденцию диффундировать внутрь до тех пор, пока энергия растяжения матрицы не скомпенсирует противоположный по знаку член в выражении для свободной энергии. [c.115]

    В газовых реакциях с постоянным давлением при умеренных давлениях присутствие индиферентного газа не влияет заметно на величину константы равновесия Кр, но при высоких давлениях влияние это может сказаться, если присутствие индиферентного газа изменяет степень отклонения реагирующих газов от законов идеального газового состояния. Процент превращения исходных веществ в продукты реакции изменяется вследствие присутствия индиферентного газа только в том случае, если реакция протекает с изменением объема. В случае реакции, протекающей с уменьшением объема, равновесие смещается в сторону увеличения концентрации исходных продуктов, а для реакции, протекающей с увеличением объема, — в сторону увеличения образования продуктов реакции. Равновесное превращение в присутствии определенных количеств индиферентного газа может быть количественно рассчитано из Кр, выраженного через закон действующих масс, причем число молей инертного газа входит при расчете в общее число молей. [c.70]

    Для экспериментальной проверки теории необходимо знать ионную силу раствора, потенциал диффузного слоя, постоянную Л, толщину слоя Ло и лапласовский перепад давления в пленке. Ионную силу раствора сравнительно просто вычислить, исходя из концентраций электролита и концентрации ПАВ при условии, что последняя не превышает критической концентрации мицеллообразования. Лапласовский перепад давления определяют независимым методом. Часто поверхностный потенциал фо находят, полагая 100%-ную диссоциацию молекул ионогенного ПАВ, адсорбированных на межфазной границе. При этом его значение, как правило, оказывается сильно завышенным по сравнению с величиной фб-потенциала, полученной на основании опытных данных о равновесной толщине пленки. Например, для пенных пленок, стабилизированных На-додецилсульфатом (площадь, приходящаяся на одну молекулу в поверхностном слое, равна 52А ), при ионной силе 5-10 моль1л г зо = 224 мв, в то время как из результатов измерения равновесной толщины слоя следует, что = 39 мв [130]. Однако такое различие не вызывает существенного изменения расчетной величины постоянной взаимодействия А, поскольку влияние потенциала на толщину равновесных пленок не очень велико. [c.71]

    В насыщенном водном растворе величина [ВаЗО при неизменной температуре является постоянной. Поэтому произведение ее на постоянную величину также будет постоянно. Обозначим его через ПРва804 (произведение растворимости данного электролита). Данное уравнение не учитывает коэффициент активности, т. е. меру влияния ионных сил. Из приведенной формулы следует, что как бы ни менялась равновесная концентрация отдельных ионов в насыщенном водном растворе малорастворимого электролита, произведение концентраций при неизменной температуре и давлении—величина постоянная. Так как эта постоянная величина характеризует способность данного электролита к растворению, ее называют произведением растворимости. [c.89]

    Сдаместное влияние концентрации растворителя и давления было исследовано на системах полиэтилен — растворитель в работах [ 119, 121, 158, 226]. Использование уравнения Флори - Хаггинса с введв ными в него поправками на изменение молярного объема и теплоты плавления с давлением позволило рассчитать не только теплоту плавления, но также изменение объема при плавлении и их относительное изменение с давлением. Согласно данным, полученным при использовании в качестве растворителя а -хлорнафталина, теплота плавления полиэтилена равна 4,109 кДж/моль, а изменение его объема при плавлении 2,73 см /моль [119]. Оба параметра уменьшаются при уве личении давления. Значение теплоты плавления согласуется с ее равн весным значением, рассчитанным по уравнению (24) гл. 8, но величина изменения объема при плавлении меньше равновесной, рассчитанной по уравнению (23) той же главы. При использовании в качеств растворителя и-ксилола были получены аналогичные данные (АЯ = [c.322]

    Хирс и Паунд провели точный расчет метастабильной равновесной концентрации адатомов на поверхности кристалла. Величина этой концентрации определяется процессом появления (диссоциация и диффузия) и процессом исчезновения (активация и десорбция) адатомов ([35], стр. 92). Одновременное решение уравнений, отражающих каждый этап процесса испарений, привело к общему уравнению для потока испаренного вещества, откуда можно получить численные значения коэффициентов испарения в каждом отдельном случае. Важным параметром в этих уравнениях является среднее расстояние между моноатомными ступеньками на поверхности кристалла. Для граней с малыми индексами расстояние между ступеньками превосходит среднее расстояние, проходимое адатомом при диффузии. Отсюда следует, что скорость испарения будет определяться как генерацией ступенек на краях кристалла, так и диффузией адатомов по поверхности. При этих условиях коэффициент испарения для моноатом-ных паров должен стремиться к минимальной величине = 1/3. На гранях кристалла с высокими индексами на поверхности создается много ступенек, расстояния между которыми сравнимы со средним диффузионным расстоянием, которое проходят адатомы, прежде чем они активируются и десорбируются. Эта ситуация приводит к г= 1. Были рассмотрены также и другие случаи, которые включали возможность затрудненной диссоциации атомов со ступеньки вследствие ограничения на энтропию, а также возможность большой энергии активации, необходимой для диссоциации атомов из узлового состояния. Для обоих этих случаев < 1/3. Малые величины а могут быть связаны и с адсорбированными примесями. Влияние этих примесей связано с тем, что, адсорбируясь на краях кристалла, они не позволяют образовываться новым ступенькам, с которых происходит испарение. Следовательно, адатомы поставляются только с уже существующих ступенек, которые вырастают до макроскопического размера и уменьшают скорость испарения. Экспериментальных данных, полученных на совершенных монокристаллах для подтверждения приведенных выше концепций, очень мало. Сирс [53] показал, что испарение с краев кристалла облегчается, если внешнее давление уменьшить на 2% по сравнению с равновесным давлением. Однако испарение с одиночной поверхности того же самого кристалла не происходит совсем, если внешнее давление уменьшить на половину равновесного давления. Это подтверждает то положение, что края кристалла являются источниками ступенек испарения. Теория поэтапного испарения может быть распространена на случаи несовершенных кристаллов и поликристаллических веществ ([35], стр. 107). Испарение этих веществ подчиняется тем же кинетическим законам, что и испарение совершенных кристаллов, за исключением различия в расстоянии между ступеньками испарения. Спиральные дислокации, например, служат дополнительным источником моноатомным ступенек, причем расстояние между последними следует считать таким же, как и в случае ступенек, возникших на краях кристаллов. Следовательно, несовершенные кристаллы должны иметь коэффициенты испарения, близкие к коэффициентам испарения для совершенных кристаллов (а 1/3). В поликристаллических веществах источниками ступенек служат границы зерен, трещины, края кристаллов и дислокации. Число таких центров велико, поэтому среднее расстояние между ступеньками мало, что приводит к величине коэффициента испарения, близкой к единице, несмотря на то, что процесс подвержен ограничению как по энтропии, так и по примесям. [c.44]

    Кинетика реакции гидратации олефинов на фосфорнокислотном гетерогенном катализаторе является достаточно сложной. На-скорость процесса большое влияние оказывает величина поверхности носителя, а также укрулнение пор, облегчающее диффузию реагентов к внутренней поверхности катализатора. Скорость повышается с ростом парциального давления олефина, но водяной пар оказывает противоположный эффект. Это объясняется тем, что фосфорная кислота образует на носителе жидкую пленку, которая абсорбирует воду из газовой фазы. При каждой данной температуре в пленке устанавливается равновесная концентрация воды, соответствующая парциальному давлению водяного пара при чрезмерном его повышении фосфорная кислота разбавляется и скорость реакции падает наоборот, при снижении давления [c.275]

    По опытным данным присутствие NH4 I несколько повышает давление паров NHg. Величина приращения мало зависит от концентрации NHg в растворе, но падает с ростом степени карбонизации раствора. Давление паров СО2 сильно возрастает в присутствии NH4 I, особенно, когда газ содержит малые количества Oj. Присутствие Na l в жидкости не оказывает существенного влияния на равновесный состав газа. [c.30]

    Наиболее типичный пример ионообменной хроматографии — разделение ионов в соответствии с их сродством к ионообменным группам. Самый старый метод фронтальной хроматографии обладает лишь немногими преимуществами. Лучшие результаты дает вытеснительная хроматография, однако наиболее эффективен метод проявительной хроматографии. Небольшое количество смеси ионов В и С, обладающих большим сродством к иониту, вводят в колонку вместе с ионами А, обладающими малым сродством к иониту. Величина вводимой пробьЕ пренебрежимо мала по сравнению с полным объемом колонки Элюирование ведут ионами А. Разделение определяется коэффициентами распределения Ка Щ и /С<г(С) или фактором разделения /Сй(В)/Х<г(С). Коэффициент распределения — это отношение концентраций ионов в ионообменной фазе и в растворе, отнесенное к миллилитру раствора и к грамму (сухой массы) или миллилитру ионообменной фазы. При слишком большом Ка, например более 30, хроматографические зоны расширяются и увеличивается время, необходимое для разделения.. Этого можно избежать, меняя в процессе элюирования дискретно или непрерывно концентрацию элюента (градиентное элюирование). Оптимальное разделение достигается в равновесных условиях, поэтому благоприятное влияние на процесс оказывает уменьшение размера зерен ионита, повышение температуры и оптимальная скорость потока подвижной фазы (все эт меры способствуют достижению равновесного состояния). Размер зерен можно уменьшать лишь до некоторого предела, который зависит от механической прочности слоя ионита причем требования к стабильности формы зерен особенно жестки, когда элюент пропускают через колонку под действием избыточного давления (иногда до нескольких десятков атмосфер). Степень сшивки ионитов должна быть достаточно высокой, чтобьь их объем оставался неизменным, или это должны быть макропористые иониты. Благоприятное действие оказывает увеличение скорости потока элюента в колонке, способствующее более равномерному распределению пленки жидкости по поверхности зерен ионита, но слишком сильное увеличение скорости может увести систему из оптимального равновесного состояния. Величины коэффициентов распределения зависят от состава элюента, и их можно регулировать в значительных пределах, добавляя комплексообразующие компоненты например, при разделении лантанидов с этой целью используют органические оксикислоты. [c.243]

    Фудзита и сотр. [140, 188] предложили механизм второй стадии сорбции, аналогичный механизму Ньюнса. Они исходили из того, что скорость непрерывного медленного расширения структуры полимера от квазиравновесного состояния до равновесной конформации, соответствующей внешнему давлению, зависит от величины сил когезии и от величин напряжений набухания под влиянием внешнего давления. Пластифицирующее действие повышенной концентрации сорбата вызывает постепенное ослабление взаимодействия между цепями, даже для застеклованных полимеров. [c.317]


Смотреть страницы где упоминается термин Влияние давления на величину равновесных концентраций: [c.52]    [c.318]    [c.158]    [c.29]    [c.662]    [c.136]    [c.171]   
Смотреть главы в:

Технология спирта Издание 3 -> Влияние давления на величину равновесных концентраций




ПОИСК





Смотрите так же термины и статьи:

Влияние концентрации

Влияние концентрации или давления

Давление величина

Концентрация равновесная



© 2025 chem21.info Реклама на сайте