Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тема 21. Азот и его соединения

    Пиридин является слабым третичным основанием, молекула которого построена из 5 СН-групп и одного атома азота, соединенных в шестичленное кольцо. Такое строение доказывается тем, что, присоединяя 6 атомов водорода, пиридин легко превращается в пиперидин, [c.1014]

    При получении нефтяных битумов преобладающая часть азота сохраняется. В азотистых соединениях нефтяных битумов содержится 2 и более атомов азота в молекуле. Между тем такие соединения настолько прочны, что после пиролиза битума большая часть их азота остается в коксе [35]. Потери азота с газом невелики. Заметим, что в этих же условиях удаляется до 40% содержащейся серы. [c.92]


    Большую чувствительность определения олова в пламени воздух — водород можно было бы объяснить тем, что соединения олова в пламепи воздух — ацетилен диссоциируют неполностью. Для проверки этого предположения олово определяли такл<е в пламени закись азота — ацетилен. Сравнительные результаты определения в этих трех пламенах приведены в табл. IV 8. Данные показывают, что абсорбция в высокотемпературном пламени закись азота — ацетилен даже меньше, чем в пламени воздух — ацетилен, и свидетельствуют о том, что соединения полностью диссоциируют. Таким образом, данное явление до сих пор остается неясным. [c.114]

    Способность хлора к соединениям тесно связана с его способностью к замещениям, потому что, по закону замещений, если хлор соединяется с водородом, то он и замещает водород. и притом соединение и замещение совершаются в тех же количествах. Поэтому атом хлора, соединяющийся с атомом водорода, способен замещать атом водорода. Это свойство хлора показывает применимость закона замещений в резких и исторически важных примерах, и реакции подобного рода объясняют те косвенные пути получения многих органических веществ, о которых мы часто упоминали и к которым в химии приходится прибегать во множестве случаев. Так, хлор не реагирует с углем [309]. кислородом и азотом, а между тем его соединения с С, О и N получаются — косвенным путем замены водорода хлором. [c.328]

    Что в простейшем соотношении (атом на атом) азот соединен с кислородом именно в окиси азота, вытекает и из принципа наибольшей простоты , которым руководствовался в подобных случаях Дальтон в самом деле, если приписать формулу N0 не окиси, а, например, закиси азота, формулы остальных двух окислов будут N02 и N0 . Тем удивительнее, что в качестве аргумента за придание простейшей формулы именно окиси азота Дальтон выдвигает вместо принципа наибольшей простоты соображение о связи веса частицы газа с его удельным весом, формулированное в законченной форме его современником Авогадро, хотя сам же Дальтон гипотезу Авогадро решительным образом отверг. [c.436]

    Вместе с тем, азот — элемент разрушения, поскольку наиболее употребительные взрывчатые вещ.ества являются, преимущественно, соединениями азота (см. ниже). [c.221]

    В качестве возможны.ч стабилизаторов для резин нами были получены производные п-фенилендиамина и п-аминодифенил-амина при алкилировании их ди- и оксикетонами. Как известно,, ингибирующая активность производных ароматических аминов существенным образом зависит от электронной плотности атома азота аминогруппы. Однако существенную роль в процессе ингибирования играет пространственное расположение заместителя у азота. Чем больше пространственное экранирование атома азота, тем эффективнее соединение как ингибитор (1—2). Большое значение в процессе ингибирования имеют также совместимость ингибитора с полимером и его летучесть. Поэтому введение в состав заместителей у атома азота ароматического амина различных полярных групп существенно изменяет его растворимость и температуры кипения. [c.297]


    Почти сразу же после начала первой мировой войны британский флот блокировал Германию, в результате чего в эту страну перестал поступать нитрат из Чили (наилучшее природное сырье). Между тем он был необходим для ведения войны, и вот немецкий химик Карл Бош (1874—1940) начинает работать над реакцией Габера, пытаясь создать промышленный способ получения аммиака, и к середине войны в Германии уже было налажено промышленное производство соединений азота. [c.141]

    Основная часть металлоорганических соединений концентрируется также в смолисто-асфальтеновых компонентах ТНО. В масляной части ванадий практически полностью отсутствует, а часть никеля присутствует и в дистиллятах. Содержание ванадия в ТНО тем больше, чем выше содержание серы, а никеля — чем выше содер — жание азота. В ТНО малосернистых нефтей содержание никеля выше, чем ванадия. Установлено, что основное количество ванадия и [c.37]

    На коксообразование в порах катализатора оказьшает также большое влияние гетероциклические соединения сырья, так как они в большинстве своем полярны и обладают более высоким адсорбционным эффектом, чем неполярные углеводороды. Так, при анализе состава кокса от гидрообессеривания гудрона [41] было показано, что в его состав включены сера, азот, кислород в результате деструктивного гидрирования нестабильных групп аминов, карбокси- и тиосоединений и других, входящих в состав структурных фрагментов смол и асфальтенов. Например, показано [41, 53], что дибензофуран, карбазол и дибензо-тиофен могут легко превращаться в кокс. Накопление азота и кислорода в составе коксовых отложений дибензофурана и карбазола больше, чем серы от дибензотиофена. Это связано с тем, что связь С-5 слабее, чем -N и С-О. [c.63]

    Сланцевые масла, полученные деструктивной перегонкой органического вещества горючих сланцев, керогена, представляют собой сильно реакционноспособные непредельные продукты. В отличие от обычных нефтяных масел они характеризуются тем, что, кроме сернистых и кислородных соединений, содержат также сравнительно большие количества азотистых соединений. Для сланцевого масла, полученного из горючих сланцев месторождения Грин Ривер (Западное Колорадо), найдено содержание в % вес. азота — 2, серы — 0,7 и кислорода — 1,5. Если выразить это в виде соотношения различных типов молекул, то молекулы неуглеводородных компонентов составят 61 % при следующем приблизительном распределении их 60% азотистых, 10% сернистых и 30% кислородных соединений. Из 39% углеводородной части половину составляют олефиновые углеводороды. Хотя избирательной экстракцией или адсорбцией на твердых адсорбентах азотистые и другие подобные им соединения удаляются, но такое удаление указанных соединений проходит только вместе с приблизительно половиной сланцевого масла. По этой причине такие методы, по-видимому, практически не пригодны для улучшения качества сланцевого масла. [c.281]

    Оксид азота(1)—термодинамически неустойчивое соединение. Стандартная энергия Гиббса его образования положительна (Д6,1,бр = 104 кДж/моль). Однако вследствие большой прочности свя.-зей в молекуле N20 энергии активации реакций, протекающих с участием этого вещества, высоки. В частности, высока энергня Активации распада N20. Поэтому при комнатной температуре оксид азота(I) устойчив. Однако при повышенных температурах он разлагается на азот и кислород разложение идет тем быстрее, чем выше температура. [c.408]

    Предложите все возможные объяснения, почему при взаимодействии NO2 с водой не образуется кислота с тем же валентным соединением азота, а образуется смесь азотистой и азотной кислот. [c.28]

    Четыре пиррольных кольца в гемине замещены метильными и ви-нильныии группами и остатком пропионовой кислоты. Железо связано со всеми четырьмя атомами азота нормальными и координационными связями. Гемин (геминхлорид) при гидролизе разбавленной щелочью дает не содержащий хлора гем (гидроокись гемина). Известны методы удаления и обратного введения атома железа не содержащие железа соединения, имеющие характерную систему из четырех связанных пиррольных колец, известны как порфирины, железосодержащие производные названы темами. Ключевое соединение — этиопорфирин Сз2Нз8М4 получен три разложении гемина, включающем удаление железа, декарбоксилирование и восстановление винильных групп. Этиопорфирин представляет собой тетраметилтетраэтилпорфирин. Выделение этого же соединения при разложении хлорофилла указывает на тесную структурную связь пигментов крови и листьев. [c.672]

    Научные работы в области химии относятся к неорганической химии и электрохимии, основоположником которой он является. Открыл (1799) опьяняющее и обезболивающее действие закиси азота и определил ее состав. Изучал (1800) электролиз воды и подтвердил факт разложения ее на водород и кислород. Выдвинул (1807) электрохимическую теорию химического сродства, согласно которой при образовании химического соединения происходит взаимная нейтрализация, или выравнивание, электрических зарядов, присущих соединяющимся простым телам при этом чем больше разность этих зарядов, тем прочнее соединение. Путем электролиза солей и щелочей получил (1808) калий, натрий, барий, кальций, амальгаму стронция и магний. Независимо от Ж. Л. Гей-Люссака и Л. Ж- Тенара открыл (1808) бор нагреванием борной кислоты. Подтвердил (1810) эле,меитарную природу хлора. Независимо от П- Л. Дюлонга создал (1815) водородную теорию кислот, Одно-времеино с Гей-Люссаком доказал (1813—1814) элементарную природу иода. Сконструировал (1815) безопасную рудничную лампу. Открыл (1817—1820) каталитическое действие платины и палладия, Получил (1818) металлический литий. [c.180]


    Большинство этих парамагнитных свободных радикалов является, в соответствии с определением Виланда, электрически нейтральным веществом. Но в то же время известны и сложные радикалы-ионы, особенно среди ароматических соединений азота и гетероциклических красителей (см. стр. 78-79 85-90). Большая химическая реакционная способность свободных радикалов связана с тем, что соединение неспаренных электронов дает выигрыш энергии. Все возможные реакции свободных радикалов происходят путем образования электронных пар. [c.13]

    Иодомет ический метод определения меди основан на том, что прк обработке подкисленных растворов солей меди (II) иодидом калия образуется иодид меди (I) и выделяется иод. По точности этот метод очень близок к электролитическому методу и, обладает тем преимуществом, что при работе мало отражается присутствие Посторонних веществ это преимущество имеет особенно бЬльшое значение при анализе материалоа сложного состава, например медных руд. Иодометрическому определению, меди мешают окислы азота, соединения мышьяка (III) и сурьмы (III), реагирующие с иодом соединения железа fill), молибдена (VI) и селена (VI), выделяющие иод из иодида калия минеральные кислоты в присутствии мышьяка (V) и сурьмы (V), а если последних нет, то помехи возникают, когда концентрация кислот превышает 3% (по объему), и, наконец, избыточные "количества ацетата аммония, если из кислот [c.287]

    В теме Аюгпная кислота дается производство азотной кислоты КЗ селитры н из атмосферного азота, соединения азота, реакции окисления и восстановления. [c.4]

    Вилк и Рохлиц [11] указывают, что интенсивность флуоресценции замещенных хинолина тем выше, чем выше электронная плотность на гетероциклическом азоте. Введение заместителей в положение 8 уменьшает интенсивность свечения [26.]. Это можно объяснить тем, что в результате стерических затруднений, вызываемых заместителем, уровень энергии п-электронов в основном состоянии возрастает. В результате снижается энергия п я -перехода и это ведет к увеличению вероятности безызлучательных процессов. В то же время гидроксиметильная группировка в положении 8, образующая с гетероциклическим азотом соединения XII ВВС, повышая энергию п -> я -перехода увеличивает интенсивность флуоресценции [И] [c.122]

    Пиридин (17) является ароматическим соединением (см. разд. 1.3.6), в котором атом азота находится в хр -гибридизо-ванном состоянии и вносит один электрон в систему из 6 я-электронов (4л+ -2 1) при этом остается свободной пара электронов на атоме азота (расположенная на хр -гибридной орбитали), вследствие чего пиридин и является основанием (р/(а = = 5,21). Его основность, однако, гораздо ниже основности алифатических аминов (например, для EtзN рКа = 10,75). Такая низкая основность характерна для оснований, в которых атом азота соединен кратными связями. Это объясняется тем, что по мере возрастания кратности связей у атома азота его неподеленная пара электронов располагается на орбитали, все больше приближающейся по характеру к 5-орбитали. Такая электрон- [c.84]

    Способы получения высокомолекулярных полиаминов, отличающиеся тем, что соединения, содержащие более одной алки-леноксидной, алкилениминной или алкиленсульфидной группы, подвергают реакции с аммиаком, моно.-, полиаминами или солями таких оснований, азот которых связан по крайней мере с двумя атомами водорода, способными замещаться на алкильную группу..  [c.420]

    Из физических свойств этих азотистых металлов наиболее интересны магнитные свойства, обнаруживаемые некоторыми из них. Азотистый марганец, содержащий 12% азота, по своим магнитным свойствам прибли-н ается к железу. Азотистые хром и титан точно так же обладают, хотя и не столь сильно, как у марганца, но все же ясно выраженными магнитными свойствами. Чем это объясняется Тем ли, что они не способны вообще образовать с азотом соединения со столь сильными магнитными свойствами, как марганец, или тем, что отношение между количеством поглощенного азота в исследованных соединениях не отвечает максимуму магнитностн, составляет предмет дальнейшего исследования. [c.30]

    Однако пе безразлично, рассматривать ли один атом азота соединенным с углеродом тремя единицами, а второй только одной единицей химической силы, или же представлять себе каждый из двух атомов азота соединенным с углеродом посредством двух единиц этой силы. Согласно первой формуле для гуанидина, это основание образовано соединением с (N11)" и 2(NHo). Согласно второй,— оно является соединением -G с N и NHa и с NHg, что также не одно и то же. Вместе с тем последняя формула гуанидина не удовлетворяет требованиям принципа атомности поскольку сродство углеродного атома насыщено N " и (NHj), этот атом, следовательно, не может связываться еще с другими атомами. Представлять же себе азот аммиака действуюпщм, в данном случае, всеми пятью единицами своей силы, значило бы принять соединение атомов азота между собою. Среди формул Кекуле имеется еще несколько, которые также противоречат принципу атомности. Формула, которую он приписывает, например, ацеталю, представляет это вещество как результат соединения -СоН -б- с двумя ато мами этила, связанными посредством -0-, т. е. как соединение двух насыщенных молекул Судя по образованию ацеталя, кажется значительно более вероятным, что он аналогичен диэтильному эфиру гликола и что различие этих двух веществ сводится к различию этилена и этилидена. Оба вещества были бы тогда соединениями двуатомного радикала с двумя одноатомными группами [c.104]

    Иодометрический метод опрэделения меди основан на том, что при обработке подкисленных растворов солей меди (II) иодидом калия образуется иодид меди (I) и выделяется иод. По точности этот метод очень близок к электролитическому методу и обладает тем преимуществом, что при работе мало отражается присутствие посторонних веществ это преимущество имеет особенно бояьшое значение при анализе материалов слол<ного состава, например медных руд. Иодометрическому определению меди мешают окислы азота, соединения мышьяка (III) и сурьмы (III), реагирующие с иодом соединения железа (III), молибдена (VI) и селена (VI), выделяющие иод из иодида калия минеральные кислоты в присутствии мышьяка (V) и сурьмгл (V), а если последних нет, то помехи возникают, когда концентрация кислот превышает 3% (по объему), и, наконец, избыточные количества ацетата аммония, если из кислот присутствует только уксусная кислота. Определению не мешают цинк, мышьяк (V) и сурьма (V), висмут, свинец и серебро. Три последних элемента вступают, однако, в реакцию с иодидом калия, выделяя осадок, и требуют поэтому прибавления добавочного количества этого реактива. [c.262]

    Теория Опарина предполагает, что жизнь возникла в несколько стадий. Первая стадия — это процесс образования простейших углеводородов. Вторая стадия — освобождение углеводородов в атмосферу Земли, где они реагировали с парами воды, аммиаком и другими газами. Коротковолновое УФ-излучение и электрические разряды в атмосфере инициировали протекание этих реакций. УФ-излучение разлагало воду (фотоокисление) на водород и кислород. Водород уходил в космическое пространство, тогда как кислород окислял аммиак до молекулярного азота, а углеводороды — до спиртов, альдегидов, кетонов и органических кислот. Затем эти соединения с дождями выпадали из влажной, холодной атмосферы в моря и океаны, где они накапливались, а потом благодаря процессам полимеризации и конденсации становились близкими по строению к тем химическим соединениям, которые входят в состав живых организмов. Так возникли первые биологически активные химические полимерг-ные соединения, подобные белкам и нуклеиновым кислотам. На третьей стадии образовывались так называемые коацерватные (от лат. асегиаШз — скрученный) капли, которые, достигая определенной величины, становились способными к обмену с окружающей средой. Затем в ходе эволюции эти коацерватные капли приобрели способность к самостоятельному существованию, т. е. они обособились от среды, и в них стали протекать элементарные химические превращения. На четвертой стадии у коа-церватов совершенствовался химический обмен (первоначальный метаболизм), синтезировались и упорядочивались мембраны, происходила самосборка первичных носителей информации — нуклеопротеинов. [c.531]

    Металлические и металлоподобные соединения. Порошкообразные V, Nil и Та адсорбируют значительные количества водорода, кислорода, азота, образуя твердые растворы внедрения. При этом неметаллы п( реходят в атомарное состояние и их электроны участвуют в построении ii-зоны металлического кристалла. При нагревании растворимость неметаллов возрастает вместе с тем изменяются ха-ракте) химической связи и свойства образуемых соединений. Так, при образовании оксидов постепенное окисление ниобия (как и V I Та) кислородом протекает через следующие стадии  [c.541]

    К соединениям, ускоряющим предпламенное окисление топлива и тем облегчающим его самовоспламенение, относятся алкил-нитраты, алкилнитриты, арилнитраты, пероксиды, альдегиды, кетоны, и некоторые вещества, содержащие связанные между собой атомы азота и серы [176]. [c.174]

    В условиях каталитического крекинга на конверсию влияют все иоро-числонные выше факторы. Конверсия обычно определяется как разница между 100% и количеством остатка, кипящего выше 205° С в объемных процентах. Она является удобным показателем глубины крекинга как для пилотных, так и для промышленных установок. Тем не монее она пе определяет полностью влияние катализатора на исходное сырье. Первичные продукты реакции, кроме реакций деструкции, подвергаются под действием катализатора различным дополнительным реакциям, и остаток, кипящий выше бензина, не является таким же, каким он был в исходном сырье. В некоторых случаях, когда исходное сырье содержит относительно высокие концентрации соединений азота или тяжелых металлов, качество рециркулирующего продукта может быть заметно улучшено сравнительно с исходным Сырьем, благодаря тому, что значительная часть нежелательных соединений может быть удалена за первый проход над катализатором. Но тем не менее рециркулирующий продукт не является таким жо хорошим сырьем для получения бензина, как природная нефть. Это указывает на некоторую конверсию остатка, кипящего выше 205° С, хотя такая конверсия не отражается на величине конверсии, как было указано выше. [c.144]

    Регенерация и возможность использования остаточных кислот — очень важный фактор эффективности процесса. Оставшаяся в нитрующей смеси азотная кислота находится в форме нитрозилсульфата (НОЗОзЫО) это соединение разлагается тем быстрее, чем более разбавлены кислоты поэтому для регенерации НЫОд из остаточных смесей необходимо сначала разбавить эти смеси (ниже 70%), а затем нагреть их для удаления НКОз и окислов азота. [c.303]

    Закон кратных отношений утверждает, что если два элемента соединяются друг с другом, образуя более одного соединения, то количества этих элементов находятся в простых целочисленных отношениях друг к другу (или что можно умножить эти количества на подходящую постоянную и получить ряд целых чисел). Поскольку в наших рассуждениях мы пользовались соединительными весами, стоит привести еще такую формулировку закона кратных отношений если у элемента обнаруживаются различные соединительные веса, они обязательно находятся в простых целочисленных отношениях друг к другу. Например, приведенные в табл. 6-1 соединительные веса углерода относятся друг к другу, как 3 4 6 12 или, более наглядно, как -3 1. Соединительные веса серы находя гея в оIношении I а соединительные веса азота в NHз, N02, и N 0 находятся в отношении у - 1. Дальтон объяснил эти простые отношения тем, что 1, 2 или другое небольшое число атомов может соединяться с 1 атомом другого сорта, но что молекула, состоящая из 1,369... атомов, соединенных с 1 атомом другого сорта, согласно атомистической [c.283]

    Амфотерные и основные оксиды представляют собой кристаллические вещества с очень высокими температурами плавления. Например, А12О3 используется в качестве абразива, известного под названием корунд, или наждак, а ЗЮз-это кварц. Только оксиды углерода, азота, серы и галогенов в нормальных условиях находятся в жидком или газообразном состоянии. Различие между С и 81 в диоксиде углерода и кварце аналогично различию между С и N в алмазе и газообразном азоте. Разница в свойствах С и 81 обусловлена тем, что С способен образовывать двойные связи с О и поэтому они образуют друг с другом молекулярное соединение с ограниченным числом атомов. Между тем 81 должен образовывать простые связи с четырьмя различными атомами О в результате возникает протяженная трехмерная структура, в которой тетраэдрически расположенные атомы 81 связаны мостиковыми атомами О. [c.322]

    При качественной интерпретации соотношения между химическими сдвигами энергий связи электронов оболочки и распределением заряда в молекулах возникло много фальсификаций. В гл. 3 упоминалось, что с помошью метода молекулярных орбиталей можно рассчитать формальный заряд (8) на атоме в молекуле. Напомним, что формальный заряд определяется как электронная плотность на атоме в молекуле минус электронная плотность на свободном атоме. Из рис. 16.15 следует, что можно коррелировать формальный заряд на атоме азота в молекуле (полученный с помощью итерационных расчетов по расширенному методу Хюккеля) с наблюдаемыми энергиями связи 1. -электронов азота для ряда азотсодержащих соединений. Отметим, что для корреляции со сдвигом в энергиях фотоионизационных переходов электронов оболочки используют заряд основного состояния атома, который определяют произвольным образом. Наблюдаемый успех либо случаен, либо обусловлен тем, что члены, такие, как энергии электронной релаксации, сохраняют постоянное значение. [c.347]

    Из всех компонентов, входящих в состав масляных фракций, наибольшей адсорбируемостью на силикагеле обладают смолисто-асфальтеновые вещества, что объясняется их высокой полярностью, обусловленной несимметричностью строения молекул и наличием в них конденсированных ароматических колец и гетероатомов серы, кислорода и азота. Ароматические углеводороды адсорбируются на силикагеле в результате того, что под влиянием электростатического поля адсорбента в их молекулах индуцируется дипольный момент. По сравнению с углеводородами других гомологических рядов а1роматичеокие структуры обладают наибольшей молекулярной поляризуемостью. Следовательно, чем меньше экранированы ароматические кольца нафтеновыми кольцами или парафиновыми цепями, тем легче индуцируется дипольный момент в молекулах этих углеводородов, а значит, эффективнее их адсорбция на полярных адсорбентах. По мере уменьшения адсорбируемости на силикагеле компоненты масляных фракций могут быгь расположены в следующий убывающий ряд смолисто-асфальтеновые ещества> ароматические углеводороды и серосодержащие соединения>парафино-нафтеновые углеводороды. [c.259]

    Схема реакций гидрирования азотсодержащих соединений показывает, что оно идет с разложением молекулы гетеросоединения в результате разрыва связей углерод — азот и сопровождается образованием молекулы аммиака и соответствующего углеводорода. В этом смысле реакции азотсодержащих соединений сходны с реакциями гидрирования соединений серы. Существенное различие заключается в том, что соединения азота заметно более устойчивы в условиях гидрирования, разложение их наступает при более высоких температурах и давлениях. Так, многие серосодержащие соединения довольно легко разлагаются уже при температуре 280 °С и давлениях до 5 МПа разложение пиридина и хинолина наблюдается при температурах выше 350°С и давлениях 10—20 МПа. Нейтральные азотистые соединения более устойчивы, чем основные. Пиррол и его производные гидрируются при высоком давлении и температуре 400 °С, еще более устойчивы производные карбазола. С увеличением молекулярной массы устойчивость соединений азота надает, так что разложение высокомолекулярных соединений азота наблюдается уже при простом нагревании. Тем не менее для осуществления деазотирования в целом требуются более жесткие условия гидрогенизациоиного процесса. При проведении процесса в конкретных условиях глубина очистки от азотсодержащих соединений, как правило, меньше глубины обессеривания. [c.295]

    Водородная связь проявляется тем сильнее, чем больше элект-роотрицательнвсть атома-партнера и чем меньше его размеры. Она характерна прежде всего для соединений фтора, а также кислорода, в меньшей степени азота, в еще меньшей степени для хлора и сс1)ы. Соответственно меняемся и эиергия водородной связи. Так, энергия водородной связи Н---Р (эту связь принято обозначать точками) составляет 40, связи Н---0 20, Н---Ы ж 8 кДж. Соседство электроотрицательных атомов может активировать образование водородной связи у атомов СН-групп (хотя электроотри-цательностн углерода и водорода почти одинаковы). Этим объясняется возникновение водородных связей Между молекулами в жидких ИСЫ, СРзН и т. д. [c.132]


Смотреть страницы где упоминается термин Тема 21. Азот и его соединения: [c.192]    [c.123]    [c.126]    [c.127]    [c.8]    [c.139]    [c.133]    [c.140]    [c.217]    [c.216]    [c.15]    [c.16]    [c.74]    [c.292]   
Смотреть главы в:

Практикум по неорганической химии -> Тема 21. Азот и его соединения




ПОИСК





Смотрите так же термины и статьи:

Соединения азота и азота

Тема 14. Азот

Хай-Темя



© 2025 chem21.info Реклама на сайте