Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азот в природе и его получение

    Общая характеристика элементов главной подгруппы V группы периодической системы. Азот. Строение атома, строение молекулы, степени окисления. Круговорот азота в природе. Получение, физические и химические свойства азота. Аммиак, строение молекулы, получение, физические и химические свойства. Восстановительные свойства аммиака. Аммиачная вода. Соли аммония, их получение. Термическое разложение солей аммония. Оксиды азота, их получение и основные химические свойства. Азотистая кислота. Окислительно-восстановительные свойства соединений азота со степенью окисления +3. Азотная кислота, ее получение и химические свойства. Окислительные свойства азотной кислоты в реакциях взаимодействия с металлами и неметаллами. Царская водка. Соли азотной кислоты, их термическое разложение. Азотные удобрения. Фосфор, строение атома, степени окисления. Аллотропия. Физические и химические свойства. Фосфин. Фосфиды, их гидролиз. Оксиды фосфора (III) и (V), их получение, свойства. Ортофосфор-ная кислота, ее получение. Одно-, двух- и трехзамещен-ные фосфаты. Их растворимость и гидролиз. Метафос-форная кислота, ее общая характеристика. Фосфорные удобрения. [c.7]


    Нагревание облученного азота выше 4,2° К сопровождается зеленым свечением. Эмиссионный спектр свечения подобен спектру, наблюдаемому при нагревании предварительно вымороженных при температуре жидкого гелия продуктов, полученных при пропускании электрического разряда через азот. Природа этого свечения имеет рекомбинационный характер (98]. Неподвижные атомы азота приобретают в ходе нагрева подвижность в матрице и рекомбинируют по реакции [c.313]

    Домашняя подготовка. Общая характеристика подгруппы азота. Распространение азота в природе. Получение азота в лабораторных условиях и в промышленности. Физические и химические свойства аз.ота. Водородные соединения азота. Аммиак. Получение аммиака в лабораторных условиях и в промышленности. Физические и химические свойства аммиака. Аммонийные соли. Кислородные соединения азота. Азотная кислота и ее соли. Азотистая кислота и ее соли. Применение азота и его соединений. Азотные удобрения. [c.200]

    Домашняя подготовка. Общая характеристика подгруппы азота. Распространение азота в природе. Получение азота в ла- бораторных условиях и, в промышленности. Физические и хими-148 [c.148]

    Порядок расположения материала по каждому элементу всегда постоянный история вопроса нахождение в природе получение физические свойства действие воздуха, воды, неметаллических соединений, кислот, металлов и др. химические свойства иона общие реакции, качественные реакции, количественные реакции соединения элемента с другими элементами, имеющими более низкий систематический номер гидраты, окислы, соединения с азотом, соединения с галогенами и т. д. [c.126]

    Результаты разделения азотистых оснований и сульфоксидов приведены в табл. 32. Основания полностью освобождены от сульфидов, и, по всей вероятности, оставшуюся серу следует считать ассоциатами азоторганических соединений с сернистыми соединениями несульфидной природы. Полученный концентрат азотистых оснований имеет следующую характеристику d2°4 1,1041 средн. мол. масса 301 С 82,65 Н 8,71 N общ. 4,63 N осн. 4,59 S общ. — 3,80. Как видно, содержание основного азота увеличилось более чем в 2 раза по сравнению с азотистым концентратом и более чем в 50 раз по сравнению с исходной нефтью. [c.96]

    Каждый из элементов описывается по единой схеме сначала излагаются история открытия, нахождение в природе, получение, физические свойства, химические свойства простого вещества. Затем описываются соединения данного элемента с другими, имеющими меньший систематический номер. Они располагаются в порядке возрастания систематических номеров второго компонента сначала соединения с водородом (систематический номер 2), затем с кислородом (№ 3), азотом (№ 4), галогенами (№ 5, 6, 7, 8), халькогенами (№ 9, 10, И, 12), бором (№ 13), углеродом (№ 14), кремнием (№ 15), фосфором (№ 16), мышьяком (№ 17), сурьмой (№ 18), висмутом (№ 19). За висмутом начинаются систематические номера металлов, сгруппированные по подгруппам периодической системы щелочные металлы (№ 20—25), щелочноземельные металлы (№ 26—31) и т. д. [c.7]


    Состав газообразного топлива зависит от его природы, происхождения и способа получения. Природные газы состоят преимущественно из метана с незначительным содержанием других низших алканов, оксида углерода и азота. В попутных газах содержится значительное количество алканов от этана до пентана и выше, при относительно низком содержании метана. Газы газоконденсатных месторождений по составу занимают промежуточное место. Содержание конденсата в них колеб- [c.191]

    Каталитические процессы широко распространены в природе и эффективно используются в различных отраслях промышленности, иауки и техники. Так, в химической промышленности посредством гетерогенных каталитических процессов получают десятки миллионов тонн аммиака из азота воздуха и водорода, азотной кислоты путем окисления аммиака, триоксида серы окислением 50г воздухом и др. В нефтехимической промышленности более половины добываемой нефти посредством каталитических процессов крекинга, рифор-минга и т. п. перерабатывается в более ценные продукты — высококачественное моторное топливо, различного вида мономеры для получения полимерных волокон и пластмасс. К многотоннажным каталитическим процессам относятся процессы получения водорода путем конверсии диоксида углерода и метана, синтез спиртов, формальдегида и многие другие. Можно утверждать, что для любой реакции может быть создан катализатор. Теория катализа должна раскрывать закономерности элементарного каталитического акта, зависимость каталитической активности от строения и свойств катализатора и реагирующих молекул и тем самым создать необходимые предпосылки для предсказания строения и свойств катализатора для конкретной реакции, указать пути его получения. К описанию скорости каталитического процесса можно подходить, используя основные положения формальной кинетики и метод переходного состояния. При этом целесообразно сперва выделить общие закономерности катализа, присущие всем видам каталитических процессов, а затем рассмотреть некоторые специфические особенности отдельных групп каталитических процессов. [c.617]

    Являясь одним из важнейших видов химического сырья, атмосферный азот служит продуктом для получения аммиака, значительная часть которого в виде различных удобрений попадает в почву, входит в обший баланс круговорота азота в природе (на правой стороне листа он обозначен под цифрой ба). Цикл замкнулся. Но он был бы неполным, если бы не учитывать деятельность почвенных бактерий, которые переводят свободный азот в соединения, обогащая тем самым почву связанным азотом. Эти бактерии носят название азотобактерий. Они способны переводить свободный азот в аммиак в присутствии органических веществ. На правой стороне листа этот процесс записывают в виде уравнения (66). При благоприятных условиях азотобактерии способны накопить за год около 50 кг связанного азота на 1 га. Отмечают деятельность клубеньковых бактерий, живущих на корнях бобовых растений клевера, люцерны, гороха и др. Эти бактерии, питаясь соками растений, в то же время доставляют последним связанный азот и таким образом обогащают им почву. Каждое растение семейства бобовых — это своего рода лаборатория по связыванию атмосферного азота (на схеме отмечается бб). Четверть связанного азота остается в почве в корневой системе, тем самым обогащая почву. [c.129]

    Азот. Нахождение в природе. Строение молекулы. Физикохимические свойства. Получение в промышленности. [c.133]

    Получение простых веществ из их природных соединений есть всегда окислительно-восстановительный процесс, кроме тех случаев, когда простые вещества встречаются в самородном состоянии. В последнем случае их обычно выделяют из смесей физическими методами (разгонка сжиженного воздуха при получении N2, Оз, благородных газов, процессы флотации и т. п.). Все металлы (кроме самородных) находятся в природе в окисленном состоянии и их выделение из соединений сводится к восстановлению. Неметаллы в природных соединениях могут находиться как в окисленном, так и в восстановленном состоянии. При этом наиболее активные неметаллы (галогены, кислород) находятся в природных соединениях исключительно в восстановленном состоянии. Халькогены находятся преимущественно в восстановленном состоянии, хотя, например, в сульфатах сера окислена. Азот, фосфор, кремний, бор, сурьма, висмут в природе встречаются всегда в окисленной форме (нитраты, фосфаты, силикаты, сульфиды сурьмы и висмута и т. п.). [c.43]

    Теоретические основы экстракции.- Экстракцией называется извлечение вещества из одной жидкой фазы в другую жидкую фазу. С водой не смешиваются малополярные органические жидкости (с низкой диэлектрической постоянной). Подавляющее большинство неорганических соединений, имея ионную природу, растворяется в них плохо. В водном растворе эти соединения диссоциируют на ионы, которые гидратируются молекулами воды. Переход соединения в органическую фазу становится возможным, если все или часть молекул воды, координированных ионом, будут удалены, и получен нейтральный комплекс. Образование нейтральных соединений и уменьшение степени гидратации наблюдается прн образовании солей с органическими кислотами, аминами (если металл входит в состав аниона), сольватов с нейтральными экстрагентами (спиртами, кетонами, простыми и сложными эфирами). При образовании сольватов молекулы экстрагента замещают молекулы воды в гидратной оболочке катиона либо присоединяются к воде гидратной оболочки. Такого рода взаимодействие возможно, если органические вещества содержат атомы кислорода, азота и других элементов, способных быть донорами электронов, а металлы — акцепторами. [c.332]


    С помощью конфокальной флуоресцентной микроскопии исследована кинетика накопления и локализации полученных соединений в раковых клетках. Показано, что в зависимости от природы заместителей при атоме азота сенсибилизаторы могут концентрироваться при различных клеточных органеллах ядре клетки, митохондрии или аппарате Гольджи. [c.17]

    Традиционно существенным разделом органической химии является создание высокоэффективных процессов получения разнообразных органических соединений. В значительной степени решение этой задачи связано с разработкой инструментария - эффективных методов получения широкого ряда различных по структуре ароматических продуктов, содержащих функциональные группы различной природы. В частности, это относится к азот- и галогенсодержащим ароматическим структурам многоцелевого назначения. Реакции ароматического нуклеофильного замещения являются эффективными инструментами синтеза разнообразных полифункциональных ароматических соединений. Нами исследована реакция замещения активированного и неактивированного атомов галогена в бензольном кольце на феноксигруппу, содержащую различные заместители  [c.155]

    Как правило, ни в природе, ни в технологических процессах газы при нужных параметрах не встречаются. Поэтому их получение неизбежно связано с процессами разделения исходных смесей. Эти процессы осуществляются в крупном масштабе количество производимых в промышленно развитых странах таких газов, как кислород или азот, измеряется миллиардами кубических метров в год. [c.227]

    Азот в природе. Получение и свойства азота. Большая часть азота находится в природе в свободном состоянии. Свободный азот является главной составной частью воздуха, который содержит 78,2% (об.) азота. Неорганические соединения азота не встречаются в природе в больших количествах, если не считать натриевую селитру NaNOs, образующую мощные пласты на iro-бережье Тихого океана в Чили. Почва содержит незначительные количества азота, преимущественно в виде солей азотной кислоты. Но в виде сложных [c.427]

    Значение р/Сз для соединений 2 3 88 и 2.3.89 связано с диссоциацией гидроксильной группы. Некоторое снижение этих значений по сравнению с соответствующими характеристиками а-нафтола (р/С=10) может быть объяснено отрицательным индукционным эффектом сульфогрупп. Значение р/Сз в соединениях 2.3.90—2.3.92 отнесено к диссоциации бетаинового протона атома азота алифатической природы. Полученные значения близки к константе диссоциации бетаинового протона в бензилиминодиуксусной кислоте (р/С=9,02) [59]. Значение р/С4 в соединениях 2.3 91 и 2 3.92 отнесены по аналогии с комплексонами бензольного ряда и на основании близости значений р/Сз для соединений 2 3 90—2.3.92 к диссоциации фенольного гидроксила. [c.286]

    Азот в природе. Получение и свойства азота. Большая часть азота находится в природе в свободном состоянии. Свободный азот является главной составной частью воздуха, который содержит 78,27о(об.) азота. Неорганические соединения азота не встречаются в природе в больших количествах, если не считать натриевую селитру NaNOs, образующую мощные пласты на побережье Тихого океана в Чили. Почва содерлсит незначительные количества азота, преимущественно в внде солей азотной кислоты. Но в виде сложных органических соединении — белков — азот входит в состав всех живых организмов. Превращения, которым подвергаются белки Б клетках растений и животных, составляют основу всех жизненных процессов. Без белка нет жизни, а так как азот является обязательной составной частью белка, то поняп ю, какую важную роль играет этот элемент в живой природе. [c.398]

    За последние 150 лет параллельно с развитием основных теоретических представлений в области химии выяснялся общий состав нефти [14]. Однако замечательное постоянство химического состава сырых нефтей стало понятным лишь около 40 лет назад. Ш. Ф. Мабери на основании многочисленных и тщательно выполненных анализов нашел, что даже наиболее различающиеся между собой нефти содержат от 83 до 87 % углерода, от И до 14% водорода, а также кислород, азот и серу в количествах от 2 до 3% [28]. Он показал, что это постоянство может быть объяснено очень просто, если предположить, что каждая нефть представляет собой смесь небольшого числа гомологических рядов углеводородов, причем число индивидуальных членов каждого ряда может быть очень велико. Различие между двумя любыми нефтями заключается в вариациях содержания каждого ряда и содержания индивидуальных углеводородов, присутствующих в каждом ряду. Природа гомологических рядов, составляющих нефть, такова, что эти вариации но оказывают большого влияния на состав общей смеси. Таким образом, в результате, несмотря на некоторые различия, элементарный состав одной нефти весьма близок к элементарному составу другой нефти. Этот общий вывод имеет важное техническое значение, так как позволяет получать довольно однородные нефтяные продукты из нефтей различного состава. Вместе с тем методы переработки сырых нефтей должны быть весьма разнообразными и обеспечивать получение товарных продуктов в нужном количестве и необходимого качества. Например, небольшое содержание асфальтовых веществ не может заметно отразиться на элементарном составе всей нефти в целом, точно так же, как и увеличение содержания ароматических углеводородов в керосиновой фракции на 10% не может заметно изменить отношение содержания углерода и водорода. Однако каждое из этих изменений может значительно увеличить трудности переработки нефти и уменьшить выход чистых продуктов 2. [c.49]

    Скорость перевода атмосферного азота в состояние, в котором он может быть усвоен или реализован, в природных процессах весьма мала. В среднем половина необходимого для жизни азота возвращается через атмосферу за 10 лет, тогда как для кислорода этот период составляет 3000 лет, а для углерода всего 100 лет. В то же время, организация современного культурного земледелия связана с непрерывным уносом усвояемого азота с посевных площадей, достигающим 88 млн. тонн в год, а это 90% азота, необходимого для питания растений. Поэтому первоочередная задача — непрерывное пополнение запасов азота в почве в усвояемой растениями форме, то есть в виде его соединений. До конца XIX столетия источником подобного связанногр азота служили естественные удобрения и лишь в незначительной степени природные соли — нитраты натрия и калия, запасы которых в природе весьма ограничены. Увеличение масштабов культурного земледелия и потребностей промышленности в разнообразных соединениях азота потребовали разработки промышленных способов получения этих соединений, то есть способов связывания атмосферного азота. [c.184]

    Даже этот беглый обзор некоторых биологических функций соединений азота и фосфора в живой природе убеждает нас в их жизненной необходимости, в том, что для нормального развития растений и животных необходимы соединения азота и фосфора. Поскольку растения периодически извлекают из почвы соединения этих элементов, для получения высоких урожаев необходимо регулярно вносить в почву азот1 ые и фосфорные удобрения. [c.88]

    Эти газы, а также криптон и ксенон получают из воздуха путем его разделения при глубоком охлаждении. Аргон, в связи с его сравнительно высоким содержанием в воздухе, получают в значительных количествах, остальные газы — в меньших. Аргон в природе образуется в результате ядерной реакции из изотопа jgK. Неон и аргон имеют широкое применение. Как тот, так и другой применяются для заполнения ламп накаливания. Кроме того, ими заполняют газосветные трубки для неона характерно красное свечение, для аргона — синеголубое. Аргон как наиболее доступный из благородных газов применяется также в металлургических и химических процессах, требующих инертной среды. Так металлы Li, Be, Ti, Та в процессе их получения реагируют со всеми газами, кроме благородных. Используя аргон в качестве защитной атмосферы от вредного вляния кислорода, азота и других газов проводят аргонно-дуговую сварку нержавеющих сталей, титана, алюминиевых и алюн <ниево-магниевых сплавов. Сварной шов при этом получается исключительно чистый и прочный. [c.493]

    Катализ (неорганический и ферментативный) имеет широчайшее распространение в природе и промышленности. В настоящее время с участием катализаторов получают большое количество важнейших для народного хозяйства продунтов (азотистые вещества за счет азота воздуха, серная кислота, искусственный бензин, спирт, искусственный каучук, продукты гидрогенизации жиров, исходные материалы для получения пластмасс и т. д.). Все биохимические процессы, протекающие в живой природе, в основном имеют ферментативный характер. [c.143]

    Согласно принципу жестких и мягких кислот и оснований, жесткие кислоты предпочтительно взаимодействуют с жесткими основаниями, а мягкие кислоты—с мягкими основаниями (т. 1, разд. 8.4). При реализации механизма SnI нуклеофил атакует карбокатион, который представляет собой жесткую кислоту. В механизме Sn2 нуклеофил атакует атом углерода молекулы, которая является более мягкой кислотой. Болёе электроотрицательный атом амбидентного нуклеофила — это более жесткое основание, чем менее электроотрицательный атом. Поэтому можно утверждать, что при изменении характера реакции от SnI к Sn2 вероятность атаки менее электроотрицательным атомом амбидентного нуклеофила возрастает [362]. Следовательно, переход от условий реакции SnI к условиям реакции Sn2 должен способствовать атаке атома углерода в цианид-ионе, атома азота в нитрит-ионе, атома углерода в енолят- и фенолят-ионах и т. д. Например, атака на первичные алкилгалогениды (в протонных растворителях) происходит атомом углерода аниона, полученного из СНзСОСНгСООЕ , тогда как а-хлороэфиры, которые взаимодействуют по механизму SnI, атакуются атомом кислорода. Однако это не означает, что во всех реакциях Sn2 атакует менее электроотрицательный атом, а во всех реакциях SnI—более электроотрицательный. Направление атаки зависит также и от природы нуклеофила, растворителя, уходящей группы и других условий. Это правило утверждает лишь, что усиление SN2-xapaKTepa переходного состояния делает более вероятной атаку менее электроотрицательным атомом. [c.97]

    Азот в природе и его получение. Содержание атома в земной коре в виде соединений составляет 0,01 мае. доли, %. Более 75 мае. долей, %, азота сосредоточено в земной атмосфере в состоянии двухатомных молекул N2, что составляет около 4 10 т. Связанный азот образует минералы в форме нитратов чилийская NaNOj, индийская KNO3 и норвежская a(N03)2 селитры. Кроме того, азот в виде сложных органических производных входит в состав белков, связанный азот содержится в нефти (до 1,5 мае. долей, %), каменных углях (до 2,5 мае. долей, %). При гниении органических азотсодержащих веществ и сжигании топлива связанный азот превращается в свободный. Попутно при этом в малой дозе образуются аммиак, оксид и диоксид азота. [c.246]

    Природные соединения и получение фосфора. По распространенности в земной коре (8-10 мае. доли, %) фосфор опережает азот, серу и хлор. В отличие от азота фосфор встречается в природе только в виде соединений. Наиболее важные минералы фосфора апатит СэаХ (Р04)з (X — фтор, реже хлор и гидроксильная группа) и фосфорит, основой которого является Саз(Р04)з. Кроме того, фосфор входит в состав некоторых белковых веществ и содержится в растениях и организмах животных и человека. [c.269]

    Получение веществ искусственным путем — важная и увлекательная задача химии. Однако в природе имеется много химических превращений, механизмы которых пока неизвестны ученым. Раскрытие этих секретов природы должно принести огромные материальные выгоды. Так, связывание молекулярного азота в химические соединения в промышленности осуществляется в чрезвычайно жестких условиях. Синтез аммиака из азота и водорода происходит при высоком давлении Ктысячи паскалей) и температуре (сотни градусов), а для синтеза оксида азота(И) из азота и кислорода характерна температура около 3000 °С. В то же время клубеньковые бактерии на бобовых растениях переводят в соединения атмосферный азот при нормальных условиях . Эти бактерии обладают более совершенными катализаторами, чем те, которые используют в промышленности. Пока известно лишь, что непременная составная часть этих биологических катализаторов — металлы молибден и железо. Другим чрезвычайно эффективным катализатором является хлорофилл, способствующий усваиванию растениями диоксида углерода также при нормальных условиях. [c.10]

    Азот в природе и его получение. Содержание азота в земной коре в виде соединений составляет 0,01 масс, доли, %. Атмосфера более чем на 75 масс, долей, % состоит из газообразного азота, что равно 4 10 т. Связанный азот образует минералы в форме нитратов чилийская МаКОз, индийская ККОэ и норвежская Са(КОз)2 селитры. Азот в форме сложных органических производных входит в состав белков, в связанном виде содержится в нефти (до 1,5 масс, доли, %), каменных углях (до 2,5 масс, доли, %). [c.397]

    Исследование причин существенного отклонения закономерностей термического распада простых нитратов моноспиртов от первого прядка показало, что полученные результаты не противоречат общепринятому представлению о том, что первая макроскопическая стадия распада этилнитрата представляет собой радикальную обратимую реакцию образования этоксильного радикала и двуокиси азота. Это подтверждают и квантовомеханические расчеты, полученные ранее. Относительно дальнейшего поведения этоксирадикала и двуокиси азота имеются две точки зрения. Первый механизм предусматривает дальнейшее взаимодействие радикала с молекулами и фрагментами органической природы. Вторая точка зрения сводилась к тому, что алкоксирадикал претерпевает химические [гревра-щения исключительно за счет реакций с окислами азота. На основе экспериментальных и имеющихся литературных данных получены количественные значения констант промежуточных реакций и начальной стадии распада. [c.75]

    Внутримолекулярная координация. Разработаны новые методы синтеза (3-теллуровинилкарбонильных соединений различных типов. Исследованы реакции этих соединений, в том числе, применение их для получения теллурсодержащих гетероциклов с 2 и 3 гетероатомами. Методом РСА изучено влияние природы теллурсодержащих заместителей и донорных группировок, содержащих sp -, sp -гибридизированные атомы кислорода, азота на длины внутримолекулярных координационных связей 0(N) Te. [c.121]


Смотреть страницы где упоминается термин Азот в природе и его получение: [c.398]    [c.495]    [c.278]    [c.110]    [c.104]    [c.139]   
Смотреть главы в:

Неорганическая химия -> Азот в природе и его получение




ПОИСК





Смотрите так же термины и статьи:

Азот получение



© 2024 chem21.info Реклама на сайте