Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разложение перекиси водорода при действии катализаторов

    Практическое применение как однокомпонентное топливо нашла 80—90%-ная перекись водорода. Она использовалась в ракете V—2 как вспомогательное топливо для образования наро-газовой смеси, при помощи которой приводятся в действие турбины насосов, подающих топливо в ракетном двигателе. Разложение перекиси водорода осуществляется при помощи твердых или жидких катализаторов. [c.331]


    Элементарный углерод не вступает в стехиометрическую реакцию с перекисью водорода, хотя протекающее при этом разложение вызывает в известной степени изменение поверхности углерода. Руп и Шлее [218] сообщили, что перекись водорода окисляет карбонат до муравьиной кислоты и формальдегида, попозже [219 они выяснили, что это действие обусловлено присутствием примесей. Нет никаких сообщений о реакции перекиси водорода с производными кремния, если не считать данных об абсорбции [220] и образовании перекисей [221]. Металлический германий протравливается перекисью водорода [222]. Вопрос об инертности металлического олова уже обсуждался при рассмотрении техники обращения с перекисью водорода (стр. 146). В растворе двухвалентное олово превращается перекисью водорода в четырехвалентное [223], причем водная двуокись олова совершенно инертна, а поэтому применяется даже в качестве стабилизатора. Сравнительная инертность, наблюдающаяся у этих элементов, отсутствует у последнего члена группы, свинца, который является весьма активным катализатором разложения. Металлический свинец растворяется в подкисленной перекиси водорода при повышении pH образуются окислы, причем в щелочных растворах продуктом реакции, безусловно, является двуокись свинца [224]. [c.337]

    Свинец—один из наиболее активных гетерогенных катализаторов. Опубликованы разные качественные характеристики этого каталитического процесса [134, 145, 146], а именно двухвалентный свинец в кислом растворе не оказывает никакого действия на перекись водорода для разложения ее требуется ш,елочная среда, в которой образуется двуокись свинца. В результате изучения [147] механизма этого катализа сделан вывод, что его можно описать как окислительно-восстановительный цикл между двухвалентным свинцом РЬ(ОН). и свинцовым суриком РЬзО . Условия высокой каталитической активности возникают тогда, когда оба эти веш,ества присутствуют как твердые фазы в сильнощелочном растворе образуются высшие окислы. Влияние различных интервалов pH можно охарактеризовать следующим образом. Азотнокислый свинец растворяется в перекиси водорода с образованием прозрачных устойчивых растворов. При добавке щелочи выпадает беловато-желтый осадок и возникает небольшая активность. При дальнейшей добавке щелочи осадок переходит в оранжево-красный и начинается бурное разложение перекиси. Как оказалось, количество щелочи, требующееся для достижения этой точки, обратно пропорционально количеству растворенного свинца на это явление накладывается еще четко не установленное влияние старения. Количество пирофосфата, требующееся для прекращения катализа, примерно эквивалентно количеству, необходимому для образования пирофосфорнокислого свинца РЬ Р О.. Каталитическая активность проходит через максимум приблизительно при 0,2 н. концентрации щелочи при более высокой концентрации возрастает растворимость свинца в виде плюмбита и плюмбата и каталитическая активность снижается. Сделана попытка [147] доказать наличие циклического процесса окисления— восстановления при помощи радиоактивных индикаторов, однако она закончилась неудачей в связи с тем, что даже в отсутствие нерекиси водорода происходит обмен между ионом двухвалентного свинца и двуокисью свинца в азотной кислоте (что соответствует литературным данны.м [148, 149]) и между плю.мби-том и плюмбатом в основном растворе (что противоречит опубликованным данным [149[). [c.401]


    Цинк обладает необычными свойствами он может функционировать и как катализатор и как стабилизатор. Как указывается на стр. 451, цинк в растворе 90%-ной перекиси водорода обладает стабилизирующим действием. Сделано наблюдение 1153], что при снижении концентрации перекиси водорода это действие ослабевает и что в растворах с содержанием ниже 40 вес. % перекиси водорода цинк действует уже как катализатор разложения. Это каталитическое действие обнаружено также [154] в смесях с другими катализаторами. Вейс 156] показал, что металлический цинк разлагает перекись водорода с выделением водорода и кислорода. До сих пор не предложено механизма, которым можно было бы объяснить это двоякое действие цинка. Влияние кадмия изучено лишь в слабых растворах, причем ему приписываются либо слабые каталитические свойства [134, 154], либо он считается совсем неэффективным [155 . [c.402]

    В неводных растворах электросинтез Кольбе идет с высокими выходами по току как на анодах из платинированной платины и золота, так и на аноде из гладкой платины. Повышение температуры и присутствие катализаторов для разложения перекиси водорода — два фактора, которые в водных растворах оба оказывают отрицательное действие, а в неводных — сравнительно небольшое влияние. Механизм реакции в растворах, неводных и водных, очевидно, совершенно различен. В первых нет ионов гидроксила и, следовательно, не могут образовываться ни радикалы гидроксила, ни перекись водорода. Поэтому, вероятно, прямой разряд ионов ацетата протекает при таком потенциале, который в данном растворителе почти не зависит от вещества электрода. Образующиеся радикалы, вероятно, соединяются попарно, как в водных растворах, образуя перекись ацетила, которая затем разлагается, как уже было описано выше [13]. [c.689]

    Чем чище перекись водорода, тем медленнее она разлагается при хра-нен.чи. Особенно активны.ми катализаторами ее разложения являются соединения некоторых металлов (Си, Мп и др.), прпчем заметно действуют даже их следы. [c.108]

    При этом сначала получается атомарный, т. е. активный кислород, который лишь постепенно превращается в молекулярный. Выделением атомарного кислорода и обусловлены окислительные свойства перекиси водорода. Водные растворы ее более устойчивы. Поэтому перекись водорода поступает в продан у в виде 30%-ного раствора, именуемого пергидролем, и 3%-ного водного раствора. В прохладном месте их можно хранить длительное время. Однако даже в растворах разложение перекиси водорода ускоряется под действием нагревания, света, катализаторов (двуокиси марганца, мелко раздробленной платины и т. п.). [c.110]

    Перекись водорода характерна тем, что существует большое число разнообразных катализаторов ее -разложения, и тем, что уже незначительные количества таких катализаторов вызывают сильное действие. Табл. 3 показывает влияние [c.162]

    Водные растворы перекиси водорода более устойчивы. Поэтому перекись подорода поступает в продажу в виде 30%-ного раствора, именуемого пергидролем, и в виде 3%-ного водного раствора. В прохладном месте их удается сохранять в течение длительного времени. Однако даже в растворах разложение перекиси водорода значительно ускоряется под действием нагревания, света, катализаторов (двуокиси марганца, мелко раздробленной платины и т. п.). [c.95]

    В качестве стабилизаторов перекиси водорода было предложено и испытано большое количество веществ. Эти материалы, за исключением кислот, повидимому, не оказывают никакого влияння на самую перекись водорода, действие же их основано на удалении или дезактивации катализаторов разложения. Одна группа стабилизаторов обязана своим действием способности к образованию комплексов, что является средством удаления ионов тяжелых металлов из раствора в эту группу входят пирофосфаты, фториды, цианиды и различные органические вещества, например 8-окснхинолин, ацетанилид и др. Действие другой группы стабилизаторов, повидимому, основывается на их адсорбционной способности такие вещества, как свежеосажденный глинозем и кремнезем, водная окись сурьмы и водная окись олова, в различной степени увеличивают стабильность растворов перекиси водорода. Для растворов перекиси водорода нельзя ограничиться одним, лучшим стабилизатором. Эффект применения стабилизатора зависит от природы катализатора, pH раствора, температуры и других факторов. Так, разложение под действием меди при некоторых обстоятельствах больше замедляется двуокисью олова, чем пирофосфатом, в то время как для ионов хрома имеет место обратное соотношение. [c.164]

    Чем чище перекись водорода, тем медленнее она разлагается при хранении. Особенно активными катализаторами разложения Н2О2 являются соединения некоторых металлов (Ср, Fe, Мп и др.), причем заметно действуют даже такие их следы, которые не поддаются прямому аналитическому определению. Для связывания этих металлов к перекиси водорода в качестве стабилизатора часто добавляют немного (порядка 1 10 ООО) пирофосфата натрия — N34P207. [c.151]


    Писаржевский связывал каталитическую активность с электронной изомерией. Корабельник проверил и экспериментально показал, что в некоторых случаях могут преобладать каталитические реакции, вызванные образованием электронных изомеров. Существование свободных электронов или высокой электронной проводимости имеет второстепенное значение. Корабельник сравнивал активность катализаторов, состоящих из двуокиси марганца и перекиси свинца, при каталитическом разложении перекиси водорода. Если бы каталитическая активность объяснялась действием свободных электронов этих окислов на адсорбированные ими молекулы перекиси водорода, то лучшим был бы катализатор, обладающий наивысшей электронной проводимостью. По данным Фишера [100], проводимость перекиси свинца в 550 раз больше, чем проводимость перекиси марганца, между тем как двуокись марганца катализует разложение в шесть раз сильнее, чем перекись свинца. Писаржевский предполагал, что этот каталитический эффект объясняется явлением электронной изомерии у ионов марганца и отсутствием ее у ионов свинца. Конечно, превращение ак- [c.79]

    Относительно возможности образования промежуточных соединений Банкрофт замечает, что хотя оно не всегда может объяснить действие катализатора, тем не менее при изучении механизма реакции необходимо искать промежуточные соединения. В качестве примера, служащего доказательством образования промежуточных соединений при контактном катализе, можно привести каталитическое разложение перекиси водорода ртутЁю в качестве катализатора, при котором перекись ртути, являющаяся промежуточным соединением, была обнаружена в виде периодически образующейся пленки [18]. [c.109]

    Эти методы используются для приготовления пористых эластомеров и термопластов, для которых получающиеся при разложении продукты не приносят вреда. Используется большое число порообразующих веществ, из которых наиболее распространены бикарбонаты натрия и аммония, нитрат аммония, карбонат кальция, диазопроизводные и диизоцианаты. Предложен в качестве порообразующего агента насыщенный газом активированный угольВ процессе Телейли для получения пористой резины источником газа служит перекись водорода, разлагающаяся с выделением кислорода под действием дрожжевого катализатора В любом случае порообразующий материал подмешивается в латекс до коагуляции или в эластомерную массу до вулканизации, причем материал должен быть равномерно распределен по всей пластической массе прежде, чем произойдет выделение газа. [c.92]

    При действии кислорода и влаги на многие металлы образуются небольшие количества перекиси водорода, которую определяли качественно колориметрическим методом, например с титановой солью, или путем эффекта Рассела. Этот эффект основан на том, что фотопластинки весьма чувствительны к очень небольшим количествам перекиси водорода. Так, Рассел показал, что ряд веществ, в том числе различные металлы, особенно после свежей шлифовки поверхности, дают фотографические изображения при выдерживании их вблизи фотопластинки в темноте. Доказано, что это обусловлено выделением перекиси водорода. Перекись водорода по одному из указанных методов обнаружена при окислении следующих металлов цинка, свинца, олова, серебра, ртути, меди, алюминия, кадмия, магния и железа [121, 122]. Вполне вероятно, что она образуется также при окислении многих других металлов. Очень трудно открыть ее на таких металлах, которые являются активными катализаторами разложения перекиси водорода, например на железе, меди и свинце. По-видимому, концентрация перекиси водорода, возникающей при самоокислении металлов, определяется относительными скоростями реакций образования и разложения открытие перекиси водорода тем или иным автором зависит от чувствительности применяемой им методики, а также от условий опыта. Более высокие концентрации перекиси водорода обнаруживаются на поверхностях свежешли-фовапиого металла, а также (по крайней мере в случае алюминия) в слабо-или умереииокислых или слабощелочных водных растворах. В процессе окисления металл приобретает отрицательный потенциал. Анодная поляризация металла подавляет образование перекиси водорода, катодная поляризация способствует этому образованию. Сказать точно, требуется ли обязательно наличие и воды и кислорода для образования перекиси водорода, не представляется возможным, однако весьма вероятно, что требуется. В одном опыте образец алюминия в сухом азоте дал слабое фотографическое изображение, но, вероятно, он адсорбировал кислород и воду (или только воду) из воздуха до помещения в инертную атмосферу. [c.68]

    В одном частном случае, когда присутствие нитрата в 30%-ном (по весу) растворе перекиси водорода оказалось вредным, он был удалей из нее в основном путем адсорбции на активированном угле со сравнительно незначительным разложением перекиси [24]. В качестве лабораторного метода предложено также [25] очищать перекись водорода путем быстрого добавления при перемешивании сначала раствора хлорного железа, а затем углекислого кальция и быстрого фильтрования смеси через тигель Гуча. Последующим приливанием концентрнроваЕиюй серной кислоты удаляют остаточную желтую окраску и осаждают кальций. Первые два добавляемых вещества, вероятно, образуют осадок водной гидроокиси железа (П1), которая, обладая высокой адсорбционной способностью, может захватить небольшие количества примесей. Однако соединения железа являются мощными катализаторами разложения, и даже небольнше количества, остающиеся после указанной обработки, могут быть причиной значительного разложения. Трудно себе представить, чтобы такого рода методика, сопряженная с введением недопустимого загрязнения, обладала какими-либо преимуществами перед способом осаждения гидратом окиси олова. В лучшем случае может произойти заметное разложение перекиси в худшем случае этот процесс сопряжен с опасностью, связанной с добавкой к перекиси каталитически действующих веществ, особенно если они введены в заметной концентрации. Поэтому описанный способ ни в коем случае не может быть рекомендован. [c.140]

    И сифонам, можно получить у различных фирм, производящих перекись водорода, и здесь мы на этих вопросах не останавливаемся. Наиболее существенные меры предосторожности заключаются в следующем 1) необходимо избегать контакта перекиси с активными катализаторами, например материалами, содержащими железо, медь, марганец и большинство других металлов, а также с пылью и щелочными соединениями, которые могут вызвать быстрое разложение 2) недопустим контакт с органическими веществами, которые могут воспламениться или образовать взрывчатые смеси с концентрированной перекисью водорода 3) следует всегда обеспечивать надлежащую вентиляцию оборудования, в котором может храниться или временно находиться перекись водорода 4) нужно избегать слишком высоких температур. Физиологическое действие перекиси водорода описано на стр. 153. Перекись, имеющая концентрацию около 50 вес.% или меньше, обычно не вызывает немедленного воспламеиения случайно облитого способного гореть материала, например одежды, но, если дать ей высохнуть, то, поскольку вода испаряется легче, концентрация перекиси, увеличивается, что иногда приводит к самовоспламенению. Загрязненные материалы, содержащие каталитические примеси, или другие горючие вещества, например дерево или предметы одежды, особенно шерстяной, часто самовозгораются при попадании на них концентрированной перекиси водорода. Во всех случаях пролитую перекись следует смывать большим количеством воды. [c.152]

    В некоторых промышленных центрах приходится сталкиваться с трудностью ликвидации сточных вод, содержащих перекись водорода, путем сброса их в водоемы. Так, концентрации перекиси водорода, превышающие 40 мг/л, оказывают токсическое влияние на молодь форели, более низкие концентрации совершенно безвредны в течение 48-часового периода [52]. Наилучший метод освобождения воды от остаточной перекиси водорода зависит от природы других содержащихся в воде отходов так, при наличии восстановителей (гидразина или метилового спирта), например в сточной воде от ракетоиспытательной станции, желательно вызвать сначала взаимодействие между перекисью и этими веществами. Поскольку перекись водорода легко разлагается в щелочной среде, а также под действием различных металлических катализаторов, то по одгюму из методов [52] обработки остаточной перекиси предложено к воде добавлять известь для доведения pH до 11, после чего вводить растворимую марганцовую соль, например хлорид, чтобы концентрация марганца составила около 4 мг/л. При этом pH марганец, по-видимому, превращается в тонкодисперсный осадок гидрата окиси марганца, являющегося очень эффективным катализатором. Смесь следует перемешать до полного разложения перекиси и, после того как осадок отстоится, сточные воды сбросить в водоем. Осевший шлам, вероятно, можно использовать вторично. [c.153]

    Взаимоотношения между гомогенным и гетерогенным катализом изучены лишь слабо главным образом потому, что элементы, способные дать начало обоим видам катализа, пе исследованы по всему интервалу переменных (например, pH и концентрации), определяюнгих состояние катализатора. В качестве катализатора, нри котором можно наблюдать переход от гомогенного механизма к гетерогенному, можно назвать железо. В кислом растворе реакция чисто гомогенная. Однако если увеличивать pH, начинает появляться коллоидное вещество и одновременно происходит изменение скорости (см. рис. 76 на стр. 440). При еще более высоких pH может наблюдаться образование макроскопического осадка, а также и другие кинетические изменения. На скорость катализа могут влиять и изменения физической формы (наличие носителя для катализатора, спекание катализатора или изменение кристаллической структуры). Хотя еще не вполне точно определен pH, при котором начинает появляться коллоидное вещество, не подлежит никакому сомнению факт перехода от гомогенного разложения к гетерогенному при повышении pH. Однако существуют еще значительные неясности по вопросу природы изменения механизма. В некоторых случаях оба вида разложения могут быть качественно объяснены одним и тем же механизмом, например циклическим окислением и восстановлением. В то же время образование комплекса или осаждение катализатора в коллоидном или твердом состоянии может определить т -долю от общего количества имеющегося катализатора, которая способна фактически участвовать в реакции и таким образом влиять на наблюдаемую скорость разложения. Такого рода случай комплексообразования встречается при катализе полимеризации действием перекисей [79]. При чисто гетерогенном катализе наблюдаемая скорость зависит от степени дисперсности твердого катализатора, так как эта дисперсность определяет размер поверхности, находящейся в контакте со средой. Наоборот, вполне возможно, что при переходе от гомогенной системы к гетерогенной коренным образом изменяется и характер реакции, которой подвергается перекись водорода, например ионный механизм может перейти в радикальный. Возможно, что при изменении условий имеется сравнительно тонкая градация в переходе от одного механизма к другому. При выяснении различий гомогенного и гетерогенного катализа нужно всегда учитывать возможное влияние адсорбции из раствора на гомогенный катализ. Так, одновалентное серебро, не обладающее каталитическими свойствами нри гомогенном диспергировании, легко адсорбируется стеклом [80]. В адсорбированном состоянии оно может нриобрести каталитические свойства в результате либо истинного восстаровления до металла, либо только поляризации [81]. Последующее использование поверхности стекла в контакте с более щелочным раствором также может активировать адсорбированное серебро. Это особенно заметно в случае поверхности стеклянного электрода. [c.393]

    Влияние указанных факторов на металлический свинец сказывается очень резко. Если погрузить полированный свинец, лишенный окисной пленки, в перекись водорода, то активность его оказывается весьма низкой. Постепенно образуется белый осадок, который после накопления превращается в свинцовый сурик с последующим бурным проявлепием каталитической активности. Если металлический свинец ненадолго погрузить в раствор перекиси водорода и сейчас же извлечь, то небольшое количество жидкости, приставшей к металлу, в течение короткого промежутка времени остается в спокойном состоянии, а затем после образования на металле пленки свинцового сурика РЬз04 резко отрывается от поверхности под действием бурного разложения. В этом процессе происходит растворение свинца, безусловно связанное с наблюдаемым уничтожением пассивности свинца при действии перекиси водорода [150], однако перекись не влияет на рост на нем дендрнтов [151]. Описано практическое применение свинцовых катализаторов для разложения концентрированной перекиси водорода в системах, применяемых для генерирования энергии [152]. [c.401]

    ДО трехвалентного состояния и осаждение гидрата окиси кобальта до достижения условий, в которых наблюдается осаждение гидрата закиси кобальта. Другие опыты [218] показывают, что концентрация кобальта, требующаяся для инициирования катализа, обратно пропорциональна концентрации щелочи, причем критерием катализа является достижение произведения растворимости. При концентрациях щелочи ниже примерно 6 н. весь осажденный кобальт находится в трехвалентном состоянии, весь же кобальт в растворе—в двухвалентном. В более щелочной среде происходит некоторое растворение трехвалентного кобальта. Пирофосфат, карбонат, сульфид и арсенат в качестве ингибиторов этого катализа неэффективны, и ультрафиолетовый сиектр поглощения щелочных растворов, содержащих ион двухвалентного кобальта и гидрат окиси кобальта, не изменяется при добавке перекиси водорода. Исследования при помощи радиоактивных индикаторов [221] показали отсутствие обмена между иоиом закисного кобальта и гидратом окиси кобальта, безразлично в присутствии или в отсутствие перекиси водорода. Эти факты, очевидно, исключают возможность катализа по механизму окислительно-восстановитель-ного цикла. Однако, возможно, что катализ происходит по свободнорадикальному механизму. Этот механизм предложен, между прочим, для объяснения каталитического разложения озона [222] и гидроперекиси кумола [223] кобальтом. Далее, исследование [224] окисления воды до кислорода ионом окисного кобальта показало, что эта реакция в состоянии вызвать полимеризацию виниловых соединений постулировано, что при этом образуются гидроксильные радикалы путем переноса электрона от гидроксильного иона к окисному иону кобальта, причем последний, возможтю, находится в растворе в виде димерного комплекса с водой. Оказывают каталитическое действие на перекись водорода [225] и другие комплексы кобальта, например с аммиаком и цитратом. Кобальт на носителе [184, 226] также обладает каталитическими свойствами. Сообщается и о промотировании катализаторов разложения перекиси водорода кобальтом [168, 227]. г-  [c.409]

    Опытным путем можно установить, что катализаторы ужньшают энергию активации процесса и тем самым ускоряют его (см. рис. 5). Например, энергия активации разложения перекиси водорода (2Н202->2Нг0 + Ог) в чистом водном растворе составляет 18 ккал/моль, в присутствии коллоидной платины — 11,7 ккал/моль, а в присутствии фермента каталазы — всего только 5,5 ккал/моль. Вследствие этого перекись водорода, плохо поддающаяся разложению в чистом водном растворе, при соприкосновении с такими тканями живых организмов, которые вырабатывают каталазу, быстро разлагается и производит сильное окислительное (а также разрушающее) действие. [c.71]

    Это разложение может быть настолько бурным, что пол гчает характер взрыва. В разбавленных растворах перекись водорода более прочна, но и в таком виде она даже при комнатной температуре все время медленно разлагается. Разложение перекиси водорода ускоряется при нагревании, при действии света и при соприкосновении с некоторыми веществами (катализаторами), способными ускорять реакцию разложения, например, с двуокисью марганца, со щелочами и др. [c.71]

    Катализаторы как неорганические, так и биологические, способны изменять скорость только таких реакций, которые в определенных условиях могут протекать сами по себе. Поэтому в механизме действия пероксидазы и каталазы на перекись водорода решающим моментом являются те направления, по которым может пойти разложение Н2О2 само по себе. Этих направленш три  [c.131]

    Далее я пытался выяснить, оказывает ли перекись водорода, применявшаяся во всех опытах в избытке, задерживающее действие на реакцию в присутствии пероксидазы вследствие постепенного разложения катализатора. С этой целью я смешал раствор, содержащий 0.005 экв. перекиси водорода в 50 см воды, с раствором 0.001 экв. пероксидазы в 50 см через определенные промежутки времени 10 см этой смеси прибавлялись к вычисленному количеству иодистоводородной кислоты, и через 10 минут титровался освободившийся иод. Отношения концентраций те же и в опыте [c.386]


Смотреть страницы где упоминается термин Разложение перекиси водорода при действии катализаторов: [c.380]    [c.87]    [c.302]    [c.327]    [c.407]    [c.452]    [c.517]    [c.685]    [c.71]   
Смотреть главы в:

Лекционные опыты по общей химии -> Разложение перекиси водорода при действии катализаторов




ПОИСК





Смотрите так же термины и статьи:

Водорода ион перекисью водорода

Водорода перекись



© 2025 chem21.info Реклама на сайте