Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства водных растворов ионных ПАВ

    Свойства водных растворов ионных ПАВ [c.16]

    Метод фотохимического разложения сероводорода. Разработан швейцарскими и итальянскими химиками. При фотохимическом разложении сероводорода в присутствии катализатора — суспензии сульфида кадмия и диоксида рутения — образуются водород и сера. Механизм этой реакции заключается в следующем. В сульфиде кадмия (соединение С полупроводниковыми свойствами) электроны под действием света начинают перемещаться, оставляя положительно заряженные дырки, и восстанавливают водород из водного раствора. Ион гидроксида разлагает молекулу водорода с образованием сульфид-иона, который окисляется до элементарной серы. Этот процесс можно использовать для очистки газов от сероводорода. [c.54]


    Сорбит довольно широко используется в технике [2]. Водные растворы сорбита гигроскопичны и применяются как увлажнители, мягчители, пластификаторы гигроскопичность их меньше, чем у растворов глицерина, но больше, чем у растворов сахарозы. Ценность сорбита в растворе в его способности стабилизовать влажность, что предотвращает быстрый прирост или потерю влаги. Характерно использование этого свойства сорбита в табачной промышленности наряду с глицерином, пропиленгликолем или сахаром (продукты пиролиза сорбита в отличие от глицерина не содержат акролеин). В кристаллической форме сорбит не поглощает влагу при относительной влажности воздуха ниже 70%, а при более высокой влажности расплывается и растворяется в адсорбированной воде. В технике используется также свойство гекситов связывать в водном растворе ионы железа, меди, алюминия. [c.180]

    Имеется много доказательств, что кислотные свойства водного раствора определяются не концентрацией ионов Н+, а ионов Н3О+. Изучение кислотности растворов фосфорной кислоты, приготовленной в обычной воде Н2 0 и в воде с тяжелым изотопом кислорода На О, показало, что в последнем растворе кислотность ниже. Это говорит о том, что молекула Нг Ю удерживает протон Н+ слабее, чем молекула Нг 0 и в растворе Нг 0 концентрация ионов гидроксония Нз 0+ меньше, что обусловливает менее кислую среду раствора. Попытайтесь объяснить, почему прочность связи О—И зависит от атомной массы кислорода  [c.203]

    В растворах комплексные соли ведут себя как простые соли, и для их растворов характерны все свойства, присущие растворам электролитов повышение температуры кипения, понижение температуры замерзания, понижение давления пара растворителя над раствором, наличие осмотического давления, электропроводимость и др. На основе результатов изучения свойств водных растворов комплексных соединений можно установить характер их ионного равновесия, т. е. соотношение числа катионов к числу анионов в молекуле соединения, и тем самым по составу определить их строение (координационную формулу). [c.337]

    Опыт 10. Восстановительные свойства фосфора. Белый фосфор является активным восстановителем и может быть окислен в водных растворах ионами таких металлов, как Ag+, Си + и т. п. При этих условиях процесс окисления фосфора может быть выражен уравнением [c.220]


    В теоретической и практической химии ЩЭ большое значение имеют их гидроокиси, относящиеся, как известно, к числу оснований, наиболее сильных из существующих и называемых щелочами (растворимые гидроокиси). Причиной отсутствия заметной ассоциации в разбавленных водных растворах ионов M+ aq и ОН -ая с образованием ионных молекул или даже ионных пар типа [Na+ aq] [OH- aq] является, как и в случае растворов солей, слабое поляризующее действие однозарядных катионов ЩЭ. В ряду Ы—Сз оно ослабевает (если раствор разбавлен и анион не проявляет дополнительного эффекта поляризации). Таким образом, самым сильным из неорганических оснований нужно считать СзОН. Соли, отвечающие этому основанию, гидролизуются в минимальной степени. По силе основных свойств с СзОН могут конкурировать только основания, в которых роль однозарядного катиона играют очень большие по размерам органические частицы. Примером могут быть производные четвертичных аммониевых оснований. [c.16]

    В 1887 г. Аррениус определил критерии кислотности и основности кислота — это соединение с характерным кислым вкусом, действующее на окрашенные индикаторы, металлы и т. д. эти свойства определяются присутствием в водном растворе ионов Н" , возникающих нри диссоциации кислоты. Основание так же воздействует на окрашенные индикаторы, кислоты и т. д. эти свойства связаны с наличием в водном растворе ионов ОН . [c.227]

    В то же время органические кислоты, аналогично неорганическим кислотам, обладают ярко выраженными кислотными свойствами. Водные растворы их окрашивают лакмус в красный цвет, что свидетельствует о диссоциации органических кислот на ионы  [c.142]

    Для объяснения свойств водных растворов электролитов шведский ученый Сванте Аррениус предложил гипотезу, названную впоследствии теорией электролитической диссоциации. Согласно ЭТОЙ теории, в процессе растворения молекулы электролитов диссоциируют (распадаются) на частицы, несущие положительные или отрицательные заряды. Образующиеся при этом заряженные частицы называют ионами. [c.64]

    Кислотные и щелочные свойства водных растворов электролитов характеризуются с количественной стороны величиной концентрации ионов водорода или гидроксила. Так как ионное произведение воды [Н ]-[ОН" = А[н,о при данной температуре неизменно, а [Н+] и [ОН ]—величины переменные, то по величине [Н+] или [0Н ] можно судить о кислотности или щелочности раствора. [c.192]

    Кислотные свойства соединения, т. е. его способность служить донором протонов, легче всего объяснить на примере минеральных кислот — серной или соляной. Кислотные свойства водных растворов соляной кислоты обусловлены способностью хлорид-иона образовывать водородные связи с молекулами воды, а также электроотрицательностью самого хлора. Кислотность серной кислоты в большой мере объясняется резонансной стабилизацией бисульфат-аниона НОЗО - [c.356]

    ИЛИ вообще в отсутствие растворителя. Кроме того, известны многие вещества, не высвобождающие в водном растворе ионы гидроксида, но тем не менее обладающие основными свойствами. И все же достоинства определений Аррениуса заключаются в возможности построения на их основе номенклатуры кислот и оснований, а также в том, что они позволяют правильно описывать многие реакции нейтрализации в водных растворах. [c.247]

    Вследствие относительно меньшей электроотрицательности связь данных элементов с водородом менее полярна, чем связь с водородом элементов шестой и седьмой групп. В результате этого водородные соединения рассматриваемых элементов не отщепляют в водном растворе ионы водорода и поэтому не обладают кислотными свойствами. [c.94]

    Молекулы кристаллизационной воды в таких солях во многих случаях можно считать лигандами, что особенно справедливо для переходных и высокозарядных ионов непереходных элементов. Кристаллизационную воду солей щелочных металлов не всегда можно считать координационной водой. Спектры поглощения этих комплексов подобны спектрам водных растворов солей соответствующих металлов, и это показывает, что в водных растворах ионы металлов находятся в виде аква-комплексов. С другой стороны, свойства кристаллов и водных растворов комплексов металлов группы платины, а также Со(П1) и Сг(1П), содержащих неводные лиганды, совпадают, что обусловлено в данном случае медленно идущей реакцией обмена лигандов и сохранением в водном растворе вокруг катиона тех же лигандов, как в кристалле. Быстрый обмен лигандами в водном растворе, характерный для других катионов металлов, объясняет, почему в этом случае эти катионы в водных [c.225]

    Второй вид взаимодействия, названный кинетической гидратацией, рассматривается как влияние ионов на трансляционное движение ближайших к нему молекул [2]. Эта область гидратации формирует кинетические свойства водных растворов и механизм протекания в них ряда процессов. Количественными характеристиками являются величины, определяющие частоту обмена молекул воды вблизи ионов т /т и А г= г—где Тг и т — среднее время пребывания молекул воды в ближайшем к -му иону временном положении в структуре раствора и в чистой [c.79]


    Второй вид взаимодействия, названный кинетической гидратацией, рассматривается как влияние ионов на трансляционное движение ближайших к нему молекул. Эта область гидратации формирует кинетические свойства водных растворов и механизм протекания в них ряда процессов. Количественными характеристиками являются величины, определяющие частоту обмена молекул воды вблизи ионов тг/т и АЕ = Е[ — Е, где Т и т — среднее время пребывания молекул воды в ближайшем к -му нону временном положении в структуре раствора и в чистой воде , — потенциальный барьер, преодолеваемый молекулой воды при выходе из ближайшего окружения -го иона Е — энергия активации самодиффузии в воде существует прибли- [c.143]

    Способность проводить электрический ток является одним из важнейших физико-химических свойств водных растворов электролитов. Электропроводность растворов зависит от концентрации и природы присутствующих заряженных частиц (простых и сложных ионов, коллоидных частиц). Поэтому измерение электропроводности может быть использовано для количественного определения химического состава раствора. Кондуктометрическим методом анализа называется метод, основанный на измерении электропроводности растворов. [c.166]

    В водных растворах ионы металлов являются льюисовскими кислотами, а такие комплексные ионы, как Fe(N0)2 Сг(Н20)Г и А1К ", можно рассматривать как комплексы кислота — основание. Благодаря большой валентной оболочке атомов неметаллов, находящихся ниже второго ряда периодической таблицы элементов (3, Р, С1, Вг, I и т. д.), они могут проявлять свойства как кислот, так и оснований Льюиса. Ион 1 в реакции с ионами металлов (кислота Льюиса) может действовать как основание, давая весьма стабильные комплексы, такие, как ]ig(I) . С другой стороны, 1а может действовать как кислота в реакциях с донорами электронов, приводя к образованию комплексов с различной стабильностью. Равновесие к реакции I" - - 1а 1 в 0,1 М водном растворе сильно сдвинуто вправо (А рави = 140 л1молъ), АН° = — 4,0 ккал. [c.499]

    В виду того что негидратированыые ионы в растворе отсутствуют, свойства растворов определяются составом гидратированных ионов. Так, свойства водных растворов Сг + обусловлены свойствами аквакомплекса [Сг(Н20)д 1 +, а кислая реакция СгС1з(р) — его диссоциацией, например [Сг(Н20)в [Сг(Н20)5(ОН)Р+Н+. [c.170]

    Вследствие полярности молекул вода проявляет высокую активность при различных химических взаимодействиях, является хорошим растворителем для электролитов, которые в воде подвергаются диссоциации. Молекулы воды отличаются способностью к образованию водородных связей, что оказывает влияние па взаимодействие воды с другими веществами и на свойства водных растворов. Молекулы воды способны к образованию допорно-акцеп-горных связей, в которых они являются донорами неподеленных электронных пар ь ислородного атома. Все это обусловливает высокую реакционную и растворяющую снособность воды. В воде растворимы очень многие вещества. При этом часто молекулы (или ионы) растворяемых веществ образуют соединения с молекулами воды. Это явление называется гидратацией. Молекулы воды взаимодействуют также с поверхностью ионных кристаллов. [c.170]

    Все кислоты и все основания обнаруживают определенные характерные для них химические свойства, из чего можно заключить, что все вещества каждого класса д<5л-жны обладать какими-то общими для них специфическими особенностями. Лавуазье считал, что все кислоты являются кислородсодержащими веществами, и эту свою точку зрения отразил в названии элемента кислорода. (Латинское название кислорода oxygen образовано из греческих слов, означающих киелотообразователь.) Однако тщательные исследования ряда других ученых показали, что соляная кислота не содержит кислорода. К 1830 г. стало ясно, что во всех известных в то время кислотах содержится один общий элемент-водород. Впоследствии было установлено, что водные растворы кислот и оснований проводят электрический ток. В 1880 г. щведский ученый Сванте Аррениус (1859-1927) для объяснения электропроводности водных растворов кислот и оснований выдвинул предположение о существовании в них ионов. Через некоторое время он предложил считать кислотами вещества, образующие в водных растворах ионы Н , а основаниями-вещества, образующие в водных растворах ионы ОН . Эти определения кислот и оснований были даны в разд. 3.3, ч. 1, и использовались нами в последующих обсуждениях. [c.68]

    Эти элементы, имея пять электроцов на внешней электронной оболочке атома, характеризуются в целом как неметаллы. Благодаря наличию пяти наружных электронов, высшая положительная степень окисления элементов этой подгруппы равна -1-5, а отрицательная —3. Вследствие относительно небольшой разности электроотрицательностей связь рассматриваемых элементов с водородом мало полярна. Поэтому водородные соединения этих элементов не отщепляют в водном растворе ионы водорода и, таким образом, не обладают кислотными свойствами. [c.427]

    Окислительные свойства Н+ проявляются лишь при взаимодействии с сильными восстановителями. В водных растворах ион ьодорода окисляет металлы, расположенные в ряду напряжений до водорода. [c.47]

    Из свойств водных растворов в технологии наиболее часто оперируют такими, как концентрация, растворимость газов и твердых веществ, их пересыщение, давление пара летучих компонентов раствора, плотность, вязкость, электрическая проводимость, энтальпия, а из ионно-молекулярных структурных характеристик — активность ионов водорода. Другие характеристики — активность всех компонентов, фактический ионно-молекулярный состав, изменение энтропии, а также температурноконцентрационные коэффициенты свойств в интегральной и дифференциальной формах —применяют при теоретической оценке вклада реальных химических взаимодействий в изменение свойств раствора. [c.74]

    Нитраты. Свойства нитратов циркония и гафния и их растворов определяются слабым сродством нитрат-иона к атомам обоих элементов. В водном растворе ион NO3 , хотя и спосрбен к внутрисфер-ному комплексообразованию, не всегда замещает сильно поляризованные молекулы воды в гидратной оболочке иона циркония. В растворе образуется внешнесферный комплекс — своеобразная ионная пара и устанавливается равновесие, которое сдвигается вправо при повышении концентрации HNO3  [c.289]

    Анализ работ [77,88,121-145], посвященных исследованию влияния магнитного, электромагнитного и ультразвукового полей на воды и живые организмы растительного и животного происхождения, свидетельствует о том, что диапазоны частот, связанные с основными формами движения молекул воды, оказались резонансно-активщши во взаимодействии с полями различной природы. При этом действительно ионы различного знака гидратации неодинаково влияют на изменение физико-химических свойств водных растворов, изменение которых заметно ослабевает в переходной области частот (от области с положительной гидратацией к области с отрицательной гидратацией). [c.34]

    Изменение величины /а (или ip) в неводных растворителях по сравнению с водной системой обычно связывают с изменением вязкости раствора, которая оказывает влияние на коэффициент диффузии деполяризатора. Однако это изменение может быть связано с изменением состава разряжающихся частиц и числа переносимых электронов. Так, например, в водном растворе ионы Си восстанавливаются в виде аква-ионов (или комплексных анионов), а в системе толуол - метиловый спирт - 8-оксихинолин - в форме комплексов с 8-оксихииолином. Поэтому природа и свойства растворителя оказывают заметное влияние на величину аналитического сигнала и нижнюю границу определяемых содержаний. Изменение id (или ip) может быть связано и с изменением степени сольва-458 [c.458]

    Фарадей нашел, что безразмерная постоянная/) является свойством вещества и всегда больше единицы. Она называется диэлектрической проницаемостью. В вещественной среде электростатическая сила и энергия зарянченных частиц меньше, чем в вакууме, для которого, по определению, D равна единице. Для водного раствора, например (/) =78,53 нри 25° С), потенциальная энергия притян ения двух одновалентных ионов противоположного знака, расположенных на расстоянии 7 А, равна 4,20-10 эрг. Поскольку эту величину следует сопоставлять с к (4,12-10 эрг), то можно сделать вывод о том, что для подобных систем кинетическая и электростатическая энергия пары ионов примерно одинаковы. Если в водном растворе ионы натрия и хлора расположить таким же образом, как в кристаллической решетке Na l, концентрация соли будет 2,4 г-молът1а 1 л. В растворе, содержащем 2,4 ммоль на [c.271]

    Работа посвящена анализу-стехиометрических окислительно-восстановительных превращений нитроксилов (НгКО ) и соответствующих им гидроксиламинов (К,КОН) и катионов (НгКОН) в водных растворах и процессов катализа этими соединениями химических реакций. При рассмотрении каталитических свойств нитроксилов особое внимание уделено процессам катализа нитроксилами окислительно-восстановительных процессов в водных растворах ион-радикально-цеп-ного окисления N0 и Н2О2 тетранитрометаном и молекулярного окисления спиртов, альдегидов, муравьиной кислоты хлорноватистой кислотой и двуокисью хлора, Ии. 9. Табл. 7. Виблиогр. 60 назв. [c.268]

    Характер гидратации ионов влияет на основные свойства водных растворов — их сжимаемость и плотность, коэффициент диффузии растворенных веществ, давление пара, электропроводность, температуры кипения и замерзания, растворяющую способность, ИК-спектры и химические сдвиги. В исследованиях процессов, связанных с магнитной обработкой, рассматривают ее влияние на скорость ультразвука и ширину линий протонномагнитного резонанса. [c.14]

    Г. С. Агафонова подробно исследовала влияние магнитной обработки на свойства водного раствора ксантогената в присутствии кальцинированной соды[ 9, с. 227— 229 154]. Экспериментально установлено, что при добавлении соды (2—4 г/л) эффект магнитной обработки стабилизируется и усиливается. Существует предположение, что при изменении pH раствора изменяется степень диссоциации ксантогеновой кислоты, образующейся. в результате гидролиза ксантогенатных ионов. В этих условиях действие магнитных полей заметнее. Это предположение было проверено сравнением электронных (УФ) спектров поглощения растворов ксантогенатов до и после омагничивания. Эти спектры отражают внутримолекулярные взаимодействия, связанные с перераспределением электронной плотности в молекуле. Опыты убедительно показали, что после магнитной обработки значительно (на 7% абс.) возрастает интенсивность поглощения (частота максимума поглощения для группы С = 8 не меняется). Можно предположить, что после обработки электроны от двух равноценных атомов серы переносятся к одному атому серы в ксантогенате, что увеличивает количество групп С = 5 в растворе. [c.163]

    Очень четко видна роль конфигурации иона в нарушении первичной структуры воды. Мы уже отмечали значение этого фактора при рассмотрении некоторых других термодинамических свойств водных растворов. В следующей главе будет показано отражение этой переменной и в теплоемкостях таких систем. Чем более не приспособлен ион для безболезненного внедрения в водную среду, тем при более низкой концентрации значения ASi o переходят в положительную область. Напротив, наличие иопов [c.201]

    Больших успехов в интерпретации свойств водных растворов алкиламмониевых солей достиг Г. Френк с сотрудниками [63]. Согласно предложенной ими модели, сравнительно большой порядок в таком растворе объясняется взаимодействием молекул воды между собой в слое, примыкающем к иону, и взаимодействием этого с.чоя с окружающей средой посредством водородных связей. Крупный гидрофобный ион алкиламмония, внедрившийся в каркас воды, не способен сильно взаимодействовать с диполями ближайших молекул Н2О. В результате наибольшая часть энергии высвобождается вследствие укрепления водородных связей между этими молекулами, что приводит к значительно более строгой взаимной ориентации молекул Н2О в первой гидратной оболочке и к усилению взаимодействия со следующим слоем воды по сравнению с тем обычным случаем, когда молекулы И2О находятся в гидратной оболочке небольшого иона, способного сильно притягивать их к себе своим электростатическим полем. Так объясняются большие отрицательные значения энтропий растворителя в водных растворах алки.таммони-евых солей. [c.296]


Смотреть страницы где упоминается термин Свойства водных растворов ионных ПАВ: [c.61]    [c.81]    [c.273]    [c.20]    [c.333]    [c.209]    [c.99]    [c.39]    [c.15]    [c.39]    [c.162]    [c.149]   
Смотреть главы в:

Физико-химические основы извлечения поверхностно-активных веществ из водных растворов и сточных вод -> Свойства водных растворов ионных ПАВ




ПОИСК





Смотрите так же термины и статьи:

Раствор ионный

Растворов свойства

Свойства водных растворов ПАВ



© 2025 chem21.info Реклама на сайте