Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворители и титранты для неводного ВЧ-титрования

    Титранты, растворители и индикаторы для титрования в неводной среде [c.259]

    Потенциометрическое неводное титрование подобно титрованию в воде. Особенности его заключаются в том, что его проводят под тягой, титранты готовят в неводных растворителях и электроды сравнения заполняют насыщенным раствором КС1 в том растворителе, в котором титруют, или в спирте. [c.109]

    Оттитровать в неводной среде соли галогеноводородных кислот органических оснований можно и без помощи ацетата ртути (II). Для этого в качестве растворителя используют смесь муравьиной кислоты и уксусного ангидрида в соотношении 1 20. Такое сочетание растворителей повышает основность растворов и позволяет выполнить титрование с использованием в качестве титранта хлорной кислоты (индикатор — кристаллический фиолетовый), например, эфедрина гидрохлорида и дефедрина. В других случаях к указанной смеси прибавляют бензол, например, при определении этмозина и этацизина и др. Не требуется добавления ацетата ртути и при определении некоторых солей органических оснований (например, аминазина) с использованием в качестве индикатора малахитового зеленого (растворитель уксусный ангидрид, титрант — 0,1 М раствор хлорной кислоты). [c.142]


    При анализе соединений основного характера в неводных растворах в качестве титрантов используют растворы хлорной кислоты и хлористого водорода, желательно в тех же растворителях, в которых титруют определяемые вещества использование кетоновых растворов повышает резкость конечной точки титрования. Хлорная кислота -одна из самых сильных в неводной среде, что обусловливает ее широ- [c.302]

    Неводное титрование органических оснований (и их солей) выполняют, используя в качестве растворителя безводную уксусную кислоту или уксусный ангидрид. Сочетают также уксусную кислоту с уксусным ангидридом, который улучшает условия титрования. Титрантом служит раствор хлорной кислоты, а индикатором — раствор кристаллического фиолетового, тропеолина 00 или метилового оранжевого. Растворы титранта и индикатора готовят в безводной уксусной кислоте. [c.140]

    Неводное титрование органических веществ, проявляющих кислые свойства, выполняют обычно, используя в качестве растворителя диметилформамид или его смесь с бензолом, а также этилендиамин, бутиламин, пиридин. Титрантом служит раствор гидроксида натрия в смеси метилового спирта и бензола или раствор метилата натрия (метилата лития). В качестве индикатора применяют тимоловый синий. [c.142]

    Количественное содержание препарата определяется методом кислотно-основного титрования в неводных средах. В качестве неводного растворителя служит диметилформамид, нейтрализованный по тимоловому синему. Титрантом является 0,1 н. раствор гидроксида иатрия в смеси метилового спирта к бензола. Титрование ведется до появления синего окрашивания (индикатор метиловый синий). [c.257]

    Экспериментальное осуществление неводного потенциометрического титрования. Этот вид титрования осуществляется принципиально так же, как титрование в воде. Некоторые особенности неводного титрования заключаются в том, что 1) титранты готовят в неводном растворителе и 2) электрод сравнения (каломельный или хлорсеребряный) заполняют насыщенным раствором K I в том растворителе, в котором титруют, или в спирте. [c.197]

    Многие нерастворимые в воде соединения проявляют кислотные или основные свойства при растворении в органических растворителях. Таким образом, выбор подходящего растворителя позволяет определять многие такие соединения с помощью неводного титрования. Далее, в зависимости от того, какая часть соединения является физиологически активной, можно титровать эту часть путем травильного выбора растворителя и титранта. Чистые вещества можно титровать непосредственно, но часто бывает необходимо отделить активный ингредиент лекарственных форм от мешающих наполнителей и носителей. [c.150]


    Техника титрования.. Метод спектрофотометрического титрования основан на измерении оптической плотности исследуемого раствора, изменяемой в процессе титрования. Для уменьшения влияния разбавления на светопоглощение применяют относительно концентрированные растворы титранта или вводят поправку на разбавление. Для работы готовят приблизительно 2,5 — 1 Ю- н. растворы анализируемого вещества (навеску 20—100 мг растворяют в 20—40 мл неводного растворителя, отбирают аликвотную часть исходного раствора и разбавляют в кювете до концентрации 2-10 3—1 10 н. Титрование проводят без кюветы сравнения. Кювету с исследуемым раствором помещают н кюветную камеру спектрофотометра. Техника работы со спектрофотометром описана в гл. VII. [c.437]

    Рассмотрены отечественные и зарубежные работы по использованию амперометрического титрования неводных растворов в аналитической химии. Обсуждены основы метода, использование различных электродов, растворителей, титрантов. Описано использование реакций окисления-восстановления, осаждения и нейтрализации. Библ. 140 назв. [c.206]

    Ценность данной книги состоит в том, что она содер/кит многочисленные практические рекомендации ио использованию метода неводного титрования для определения органических соединений различных классов. Все известные методы титрования индикаторный (визуальный и фотометрический), спектрофотометрический без индикатора, потенциометрический и их различные модификации изложены очень подробно и легко могут быть освоены. В книге дан(.г характеристики наиболее часто используемых растворителей, титрантов (кислого и основного характера) и индикаторов. [c.5]

    Под влиянием растворителей изменяются свойства любых электролитов кислот, оснований и солей. В зависимости от растворителя одно и то же вещество может быть неэлектролитом, сильным или слабым электролитом, кислотой или основанием или же совсем не проявлять кислотно-основных свойств. Выбор подходящего растворителя позволяет определять различные вещества неводным титрованием. Более того, в зависимости от физиологической активной части соединения можно титровать эту часть после выбора растворителя и титранта. Чистые вещества титруют непосредственно, для анализа лекарственных форм часто необходимо отделение вещества от наполнителей. [c.132]

    Развитие теории аналитической химии неводных растворов. Успешное применение методов титрования неводных растворов оказалось возможным благодаря развитию теории аналитической химии неводных растворов, достигшей уже такого развития, которое позволяет с известной степенью достоверности предвидеть поведение растворенного вещества в данном растворителе, теоретически объяснить процессы, протекающие при титровании разнообразных веществ в неводных средах, предопределить выбор растворителя и титранта для данного конкретного случая титрования, произвести соответствующие количественные расчеты и т. д. [c.391]

    Успехи в смежных областях электрохимии и химии растворов расширили круг задач, решаемых с помощью кулонометрии. Новые электродные материалы, неводные растворители, неустойчивые в обычных условиях кулонометрические титранты - все это сейчас широко применяется в кулонометрии и кулонометрическом титровании. [c.530]

    Для титрования соединений основного характера в неводных растворах в качестве титрантов, т. е. стандартных (титрованных) растворов реактивов, характеризующихся точно известной концентрацией, используют в основном неводные растворы хлорной кислоты и хлористого водорода. Хлорная кислота является одной из самых сильных кислот в среде неводных растворителей, что и обусловливает ее широкое применение. [c.81]

    Книга посвящена теоретическим основам аналитической химии неводных растворов, теории и методам кислотно-основного титрования неорганических, органических и элементоорганических соединений в среде неводных растворителей. Особое внимание уделено методам дифференцированного титрования смесей кислот, оснований и солей, которые невозможно оттитровать в водных растворах. В ней описаны методы подготовки растворителей, способы приготовления титрантов и техника титрования неводных растворов. Приводится большой список оригинальной литературы по аналитической и физической химии неводных рох-творов. [c.2]

    Теория неводных растворов достигла такого развития, что с известной степенью достоверности можно предвидеть поведение растворенного вещества в данном растворителе, теоретически объяснить процессы, протекающие при титровании разнообразных веществ в неводных растворах, предопределить выбор растворителя и титранта для данного конкретного случая титрования, произвести соответствующие количественные расчеты и т. п. [c.6]

    Таким образом, можно сделать вывод, что при выборе метода титрования кислот, оснований и солей в неводных растворах и особенно при выборе метода дифференцированного определения смесей электролитов необходимо правильно выбрать среду для титрования (растворитель), титрованный раствор реактива (титрант) и способ определения точки эквивалентности. Только согласованный выбор этих условий титрования может привести к более простому и эффективному методу дифференцированного определения смеси электролитов. [c.55]


    Визуальное титрование. В бюретку при помощи резиновой груши нагнетают 10 мл титранта, сбрасывают избыточное давление на воздух и устанавливают уровень раствора на нулевое деление. В сухую колбу или стакан (после мытья водой колбу или стакан ополаскивают спиртом или другим неводным растворителем) наливают 25—40 мл растворителя (в зависимости от размера навески) и прибавляют 2—3 капли раствора индикатора нейтрализуют кислые или основные примеси в растворителе (в зависимости от того титруют кислоты или основания) по используемому индикатору до [c.62]

    В среде неводных растворителей могут быть оттитрованы даже такие слабокислые вещества, какими являются спирты [405, 406, 440]. Титрование спиртов проводят в среде бензола, используя в качестве титранта литийалюминийгидрид  [c.112]

    В области неводной титриметрии проведено сравнительно немного фундаментальных исследований, однако она находит очень широкое практическое применение. Большинство исследований направлено на выяснение стехиометрических соотношений кислотно-основных реакций, непригодных для аналитических целей в водной среде, а также на сравнение результатов, полученных при использовании различных индикаторов, с одной стороны, и электрометрических методов установления конечной точки — с другой. Даже при отсутствии количественных данных, характеризующих равновесную систему, — кстати, довольно частое явление, особенно при использовании смешанных растворителей, — для решения вопроса о применении того или иного растворителя и титранта в каждом отдельном случае обычно достаточно понимания общих принципов кислотно-основного титрования. [c.120]

    Перспективность и эффективность фотохимического титрования в неводных средах может быть проиллюстрирована на примере определения микроколичеств кислорода, растворенного в органических растворителях [267]. Метод основан на использовании щелочных растворов антрахинона в метаноле в качестве реагента, при облучении которого генерируется титрант. При облучении стабилизированным источником ультрафиолетового света антрахинон с постоянной скоростью переходит в высокореакционную восстановленную форму, которая затем восстанавливает кислород до перекиси водорода. Восстановителем антрахинона служит метанол, который при этом окисляется до формальдегида, а восстановленная форма антрахинона снова окисляется кислородом до антрахинона. Таким образом, при фотохимическом титровании концентрация антрахинона в реакционной смеси практически постоянна. [c.35]

    Выбор титранта-основания для неводного кислотно-основного титрования также важен, как и выбор самого растворителя. Для получения хороших результатов надо учитывать, что сила титранта-основания должна быть сравнима с силой сопряженного основания растворителя. Использовать слабо основной титрант в сильно основном растворителе— значит свести на нет те преимущества, которые дает титрование в неводных растворителях. В идеальном случае следовало бы использовать в качестве титранта соль сопряженного основания растворителя, поскольку оно является самым сильным основанием, которое может существовать в данном растворителе. [c.163]

    Техника титрования. Перед употреблением бюретку 1 тщательно моют (см. книга 2, гл. I, 7). Верхнее отверстие вымытой и высушенной бюретки закрывают хлоркальциевой трубкой, наполненной натронной известью и плавленым хлоридом кальция при работе воздух, нагнетаемый резиновой грушей 11, должен проходить через систему осушительных колонок 6, заполненных также натронной известью и плавленым хлоридом кальция. Кран бюретки смазывают какой-либо неводной (органической или крем-нийорганической) смазкой, которая не растворяется в используемых для приготовления титрантов растворителях. [c.433]

    Предложите подходящий растворитель и титрант для неводного кислотноосновного титрования каждого из следующих веществ  [c.171]

    Конец титрования можно определять визуально по изменению окраски или потенциометрически. Если применяется каломельный электрод сравнения, то удобнее заменить водный раствор хлорида калия (в солевом мостике на раствор перхлората лития в уксусной кислоте ИР для титрования в кислых (растворителях и на раствор хлорида калия в метаноле для титрования в основных растворителях. Следует помнить, что некоторые обычно иопользуемые индикаторы (например, кристаллический фиолетовый) (подвергаются постепенному изменению окраски, поэтому (при оценке (пригодности метода неводного титрования для конкретного случая необходимо проследить за тем, чтобы при потенциометрическом титровании вещества изменение окраски в конечной точке титрования соответствовало максимальной величине АЕ1АУ (где Е — электродвижущая сила, а V — объем титранта). [c.151]

    Гликолевое титрование — вариант неводного титрования, основанного на применении гликолей и их смесей с углеводородами, высшими спиртами и другими веществами в качестве растворителей, повышающих силу растворенных в них кислот и оснований. Титрантами для определения оснований (аминокислоты, алкалоиды, пиридин и др.) служат растворы НС1 или H IO4 в том же растворителе. Точку стехиометричности устанавливают потенцио-метрически или с помощью индикаторов [115]. [c.35]

    При титровании индивидуальных солей в неводных растворителях на условия титрования оказывают влияние константы диссоциации электролитов, образующих соль, ее концентрация и константа автопротолиза растворителя. В качестве титрантов могут быть использованы электролиты различной силы. Номограмма для прогнозирования возможности количественного потенциометрического титрования солей в неводных растворителях приведена на рис. 3.5. Она применима как при полной диссоциации солей, так и для случаев неполной диссохща-ции солей при условии равенства констант диссоциации титруемой и образующейся соли. Это условие соблюдается для большинства растворителей, так как в одном и том же растворителе константы диссоциации солей обычно мало различаются. [c.39]

    Применение визуальных индикаторов. Конечную точку титрования карбоновых или более сильных кислот водными растворами щелочей удобно устанавливать по фенолфталеину (см. пример 1 в гл. 12). Так как титрованный раствор гидроокиси натрия в воде легче готовить и сохранять, чем другие основания в органических растворителях, для определения карбоксильных групп целесообразно пользоваться водным титрованием. Однако переход к неводным титрованиям иногда совершенно необходим. Так, Польопределял концевые карбоксильные группы в полимерах, совершенно нерастворимых в водно-этанольной смеси, растворяя их в бензиловом спирте при 200 °С. Раствор быстро смешивают с хлороформом и титруют 0,1 н. раствором Гидроокиси натрия в бензиловом спирте до конечной точки титрования по феноловому красному. Эспозито и Сванн предложили макрометод определения дикарбоновых кислот в алкидных смолах растворителем по этому методу служит смесь этиленгликоля с этанолом, титрантом — 0,2 н. раствор гидроокиси калия в метаноле, индикатором — ле-крезоло-вый пурпурный. [c.376]

    ДНИ, диметилформамид иногда используют ацетои. В качес щелочного титранта применяют метилаты щелочных металл или, что предпочтительнее, гидроксид тетрабутиламмония, кото рый нужно хранить в инертной атмосфере в холодильнике . Нан" более часто в качестве индикатора используют тимоловый синиГ или азофиолетовый [4-(п-нитрофенилазо)резорцин], хотя можно применять и другие индикаторы. Титрование в неводных средах рассмотрено в ряде монографий [178—180], где подробно изложена теория кислотно-основного титрования и даны практа-ческие рекомендации по выбору растворителя, титранта и индикатора для решения данной аналитической задачи. В неводных средах обычно титруют кислоты с величиной рКа (в воде) [c.474]

    Нами предпринята попытка количественного определения индивидуальных аминокислот титрованием их в среде неводных растворителей на спектрофотометре СФ-4а с использованием кварцевой кюветы. Определение проводилось при длине волны 360— 380 нм. Концентрации растворов исследуемых веществ варьировали в пределах 1,6-10 — 3-10 молъ/л. Титрантом служил 0,03—0,06 N раствор хлорной кислоты в среде безводной уксус-иАтт кислоты. Ледяная уксусная кислота тщательно ибеаьожива-лась вымораживанием и двукратной перегонкой. [c.230]

    Не так давно появились работы, связанные с применением осадительного титрования в неводных растворах в тех случаях,, когда его нельзя применить в водной среде. При этом исходят из изменения растворимости солей в неводных растворителях по сравнению с растворимостью в воде. Титрант и титруемое вещество должны быть хорошо растворимы в выбранном растворителе, а их ионы должны реагировать с образованием малорастворимого в данном растворителе соединения. Таким способом можно, наприм , оттитровать в среде уксусной кислоты хлориды, бромиды и роданиды раствором нитратг. кадмия при этом в уксуснсжислой среде в отличие от воды образу ются нерастворимые хлориды, бромид и роданид кадмия. Аналогично титруют [c.349]

    Выполнение работы. 1. Приготовить неводный раствор кислоты или нескольких кислот. Использовать муравьиную, уксусную, бензойную, /г-оксибензойную, пикриновую, хлористоводородную, азотную, серную или другие кислоты. Растворителем кислоты может служить смесь этилового спирта и воды в соотношении 1 1 (по объему) спирто-бензольная смесь (1 9) диметилформамид ацетонитрил или пиридин. 2. Приготовить раствор титранта гидроокиси калия, гидроокиси натрия или четвертичного аммонийного основания, например ( 2Hs)4NOH в соответствующем растворителе. Концентрация титранта (установить ее по водному раствору НС1, приготовленному из фиксанала) должна быть примерно в 10 раз больше концентрации раствора кислоты. 3. Составить гальванический элемент из индикаторного стеклянного электрода с водородной функцией и насыщенного каломельного электрода сравнения (см. работу 47). 4. Выполнить титрование (см. стр. 177) и провести все рас- [c.180]

    Реакций титрования. Вследствие малой диэлектрической проницаемости некоторых неводных растворителей типа безводной уксусной кислоты все известные кислоты и основания мало диссоциированы в них. Наиболее сильной кислотой в среде безводной уксусной кислоты является хлорная кислота (р/ = 4,87). Серная кислота в безводной уксусной кислоте проявляет себя более слабой кислотой (рЛ = 7,24), чем сама уксусная в водном растворе (р/( = 4,74), Поэтому для титрования слабых оснований в иеводных растворах очень часто применяют растворы хлорной кислоты в безводной уксусной кислоте и диоксане. Как показали наши исследования, лучшим растворителем для хлорной кислоты является метилэтилкстон или смесь растворителей безводная уксусная кислота — уксусный ангидрид, В качестве титрантов оснований широко используются также /г-толуолсульфокислота и хлористоводородная кислота. Процессы, протекающие при титровании органических оснований К(Аг)ЫНг в среде протогенных растворителей, можно представить в виде уравнений  [c.396]

    Зольшой практический интерес представляет определение относительной шкалы кислотности органических растворителей путем титрования в их среде наиболее сильных кислот и оснований, например хлорной кислоты и гидроокиси тетраариламмония. Указанные электролиты обычно используются в качестве наиболее сильных кислых или основных титрантов при определении оснований и кислот в неводных растворах. Такой метод был использован Ван-дер-Хейде и Даменом [149], которые определили относительную шкалу кислотности двенадцати растворителей, обладающих различными кислотно-основными свойствами. [c.55]

    Исследования, проведенные Харлоу [409], по изучению факторов, влияющих на устойчивость неводных растворов четвертичных аммониевых оснований и влияния структуры катиона на условия титрования кислот показали, что самыми устойчивыми титрантами являются гидроокиси тетраметил-, тетрабутил- и тетраэтиламмония и наименее устойчивым — гидроокись триметилбензиламмо-ния. Устойчивость растворов увеличивается с увеличением содержания воды в титранте вследствие того, что относительно высокая кислотность воды понижает основность этих растворов и большая сольватирующая способность воды понижает степень ассоциации ионов титрантов. Однако увеличение содержания воды мешает определению очень слабых кислот и анализу смесей кислот различной силы. Разбавление спиртовых растворов нейтральными или основными растворителями с целью увеличения основности титрантов понижает их устойчивость. [c.105]

    Одним из условий успешного титрования солей аминов является то, что анион соли не должен быть слишком сильным основанием. В противном случае он будет успешно конкурировать с титрантом-основанием в реакции с протоном, что приведет к трудностям при определении конечной точки титрования. Среди прочих солей аминов, которые могут быть оттитрованы в неводных растворителях, можно назвать гидрохлорид метиламина (СНзЫНзС ), перхлорат пиридиния (С5Н5КН+С101) и сульфат хинина. [c.166]

    В справочниках приведены значения Ка некоторых веществ в неводных растворителях, однако для выполнения многих расчетов имеющихся данных недостаточно. Поэтому кривые титрования в большинстве случаев необходимо определять экспериментально. В кислых растворителях потенциал стеклянного электрода может меняться более или менее пропорционально значению р5Нг зто изменение фиксируется при измерении разницы потенциалов стеклянного электрода и электрода сравнения (такого, как насыщенный каломельный электрод или электрод на основе хлорида серебра), погруженных в анализируемый раствор. Кривая титрования строится в координатах разница потенциалов — объем добавляемого титранта. [c.332]


Смотреть страницы где упоминается термин Растворители и титранты для неводного ВЧ-титрования: [c.94]    [c.63]    [c.175]    [c.63]   
Смотреть главы в:

Высокочастотный химический анализ -> Растворители и титранты для неводного ВЧ-титрования




ПОИСК





Смотрите так же термины и статьи:

Неводные растворители

Титрант

Титрование неводное



© 2025 chem21.info Реклама на сайте