Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экспериментальная чисть

    Решение. Воспользуемся сначала -критерием. Для этого разобьем весь интервал изменения безразмерного времени пребывания в на части и определим в каждом из них экспериментальное чисто появлений , случайной величины в и теоретическую вероятность р, появления случайной величины в данном интервале (табл. 2.5). [c.55]

    Эти выводы, сформулированные Антроповым (1945), не связаны ни с предположениями о природе замедленной стадии, ни с какими-либо специальными допущениями о природа сил, вызывающих изменение адсорбируемости деполяризатора с потенциалом. Они основаны только на результатах чисто экспериментальных работ по электрокапиллярным явлениям, а также на концепции приведенной шкалы потенциалов. [c.449]


    Зная экспериментальные значения электрического момента диполя, можно рассчитать полярность связей и эффективные заряды атомов. В простейшем случае двухатомных молекул можно приближенно считать, что центры тяжести зарядов совпадают с ядрами, т. е. I равно межъядерному расстоянию или длине связи. Так, в молекуле НС1 НС1 = 0,127 нм. Если бы хлорид водорода был чисто ионным соединением q равно заряду электрона), то его электрический момент диполя был бы равен [c.85]

    К первому типу относятся растворы так называемого нормального вида, у которых равновесные изотермические и изобарные кривые кипения и конденсаций, построенные по экспериментальным данным, во всем интервале мольных составов изменяются монотонно и не имеют экстремальных точек. Давление пара раствора и его температура закипания при любой концентрации являются промежуточными величинами между давлениями паров и точками кипения чистых компонентов системы, хотя и отклоняются от значений, рассчитанных по закону Рауля. Смотря ро тому, в сторону больших или меньших значений наблюдаются отклонения от линейного закона, говорят о положительных или. отрицательных отступлениях раствора от идеальности. [c.36]

    Рауля, и тогда растворы уже будут относиться к типу проявляющих отрицательные отклонения. Важно лишь, что в обоих случаях для всего диапазона концентраций характерно то, что экспериментальные кривые сохраняют монотонность, не имеют -экстремальных точек и что при любом составе фаз давление пара раствора и его температура кипения являются промежуточными величинами между давлениями паров и точками кипения чистых компонентов системы, соответственно. [c.37]

    При определении энтальпий кж Н чистых жидких и парообразных углеводородов, используемых в расчете по уравнениям (1.100) или (1.101), рекомендуется пользоваться опытными данными и лишь при отсутствии надежного экспериментального материала прибегать к эмпирическим соотношениям. [c.59]

    К первому типу относятся растворы, так называемого, нормального вида, у которых равновесные изобарные и изотермические кривые кипения и конденсации, построенные по экспериментальным данным, имеют форму, идентичную с формой этих же равновесных кривых идеального раствора. Опытные данные отклоняются от значений свойств, рассчитанных по законам идеальных растворов, но характерным является то, что обе экспериментальные кривые во всем интервале мольных соотношений сохраняют монотонность, не имеют экстремальных точек и, что давление пара раствора и его температура кипения на всем интервале концентраций являются промежуточными между упругостями паров и точками кипения чистых компонентов системы (фиг. 1 и 2). [c.11]


    Экспериментальное определение величины Ср было проведено как для пластовой (однофазной) нефти с растворенным в ней газом, так и для нефтегазовой смеси с весовым содержанием газа в потоке от 20 до 100%, т. е. до чистого пластового газа. Отметим, что в условиях месторождения Песчаный — море нефтегазовая смесь с 10%-ным содерл<анием газа в ней соответствует однофазному потоку нефти, так как пластовый газовый фактор при этом (так же как и на поверхности) равен 105—120 м 1м . Поэтому нефтегазовая смесь рассматривается нами как двухфазная только тогда, когда содержание газа в общей смеси потока равно 20% и более, при этом не наблюдается равенства между значениями пластового и устьевого газовых факторов. [c.46]

    Так как по третьему закону термодинамики энтропия любого химически и физически чистого кристаллического вещества, находящегося в полном внутреннем равновесии, при абсолютном нуле равна нулю, что вполне доказано экспериментально для большинства исследованных неорганических и органических соединений (подробности см. в главе III), то легко показать, что уравнение (49) может быть переписано в следующем виде [c.103]

    Для изучения этой реакции было предпринято большое число экспериментальных исследований, включая определение влияния скорости химической реакции на скорость абсорбции или экстракции сероводорода, растворенного в углеводородах. Однако многие стороны этой проблемы можно рассматривать, основываясь на предположении о чисто физической абсорбции или экстракции. [c.183]

    Критической точкой чистого соединения является равновесное состояние, в котором его газообразная и жидкая фаза существуют одновременно они имеют одни и те же основные свойства, однако экспериментально было доказано, что могут наблюдаться локальные изменения их фазовых свойств. Обычно же смеси обладают максимальной температурой и максимальным объемом не при [c.200]

    Теплота сгорания нефтяных газов может быть вычислена из анализов и данных для чистых соединений экспериментальные значения для газообразных топлив могут быть получены измерением в водяном проточном калориметре [293], в то время как теплота сгорания жидкостей обычно измеряется в калориметре-бомбе [294]. [c.201]

    В случае сложных углеводородных смесей, таких как смазочные масла, нельзя рассматривать вершины тройной диаграммы как изображение чистых компонентов или классов компонентов. Однако физические свойства экстракта или рафината значительно отличаются от свойств исходной смеси и поэтому шкалу различия их свойств можно представить как основание треугольника, а растворитель — как его вершину. Обычно применяемая шкала является шкалой изменения удельного веса или вязкостно-весовой константы. По этим диаграммам, построенным по экспериментальным данным, можно найти объем каждой из равновесных фаз, их состав и физические свойства масла, присутствующего в каждой фазе [71—73]. Можно также определить выход очищенного масла и число теоретических ступеней, которые требуются для осуществления заданной степени очистки [74]. [c.278]

    Научные проекты Американского нефтяного института пересматривают и дополняют результаты, полученные в ранних работах. Этой программой предусматривается приготовление чистых углеводородов н их производных и определение их физических, спектральных и термодинамических свойств. Проект № 44 Американского нефтяного института ставит своей главной задачей накопление, сравнение, отбор и корреляцию получаемых данных. Статистические расчеты термодинамических свойств газообразных углеводородов, которые былн использованы при изучении, дали ценные результаты. Этими исследованиями продолжаются работы Питцера и других [3—5] в направлении расчета термодинамических свойств при высоких температурах в таких условиях трудно получить экспериментальные данные, в силу чего количество последних ограничено. [c.358]

    Численные значения термодинамических свойств находятся различными методами. Их можно измерить экспериментально, рассчитать теоретически. Термодинамические свойства отдельных чистых углеводородов обычно получают комбинированием или корреляцией результатов, полученных различными методами определения. Эти свойства изменяются в зависимости от температуры [c.358]

    Статистический метод позволил использовать многие из этих величин для расчета термодинамических характеристик при высоких температурах, которые необходимы для осуществления процессов нефтепереработки. Стало возможным найти термодинамические свойства идеальных газов. Экспериментальные теплоты сгорания позволили затем определять величины АЯо, связывающие термодинамические функции реакции и чистых веществ. Применением расчетных и экспериментально найденных характеристик получили свободные энергии и теплоту образования веществ в широких температурных пределах. [c.372]


    При изучении любой системы, если только не применяют чисто экспериментальные методы, в первую очередь нужно построить математическую модель этой системы. Математическая модель должна содержать описание как предполагаемой схемы управления, так и самого процесса. Все это можно получить с помощью одного из методов, о которых пойдет речь в данной главе. [c.109]

    Опыт показывает, что в ряде случаев наблюдаются не два, а три предела самовоспламенения или взрываемости. Например, на рис. УП1,5 показаны пределы самовоспламенения для реакции окисления сероводорода (теоретическая кривая и экспериментальные точки для о=4,6 мм и мольной доли Ог, равной 0,6). Ветвь АВ соответствует нижнему (первому) пределу самовоспламенения, ветвь ВС — верхнему (второму) пределу самовоспламенения и СО — третьему пределу самовоспламенения. После перехода через этот третий предел снова начинается интенсивное самовоспламенение. В большинстве случаев третий предел имеет чисто тепловую природу (см. стр. 45, Тепловой взрыв ), В. некоторых случаях и, в частности, в [c.216]

    Проверка формулы по четыреххлористому углероду, бензолу II другим химически чистым органическим соединениям показала, что отклонения расчетной величины вязкости от экспериментальной не превышают 2,8%. Лишь отсутствие точных сведений о величинах IV ж Е препятствует широкому применению этой формулы для определения вязкости минеральных масел при заданной температуре. [c.52]

    Центробежные лопастные смесители относятся к циркуляционным смесителям с быстро враш,аюш,имся рабочим органом. Экспериментально установлено, что при враш,ении лопастной мешалки с окружной скоростью края лопасти более 6 м/с перемешиваемый сыпучий материал может быть переведен чисто механически в псевдо-ожиженное состояние. При этом значительно увеличиваются подвижность сыпучего материала и скорость его движения по циркуляционному контуру, благодаря чему время смешивания не превышает [c.235]

    Рассмотрим сначала чисто физическую абсорбцию, при которой газ растворяется в жидкости, не вступая в химическую реакцию. Для этого случая экспериментально установлено, что скорость абсорбции выражается следующим образом  [c.99]

    Вследствие этих трудностей промышленное проектирование реактора вытеснения с неподвижным слоем катализатора часто осуществляют чисто эмпирическим путем на основе экспериментальных данных, полученных на удовлетворительно работающей пилотной установке. Одним из таких методов является метод ступенчатого изменения масштаба реактора. Если обнаружено, что пилотная установка с реактором в виде трубы диаметром X см и длиной у см обладает удовлетворительными эксплуатационными характеристиками, согласно данному методу можно [c.73]

    Совокупность экспериментальных данных о термодинамических свойствах растворов органических соединений свидетельствуют о том, что изменения свойств воды вокруг органических молекул и их отдельных атомных групп затрагивают одну или, как максимум, две координационные сферы. Это заключение справедливо как для заряженных, так и для полярных и гидрофобных молекул и атомных групп. Свойства воды в пределах этого объема (гидратной оболочки) существенным образом зависят от типа атомной группы. Наиболее сильные изменения свойств воды наблюдаются в гидратных оболочках заряженных атомных групп. При этом происходит полная потеря присущих объемной воде аномальных свойств, таких, как немонотонные и нелинейные температурные зависимости плотности и сжимаемости, наличие большого структурного вклада в сжимаемость и др. В гидратной оболочке сближенных полярных атомных групп свойства воды также приближаются к свойствам нормальных жидкостей, однако в отличие от заряженных атомных групп эффект нормализации выражен гораздо слабее. Наименьшее воздействие на воду оказывают одиночные полярные группы, свойства воды в гидратной оболочке этих групп близки к свойствам чистой воды. Характеристики гидратных оболочек гидрофобных атомных групп значительно отличаются [c.62]

    Может случиться, однако, что кроме газа А адсорбируется также газ В. При этом имеет место взаимодействие обоих газов предсказать величину адсорбции одного из газов на основании экспериментальных данных, относящихся к чистому газу, невозможно. Можно, однако, определить степень адсорбции любого из компонентов, если известны экспериментальные данные, относящиеся к каждому из них в чистом виде. Общее уравнение адсорбции газа А из многокомпонентной смеси имеет вид  [c.113]

    Порядок реакции представляет собой сумму всех показателей степеней при концентрационных членах в уравнении для скорости реакции. Реакция образования Н1 имеет первый порядок по каждому реагенту и второй порядок в целом. Порядок реакции-это чисто экспериментальный параметр, который описывает только экспериментально установленный вид кинетического уравнения, но не позволяет делать никаких выводов относительно механизма реакции. [c.358]

    В принципиальном плане решение перечисленных задач состоит из двух последовательных этапов. Первый из них — чисто теоретический и не связан с использованием какой-либо априорной кинетической информации за исключением знания полного вектора составов. Здесь выясняются верхние границы анализируемых характеристик (максимальный механизм процесса, максимальные ранги и т. д.). На втором этане используется некоторая брутто-кинетическая экспериментальная информация, позволяющая уточнить значения характеристик (определение не максимальных, а адекватных рангов дискриминация [c.127]

    Однако уже давно было замечено, что скорость электроосаждения, а также электрорастворения металлов группы железа зависит от pH раствора и присутствия в нем примесей. Р. X. Бурштейн, Б. Н. Кабанов и А. Н. Фрумкин (1947) высказали предположение о непосредственном участии ионов 0Н в кинетике этих процессов. По их мнению, ионы 0Н играют роль своеобразных катализаторов. Механизм реакций катодного осаждения и анодного растворения железа, кобальта и никеля с образованием промежуточных частиц типа РеОН, РеОН+ или Ре-Ре0Н+ рассматривался затем Хейслером, Бокрисом, Фишером и Лоренцом и многими другими авторами. Было предложено несколько схем, объясняющих такие экспериментальные данные, как характер зависимости скорости реакции от pH, небольшой наклон тгфелевской прямой в чистых растворах серной кислоты, его повыщение при переходе к растворам соляной кислоты и при введении добавок поверхностно-активных веществ и т. д. В качестве иллюстрации можно привести схему Бокриса [c.473]

    Важный вопрос о соответствии значений констант скоростп реакций эксперпментальным данным вынесен в этой главе в упражнения. Сделано так потому, что, с одной стороны, этот вопрос относится скорее к области чистой, чем прикладной кинетики, и, с другой стороны, его решаюш,ее значение для всей проблемы расчета химических реакторов не вызывает сомнений. Если кинетические зависимости изображаются прямыми линиями, как на логарифмическом графике для реакции первого порядка в упражнении У.2, то оценка точности найденных значений констант скорости реакций может быть получена из отклонения экспериментальных данных от прямой линии, наилучшим образом оиисываюш ей ход процесса. Если дифференциальные уравнения, описывающие систему реакций, должны с самого начала интегрироваться численно, то провести оценку значений констант скорости и их точности значительно труднее. В простейших случаях уравнения можно решать с помощью аналоговой вычислительной машины, где константы скорости представляются переменными сопротивлениями. Эти сопротивления можно изменять вручную, пока не будет достигнуто наилучшее возможное соответствие между расчетными и экспериментальными данными. Если решение проводится на цифровой вычислительной машине, следует использовать метод проб и ошибок. Предположим, [c.116]

    Условия процесса могут быть постоянными по всему сечению реактора только при хорошем поперечном перемешивании реагирующей смеси. Последнее обычно описывается эффективным коэффициентом поперечной диффузии Е . В неподвижном слое поперечное перемешивание вызывается разделением и слиянием потоков при обтекании твердых частиц. Анализ этого процесса с помощью метода случайных блужданий приводит к значению радиального числа Пекле Ре = vdJE , равному — 8. В многочисленных экспериментальных исследованиях в неподвижных слоях без химических реакций были найдены числа Пекле от 8 до 15 причем при Ке > 10 число Пекле не зависит от числа Рейнольдса. Это подтверждает предположение о том, что поперечное перемешивание является чисто гидродинамическим эффектом. Числа Пекле для переноса тепла те же, что и для переноса вещества, а это говорит о пренебрежимо малой роли твердых частиц в процессе поперечной теплопроводности. С уменьшением числа Рейнольдса ниже 10 число Пекле сначала возрастает, но затем начинает уменьшаться, так как при [c.263]

    Эксперименты по абсорбции СОг растворами сильных щелочей в лабораторных абсорберах проводились еще с 1928 г. [6] с целью проверки ранних положений теории химической абсорбции. Экспериментальное исследование абсорбции чистого СОз проводили Ледиг и Вивер (7], Мицукури [8], Дэвис и Кренделл. [9] и Хйтч-кок [10]. Хатта [6] использовал смесь воздуха с СОа. Все эти результаты показывают, что коэффициент абсорбции возрастает с увеличением Ьо. Это прямо указывает на химическую абсорбцию, хотя провести различие между быстрой и мгновенной реакцией не так просто. Хатта [6] интерпретировал полученные им данные как подтверждение результатов теории мгновенной реакции. Среди ранних данных о системе, рассматриваемой в настоящей главе, следует упомянуть обширные данные Позина [И], которые наилучшим образом интерпретируются на основе теории мгновенной реакции. [c.139]

    Непосредственные наблюдения за движением частиц, взвешенных в турбулентном потоке жидкости около стенки, с помощью ультрамикроскопа, ироде- ланные еще в 1932 г. Фейджем и Тайнендом [8], не обнаружили области, свободной от пульсационного движения. В это же время Мэрфри [9], производя расчеты теплоотдачи при больших значениях числа Прандтля, предпринял попытку учесть характеристики турбулентности в пристеночной области, где течение ранее предполагалось чисто ламинарным. Однако дальнейшее развитие теории массопередачн сильно тормозилось отсутствием экспериментальных данных [c.170]

    В большинстве случаев, даже у сравнительно простых реакций, показатели степеней в кинетических уравнениях не совпадают со значениями стехиометрических коэффициентов. Это обусловливается тем, что простая реакция является совокупностью элементарных ст<1дий (актов), и стехиометрическое уравнение этой реакции составлено без учета истинного механизма ее протекания. В таких сл /чаях экспериментальгю определяют численное значение показа — те, я степени — так назьи аемого порядка реакции — по каждому реагирующему веществу. Помимо частрюго порядка в практике часто оперируют понятием суммарного порядка реакции, определяемого часто как сумма частных порядков. Таким образом, порядок реакции является чисто эмпирической (экспериментальной) величиной в уравнении, связывающем скорость неэлементарной реакции и концентрацию веществ. [c.21]

    Таким образом, Б. А. Казанскому, М. Ю. Лукиной и сотр. удалось выявить важные закономерности и сделать общий вывод о механизме гидрогенолиза циклопропанов на чистых металлах и металлах, отложенных на различных носителях. Этот вывод дает хорошо согласующуюся с экспериментальными результатами картину гидрогенолиза циклопропанов в присутствии металлсодержащих катализаторов. Увеличение размера и изменение типа алкильного заместителя, например переход от СНз- к (СНз)2СН-группе, или присутствие гел-груп-пировки в молекуле исходного циклопропанового углеводорода мало изменяет картину гидрогенолиза [83, 84]. В работах [66, 85] высказаны соображения о влиянии алкильного заместителя на легкость разрыва связей Свтор—Свтор циклопропанового кольца. При этом предполагают, что электронодонорная алкильная группа стремится сместить электроны в направлении двух других атомов углерода цикла, что благоприятствует разрыву связи между ними. Однако, как справедливо отмечено [86], дативное я-связывание циклопропанового кольца с металлом снижает электронное влияние метильной группы. Кроме того, присутствие этой группы приводит к пространственным затруднениям за счет стерических [c.102]

    Рассмотрение процесса с чисто физической точки зрения приводит к выводам, что скорость турбулентного пламени Ут определяется не масштабом турбулентности и значением числа Рейнольдса, а величиной пульсационной составляющей скорости потока. Существенно то, что при большой степени турбулентности потока Ут не зависит от горючих свойств газовой смеси, которые определяют нормальную скорость распространения пламени Этот результат является следствием рассмотрения процесса только с чисто физической точки зрения. При больших а выброс языков фронта пламени настолько значителен, а поверхность пламени так велика, что сгорание газа, попавшего в зону горения, должно происходить очень быстро и практически не должно зависеть от нормальной скорости горения и , а следовательно, и не тормозить выброс новых языков пламени. При экспериментальной оценке От зависит от [c.166]

    НИЯ, весьма сложен. В связи с этим существует разрьш между нашими представлениями о свойствах тяжелых углеводородных модельных веществ и тем, что мы знаем о свойствах тяжелых углеводородов нефти в общем наши знания об углеводородах молекулярного веса от 300—1000 довольно ограничены. Каждый, кто применяет для анализа высокомолекулярных продуктов методы, основанные на свойствах синтетических углеводородов, должен быть знаком с этим фактом. Для восполнения пробела необходима большая работа, так как недостаток данных по индивидуальным компонентам становится серьезной помехой при изучении высококипящих нефтяных фракций. Если метод структурно-группового анализа применяется для изучения структурных элементов, которые не могут быть точро определены в нефтяных фракциях, например степень разветвления, то единственно возможным путем является изучение синтетических углеводородов. В этих случаях требуется большое число данных не только о самих чистых веществах, но также и об их смесях. Несмотря на то, что число данных все время увеличивается, как правило, не имеется достаточного экспериментального материала по высокомолекулярным соединениям. [c.369]

    Индукционные периоды Т1, Т2 и т для чистого н-гептана и и-гептана с добавкой 2% РЬ(СгН5)4 согласно экспериментальному циклу двигателя [c.266]

    Если при исследованиях используют реальные газы с высокой плотностью, например фреоны, то при ограниченной мощности приводного двигателя приходится создавать давление на всасывании ниже атмосферного. В этом случае все режимы надо пройти за одно испытание. Предварительную обработку результатоп необходимо при этом вести в темпе проведения опытов, т. е. определять значения АТ, т] и я сразу же для каждой экспериментальной точки. Сопоставляя результаты расчетов, всегда можно определить момент, когда подсасывание атмосферного воздуха начинает влиять на результаты исследований. То]-д ) испытания прерывают, контур вакуумируют и заправл5пот заново. После остановки, даже не очень длительной (16—20 ч), контур также следует снова заправлять чистым газом, так 1(лк в него почти всегда проникает воздух. С учетом этой специфики надо стремиться к тому, чтобы объем контура был по возможности наименьшим. Если ограничений по мощности нет, то начальное давление в контуре выбирают таким, чтобы при самой низкой температуре охлаждающей воды не происходило конденсации газа в газовом теплообменнике. Это требование важно при определении мощности ступени по измерениям температур, когда наличие жидкой фазы в потоке на входе в ступень приводит к резкому увеличению погрешности в измерении температуры. [c.133]

    Величину поверхности исследуемого компонента вычисляют, исходя из удельной хемосорбции, т. е. по сор-бируемости газа на единице поверхности. Ее значение устанавливают экспериментально, адсорбируя в одних и тех же условиях газ иа чистом компоненте, поверхность которого предварительно определяют одним нз описанных выше методов физической адсорбции. Для некоторых частных случаев значения удельной хемосорбции определены (табл. 8). [c.88]

    Выше были описаны случаи, когда элементарный акт легче осуществляется на твердой поверхности, чем в объеме. Учитывая это, можно предположить, что многие гомогенные реакции осложнены гетерогенными стадиями на стенках сосуда, в котором протекает исследуемый процесс. Например, при комнатной температуре реакция разложения озона является гетерогенной со сравнительно низкой энергией активацией и идет на стенках сосуда. С повышением температуры все большую роль начинает играть чисто гомогенный процесс с энергией активации порядка 24 000 кал моль, и в интервале температур 60—100° С его скорость настолько превышает скорость гетерогенного разложения, что наблюдаемое экспериментальное значение скорости целиком характеризует гомогенный процесс. Аналогичные явления наблюдаются и во многих других случаях, например при разложении газообразных гидридов элементов V группы (ЫНз, РНа, АяНа, 5ЬНз). [c.132]

    Чтобы экспериментально выявить влияние гетерогенных реакций на ход процесса, наиболее целесообразно воспользоваться следующим приемом. Сосуд, в котором осуществляется эксперимент, наполняют мелкораздробленными кусочками того же материала, из которого сделаны стенки сосуда. Таким образом, поверхность увеличивается в сотни тысяч и миллионы раз. Если при этом скорость реакции и ее кинетические характеристики остаются неизмен 1Ыми, то можно считать, что исследуемая реакция является чисто гомогенной. В противном случае нужно провести дополнительные исследования, чтобы выяснить роль твердой ловерхности. [c.132]

    Экспериментально установлено, что состав пара смеси в общем случае не совпадает с составом жидкости, находящейся в равновесии с этим паром. На различии составов жидкости и пара основана перегонка смесей, имеющая большое практическое значение. На рис. 93 приведена зависимость температуры кипения от состава жидкости (кривая и пара (кривая а в). Точка t отвечает температуре кипения чистого компонента А, точка tв. — температуре кипепия компонента В. Область / относится к жидкости область // —к пуру. При этих условиях однофазные двухколшо-нентные системы имеют две степени свободы состав и температуру. Точка а обозначает жидкость состава х - При повышении температуры жидкой смеси до температуры / она закипит. [c.198]

    Бриан и др. составили и численно решили дифференциальные уравнения в частных производных для абсорбции в неустановившихся условиях, сопровождающейся реакцией, которая подчиняется кинетически уравнению (Х,50). В результате они получили выражения для определения количества хлора, абсорбированного чистой водой, в зависимости от времени экспозиции (при расчетах отношение коэффициентов диффузии НС1, Н0С1 и lg взято равным 2,1 1,05 1 соответственно). Зная значения коэффициентов диффузии, растворимости хлора и константы равновесия К при данной температуре, можно найти значение k , которое обеспечивает наиболее точное согласие между вычисленными и экспериментальными результатами. [c.251]


Смотреть страницы где упоминается термин Экспериментальная чисть: [c.452]    [c.88]    [c.344]    [c.461]    [c.173]    [c.593]    [c.91]    [c.109]   
Смотреть главы в:

Практикум по химии и физике полимеров Издание 2 -> Экспериментальная чисть




ПОИСК







© 2025 chem21.info Реклама на сайте