Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы на мембране

Рис. 21-24. Завершающая стадия метаболическою окисления-дыхательная цепь. Все ко.мпоненты цепи собраны па внутренней поверхности внутренней мембраны митохондрии в четыре макромолекулярных комплекса, содержащих цитохромы, флавопротеиды и другие негемиповые железосодержащие белки. Кофермент р, или убихинон, и цитохром с играют роль переносчиков протонов и электронов от одного комплекса к следующему. Восстановление осуществляется путем переноса протонов до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется путем переноса электронов, а протоны переходят в раствор. Электроны и протоны снова объединяются в конце цепи, когда кислород восстанавливается до воды. Свободная энергия запасается в молекулах АТФ, образующихся в трех из четырех комплексов. Рис. 21-24. Завершающая стадия метаболическою <a href="/info/526112">окисления-дыхательная цепь</a>. Все ко.<a href="/info/933341">мпоненты</a> цепи собраны па <a href="/info/93820">внутренней поверхности внутренней</a> <a href="/info/101342">мембраны митохондрии</a> в четыре <a href="/info/1350480">макромолекулярных комплекса</a>, содержащих цитохромы, флавопротеиды и другие негемиповые <a href="/info/168868">железосодержащие белки</a>. Кофермент р, или убихинон, и цитохром с <a href="/info/1907646">играют роль</a> <a href="/info/386253">переносчиков протонов</a> и электронов от одного комплекса к следующему. Восстановление осуществляется <a href="/info/1898102">путем переноса протонов</a> до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется <a href="/info/1896993">путем переноса электронов</a>, а <a href="/info/713953">протоны переходят</a> в раствор. Электроны и протоны снова объединяются в <a href="/info/626669">конце цепи</a>, когда кислород восстанавливается до воды. <a href="/info/2431">Свободная энергия</a> запасается в молекулах АТФ, образующихся в трех из четырех комплексов.

    Процессы мембранного разделения с использованием обратноосмотических мембран однотипны. Исходную разделяемую жидкость насосом под давлением прокачивают с определенной скоростью над рабочим слоем мембраны. Вода и часть растворенных в ней веществ проталкиваются сквозь поры мембраны и отводятся в виде фильтрата. Молекулы, их ассоциаты и частицы жидкой смеси, имеющие больший размер, чем размеры пор мембраны, задерживаются, концентрируются в остатке жидкой смеси и образуют второй продукт процесса — концентрат. Концентрат циркулирует непрерывно до получения требуемой или допустимой степени обезвоживания задержанных мембраной веществ. Процесс осуществляют при давлении 1,4—5 МПа и скорости истока жидкой среды над мембраной 0,2—0,3 м/с. Установки обратного осмоса компактнее дистилляционных и электродиализных, просты и удобны в эксплуатации. [c.107]

    У л ьтр а ф и л ь тр а ци я — процесс мембранного разделения, а также фракционирования и концентрирования растворов. Он протекает под действием разности давлений (до и после мембраны) растворов высокомолекулярных (ВМС) и низкомолекулярных (ВМС) соединений. В зависимости от назначения процесса мембраны пропускают [c.16]

    Выражение (9.43) позволяет высказать предположения о возможном механизме преодоления сил структурного отталкивания в биологических системах в процессе слияния мембран. Известно, что слияние мембран происходит лишь в том случае, когда в растворе, омывающем мембраны, в достаточном количестве присутствуют ионы Са + [430]. Одна из особенностей взаимодействия этих ионов с фосфолипидными бислоями заключается в том, что ионы Са + могут легко связываться с полярными головками фосфолипидных молекул и способны соединять две такие молекулы, образуя между ними кальциевые мостики [430]. Следовательно, адсорбция ионов Са + на поверхности бислоя приводит к стабилизации, цементированию его структуры. Другая особенность связана с тем, что ионы Са +, проникая в область полярных головок бислоя, вытесняют оттуда молекулы воды, т. е. дегидратируют поверхности бислоя [460]. [c.167]

    Рассмотрение липидов в этой главе уместно и еще по одной причине. Дело в том, что наряду с неполярными липидами существуют также полярные липиды. Они составляют главные компоненты клеточных мембран, т.е. тех контейнеров , в которых протекают основные метаболические процессы. Мембраны не только отделяют содержимое клеток от окружающей среды, но и обеспечивают пространственное разделение метаболических процессов внутри клеток. Вместе с тем мембраны-это не просто клеточный покров в них локализованы многочисленные ферменты и транспортные системы. Более того, на внешней поверхности клеточной мембраны располагаются разнообразные распознающие, или рецепторные, участки, которые способствуют узнаванию других клеток, связывают определенные гормоны и воспринимают иные сигналы из внешнего окружения. Многие свойства клеточных мембран обусловлены наличием в них полярных липидов. [c.325]


    При рассмотрении растительной клетки удобно подразделять ее на ядро, хлоропласты, митохондрии и т. д. Как позволили установить биохимические исследования, эти дискретные субклеточные структуры обладают различными функциями, причем каждая из них выполняет свою особую роль в общей деятельности клетки. Когда рассматриваешь огромное разнообразие процессов, осуществляемых в различных фракциях клетки, перестаешь удивляться тому, что для оптимального протекания каждого процесса требуются весьма специфические условия, причем часто эти условия в одном или нескольких отношениях отличаются от условий,обнаруживаемых для других фракций. Таким образом внутри клетки существует множество участков со своими особыми микроусловиями. Границы каждого из таких микроучастков образованы системой полупроницаемых липопротеид-ных мембран, изолирующих эти участки друг от друга. Эти граничные структуры, с одной стороны, способствуют поддержанию постоянных условий в микроучастках, а с другой стороны, они допускают обмен метаболитами и другие связи с окружающей средой. Относительно механизмов действия мембран известно очень немногое. Некоторые явления, такие, например, как перенос неорганических ионов через клеточную мембрану против градиента концентрации, изучаются уже многие годы, но их механизм все еще остается непонятым. Однако мы имеем все основания с уверенностью утверждать, что мембраны — это не просто инертные барьеры для динамических клеточных процессов мембраны являются активными участниками и регуляторами обмена веществ клетки. [c.44]

    Обратный осмос и ультрафильтрование. Метод основан на разделении растворов фильтрованием через мембраны с диаметром пор 1 нм (обратный осмос) и 5—200 нм (ультрафильтрование). Эти мембраны пропускают молекулы воды и непроницаемы для гидратированных ионов солей или молекул недиссоциированных соединений. От обычного фильтрования такой процесс отличается возможностью отделять частицы меньших размеров. Давление, необходимое для очистки методом обратного осмоса, 6—10 МПа, а для ультрафильтрования 0,1—0,5 МПа. В качестве материала мембран используются ацетатцеллюлоза, полиамиды и другие полимеры толщиной 100—200 нм [5.22, 5.24, 5.55, 5.64]. [c.485]

    ЭДС при работе стеклянного электрода возникает за счет ионообменного процесса мембраны и раствора Н р+ [c.129]

    По существу, рассматриваемые ниже случаи дают пределы для селективного процесса мембраны без поляризующего действия внешнего электрического поля. [c.222]

    Поверхностные явления играют ключевую роль в мембранных процессах и существенны для всех типов мембран, кроме газодиффузионных. Абсолютные значения коэффициента проницаемости и селективности мембран, температурная и барическая зависимость этих характеристик, во многом определяются закономерностями сорбционного процесса на поверхности и в матрице мембраны. Обычно допускается, что скорость сорбции намного превышает скорость переноса массы и распределение вещества между сорбированной и объемной фазами равновесно. Поэтому ограничимся анализом условий сорбционного равновесия и разделительных характеристик равновесного сорбционного процесса. [c.42]

    В промышленности получили распространение процессы, основанные на фильтровании растворов через полупроницаемые перегородки (мембраны). Ультрафильтрование при давлении 0,1— 0,5 МПа обеспечивает отделение частиц размером до 0,5 мкм, а использование обратного осмоса при давлении 3—10 МПа позволяет производить очистку растворителя от частиц, равных диаметру молекул или гидратированных ионов. Качество разделения зависит от природы и концентрации соединений в сточных водах, от температуры, давления и конструкции аппарата, В результате очистки воды получается 5—20 % раствор солей и вода, которая по своим свойствам чаще всего удовлетворяет санитарным и технологическим требованиям [5,22, 5.24, 5.55, 5.64]. [c.475]

    Если сравниваются коэффициенты проницаемости чистых газов Л и А°], то относительную величину а г - называют идеальным фактором разделения мембраны. В общем случае и различны, так как процессы проницания отдельных компонентов смеси через мембрану взаимозависимы. Скорость проницания отдельных компонентов через мембрану зависит от общего [c.12]

    На одной установке полимеризации из-за неисправной работы насоса в реактор было подано избыточное количество (против нормы) инициатора в начале процесса полимеризации. В результате интенсивной реакции и сильного разогрева произошло разложение этилена, приведшее к разрыву мембраны и вторичному мощному взрыву в воздухе, вызвавшему разрушение объектов. Вторичные взрывы в воздухе при срабатывании мембран отмечались также и при частичном разложении инициатора по высоте емкости. [c.108]


    С целью безопасного ведения процесса на аппаратах дистилляции должны быть установлены взрывные мембраны, разрывающиеся при избыточном давлении 60 кПа (0,6 ат). Чтобы предотвратить распространение давления в другие системы при аварийной ситуации в одной из систем дистилляции, на линиях подачи питания реакционной массы должны быть установлены обратные клапана. В случае термического распада гидроперекиси в колоннах при избыточном давлении, превышающем 50 кПа (0,5 ат), в линию выброса продуктов распада после мембран автоматически должен поступать инертный газ во избежание попадания воздуха в колонны. [c.138]

    НС, лизолецитин также участвует в слиянии мембран in vivo, как это было предположено в случае экзоцитотического высвобождения молекул медиатора из хромаффинных гранул. Лизолецитин может разрыхлять участвующие в этом процессе мембраны с тем, чтобы медиатор легче проходил через них. [c.73]

    Термодинамические и кинетические представления о процессе проницания газов через мембраны опираются прежде всего на понятия о формах энергетического взаимодействия проникающих газов с матрицей и о механизме массопереноса. Оба критерия позволяют провести довольно детальную классификацию газоразделительных мембран, однако целесообразно ограничиться главными признаками. Все мембраны в зависимости от возможности фазового массопереноса можно разделить на две группы —с пористой и сплошной матрицей. По энергетическому критерию можно выделить четыре типа мембранных систем пористые газодиффузионные и сорбционно-диффузионные, непористые сорбционно-диффузионные и реакционно-диффузионные. [c.13]

    Для мембран первого типа характерно, что матрица исходного материала и компоненты газовой смеси не обладают заметной энергией связи, их взаимодействие ограничено столкновением молекул газа с поверхностью материала мембраны, появление конденсированной фазы разделяемых газов исключено. Химический потенциал компонента смеси является функцией только объемных свойств разделяемой смеси. Влияние свойств матрицы на процесс разделения определяется ее поровой структурой, лимитирующей те или иные виды массопереноса. Примером разделительных систем такого типа являются пористые стекла и достаточно разреженные газовые смеси. [c.13]

    Рассмотрим особенности кинетики мембранных систем вдали от равновесия, используя одномерную модель процесса [4). Реакционно-диффузионная мембрана представляет собой открытую систему с распределенными реакционными параметрами. На границах этой системы происходит обмен веществом с газовой смесью в напорном и дренажном каналах в каждой точке пространства внутри мембраны (0<годновременно химические реакции и диффузия реагентов. В реакциях участвуют компоненты разделяемой газовой смеси, вещества матрицы мембраны и промежуточные соединения. Поскольку на граничных поверхностях поддерживаются различные внешние условия, в мембране в любой момент существует распределение концентраций реагентов i(r, т), в общем случае неравновесное. Движущая сила химической реакции — химическое сродство Лг, являясь функцией состава, также оказывается распределенным параметром. [c.29]

    Мембраны второго типа характеризуются существенным влиянием поверхностных явлений, прежде всего адсорбции возможно появление конденсированной фазы и эффекта капиллярности химический потенциал компонента зависит не только от температуры, давления и состава газовой смеси, но также и от свойств матрицы за счет поверхностной энергии. Влияние скелета мембраны на процесс разделения не ограничено, как в газодиффузионных, чисто структурными характеристиками, а предполагает появление новых видов массопереноса. Однако транспорт компонентов в основном материале мембраны исключен. Примером такого рода систем являются микропористые структуры и газовые смеси под давлением, содержащие компоненты со значительной молекулярной массой. [c.13]

    Увеличение энергии связи приводит к усилению роли сорбционных явлений в общем процессе разделения. В частности, скачкообразное изменение концентрации компонентов на границах мембраны не только повышает проницаемость целевого компонента, но может принципиально изменить процесс разделения смеси. В полимерах коэффициенты диффузии более легких растворенных газов, как правило выше, а растворимость их ниже, чем у более тяжелых газов. В итоге скорость проницания последних часто превосходит проницаемость той же мембраны по более легким газам. [c.15]

    В мембранных системах с возрастающей энергией связи повышение селективности сопровождается снижением проницаемости и, следовательно, производительности мембранных модулей. В ряде случаев этого удается избежать путем формирования оптимальной структуры матрицы мембраны, направленного синтеза полимерных материалов для разделения газовых смесей определенного состава, причем особенно перспективны реакционно-диффузионные мембраны, в которых возможно максимальное приближение к природным мембранным системам за счет сопряжения процессов диффузии, сорбции и химических превращений. [c.15]

    Указанное представление процесса сильно идеализировано и ограничено областью малых растворимостей, отсутствием в матрице структурных деформаций при растворении.газа и химических реакций. Если непористые мембраны гетерофазны, а скорость сорбции растворенных газов на поверхности дисперсной фазы конечна, то процессы сорбции и диффузии в мембране протекают в одном масштабе времени, и в системе возможно возникновение локально-неравновесных состояний. [c.16]

    Скорость реакции, характеризующая прирост или убыль реагента в точке мембраны, очевидно, зависит от неравновесного состава / ( i, Сг,. .., Сп) и изменяется во времени и по координате. Реагенты диффундируют в мембране, причем ввиду сопряженности процессов возможно ускорение, замедление массопереноса и даже активный перенос отдельных реагентов Кинетическая модель мембранной системы, в которой исключен конвективный перенос, представляет систему одномерных нелинейных дифференциальных уравнений локального баланса массы реагентов [c.29]

    Для выявления механизма мембранного переноса и целенаправленного синтеза мембран необходимо установить возможные состояния мембранной системы и их взаимные переходы при различных значениях управляющего параметра а. В качестве управляющего может быть использован любой параметр, вызывающий возмущение в системе, отклонение ее от исходного равновесного или устойчивого стационарного состояния. Поскольку основным неравновесным процессом являются химические реакции, естественно в качестве управляющего параметра использовать величины, влияющие на состав реагентов в каждой точке мембраны. Обычно используют концентрации переносимого компонента на границах мембраны в газовой фазе (С ) или (С/)", изменение которых влияет на приток или отток реагентов и вызывает возмущение как в распределенной системе в целом, так и в локальной области мембраны. [c.30]

    Нелинейность подобной системы обусловлена торможением процесса в результате связывания фермента в неактивный комплекс Е8 при повышенных концентрациях субстрата этот процесс аналогичен изменению свойств матрицы мембраны при значительной растворимости газов. [c.35]

    Управляющим параметром мембранной системы обычно является одно из внешних условий, например концентрация разделяемой смеси. Следовательно, изменение ее в определенных пределах может привести к триггерному режиму функционирования реакционно-диффузионной мембраны, если процессы в ней моделируются уравнением типа (1.35). [c.37]

    Пористые мембраны представляют гетерогенные системы с весьма развитой поверхностью раздела твердое тело (матрица)— газ. Известно, что состояние газа или жидкости вблизи поверхности раздела фаз отличается от свойств той же среды в большом объеме. Особенности поведения веществ в этой области принято называть поверхностными явлениями. Термодинамически поверхностные явления трактуются как проявление особого вида взаимодействия системы, которое характеризуется уменьшением свободной энергии Гиббса при переходе вещества из объемной в поверхностную фазу. Убыль свободной энергии Гиббса пропорциональна площади поверхности и количественно определяется работой, которую необходимо затратить на образование поверхности или перемещения массы из объема в поверхностный слой в изотермическом процессе. Следовательно, речь идет о существовании потенциала поверхностных сил. [c.42]

    Если выбор движущих сил 1 и Дг независим, то при определенных условиях выражение в скобках и величина Р могут приближаться к нулю при конечных значениях потоков. Поскольку диссипативная функция характеризует рассеяние свободной энергии, это означает приближение процессов в условиях полного сопряжения к термодинамической обратимости. Подробнее проблема энергетической эффективности процессов мембраны в условиях их сопряжения рассмотрена в гл. 7. Здесь же оценим влияние степени сопряжения на скорость массопереноса в мембране. На рис. 1.2 показан общий вид зависимости, где величина Z использована для приведения отношений потоков /]//2 и сил Х-21Х1 к безразмерной форме. [c.19]

    Мембраны, свободно проницаемые только для одного компонента, принято называть полупроницаемыми, а остальные — селективно-проницаемыми, или просто проницаемыми. При разделении газовых смесей обычно имеют дело с селективно-проницаемыми мембранами, поэтому из напорного канала через стенки разделительного элемента проникают все компоненты смеси, но с различной скоростью. Поскольку движущая сила переноса компонента определяется разностью химических потенциалов в напорном и дренажном каналах, скорость проницания каждого компонента меняется по длине мембранного элемента и зависит (как показано ниже) от термодинамических и гидродинамических параметров процесса. Скорость проницания компонентов через мембрану традиционно определяют, используя понятия и феноменологические соотношения фильтрационного процесса. Плотность потока -го компонента через мембра-ну принимают линейно зависящей от перепада давлений над и под мембраной  [c.12]

    В основе световой стадии фотосинтеза лежат типичные мембранные процессы. Мембрана тилакоидов — небольших органелл, из которых j состоит хлоропласт (рис. 70), — содержит хлорофилл (точнее, сложную систему из пигментов типа хлорофилла и каротиноидов), а также специальный комплекс ферментов. Солнечная энергия аккумулируется в форме макроэргических соединений никотинамидаденйндинуклеотида и АТР (в этом случае образование АТР из ADP и иона фосфата называют фотофосфорилированием) [39—42]. Фото-синтетический аппарат сине-зеленых водорослей располагается непосредственно в их клеточной мембране. [c.249]

    Увеличить общий срок службы мембранного предохранительного устройства можно та кже и без снижения уровня пульсационных нагрузок, если в одном устройстве последовательно закрепить несколько мембран, срок службы каждой из которых сравнительно невелик. Ири опасном повышении рабочего давления в защпщаемо.м аппарате разрушаются все мембраны, размещенные в одном устройстве. Ири нормальном протекании рабочего процесса мембраны выходят из строя последовательно. [c.118]

    Процесс возбуждения развивается вследствие зависимости проницаемости мембраны для ионов от мембранного потенциала. При достижении критической деполяризации, когда возрастает проницаемость мембраны для Ма , эти ионы устремляются внутрь и вызывают дальнейшую деполяризацию мембраны. Процесс продолжается до тех пор, пока потенциал не сместится до равновесного натриевого потенциала. В этих условиях потоки Ма наружу и внутрь сравниваются. Затем происходит увеличение проницаемости для К+ и ионы К начинают выходить из клетки по градиенту своего электрохимического потенциала. В этом процессе мембрана реполяризуется. Выход К+ прекраш ается, когда потенциал на мембране приблизится к равновесному калиевому потенциалу.  [c.169]

    Эти опыты показали, во-первых, решающую роль мембраны в возникновении ПП — ведь протоплазма со всеми органелламп и белковыми молекулами попросту отсутствовала, а во-вторых, — решающую роль ионов калия в этом процессе. Мембрана нервного волокна работала так, как это предсказывалось мембранной тзорией Бернштейна. [c.75]

    Иотюселективпые электроды отличаются от всех рассмотренных ранее тем, что у них обе граничащие фазы — мембрана и раствор — облпляют ионной проводимостью, и поэтому на их границе не про-исхичит собственно электрохимическая реакция с переиосом электронов. Процесс сводится здесь к обмену ионами между мембраной и раствором. Межфазную границу пересекают только ионы, заряд [c.172]

    Д])угой тип мембраны — ионообменные мембраны — используют при очистке воды, проведении процессов элерстроосмоса и т, д. На них происходят ионообменные реакции, и они дают некоторый вклад в э.д.с., который обычно невелик и зависит от многих факторов. [c.207]

    Одновременно с этим потенциал диффузионной стороны также становится более отрицательным. Такой переход водорода н передача потенциала с поляризационной стороны на диффузионную возможны в том случае, если образующийся в процессе разряда атомарный водород не успевает покинуть поверхность электрода. Его ко1щентрация увеличивается по сравнению с равновесной, и он начинает проникать в глубь палладия, достигая диффузионной стороны мембраны. Появление избыточного водорода на диффузионной стороне сдвигает ее потенциал в отрицательном направлении, что также указывает на медленное протекание рекомбинации. Однако, по Фрумкину, иереиапря-жение водорода на палладии нельзя приписать только замедленности рекомбинации. Если поляризовать мембрану малым током до постоянного значения потенциала, а затем выключить ток, то для каждой из ее сторон получаются различные кривые спада потенциала. На поляризационной стороне непосредственно после выключения тока наблюдается резкое падение перенапряжения, которое затем уменьшается значительно медленнее. На диффузионной стороне проявляется только второй участок, т. е. после выключения тока потенциал постепенно сдвигается к его разновесному значению в данном растворе. Быстрый спад перенапряжения объясняется замедленностью разряда, медленный спад — удалением избыточного водорода. [c.418]

    Разрывная мембрана не является устройством, предотвращающим взрывной распад ацетилена, а тем более переход распада в детонацию. Скорость распространения пламени при взрыве, особенно при детонации, настолько велика, что мембрана не успевает сработать, независимо от толщины разрывной пластины . Например. если даже ббльщая часть энергии ударной волны, вызванной детонацией, теряется при срабатывании мембраны, процесс распада все равно продолжается. Поэтому мембраны не применяются как самостоятельные защитные приспособления против взрывного и детонационного распада ацетилена и используются только в сочетании с огнепреградителями. [c.88]

    Непористые реакционно-диффузионные мембраны отличаются от прочих химической формой связи компонентов разделяемой смеси и исходного материала мембраны. Химические реакции приводят к образованию новых веществ, участвующих в транспорте целевого компонента. Массоперенос компонентов разделяемой газовой смеси определяется не только внешними параметрами и особенностями структуры матрицы, но и химическими реакциями, протекающими в мембране. В подобных системах за счет энергетического сопряжения процессов диффузии и химического превращения возможно ускорение или замедление мембранного переноса, в определенных условиях возникает активный транспорт, т. е. результирующий перенос компонента в направлении, противоположном движению под действием градиента химического потенциала этого компонента. В сильнонеравновесных мембранных системах могут формироваться структуры, в которых возникают принципиально иные механизмы переноса, например триггерный и осциллирующий режимы функционирования мембранной системы. Обменные процессы такого рода обнаружены в природных мембранах, но есть основания полагать, что синтетические реакционно-диффузионные мембраны в будущем станут основным типом разделительных систем, в частности, при извлечении токсичных примесей из промышленных газовых выбросов. [c.14]

    Мембранный перенос массы является результатом сопряжения нескольких процессов, протекающих в мембране, прежде всего диффузии и сорбции компонентов газовой смеси существенно также влияние дополнительных связей, возникающих в мембранной системе при нарушении принципа аддитивности. Только в газодиффузионных пористых мембранах, где удается организовать свободномолекулярное течение, процессы проницания газов независимы. В общем случае процессы в мембранах вза-имно-обусловлены, а такие интегральные характеристики мембран, как проницаемость Л и селективность а, являются результатом сопряжения отдельных процессов. Сорбционно-диффу-зионная модель проницания чистых газов через гомогенные непористые мембраны служит примером сопряжения процессов поверхностной сорбции, растворения и диффузии. Предполагается, что характерные времена этих процессов существенно раз- [c.15]

    В реакционно-диффузионных мембранах, где возникают, мигрируют и распадаются промежуточные химические соединения, массоперенос описывается системой нелинейных дифференциальных уравнений, решение которых неоднозначно и сильно зависит от степени неравновесностн системы при этом в результате сопряжения диффузии и химической реакции возможно возникновение новых потоков массы, усиливающих или ослабляющих проницаемость и селективность мембраны по целевому компоненту. При определенных пороговых значениях неравно-весности, в так называемых точках бифуркации, возможна потеря устойчивости системы, развитие диссипативных структур, обладающих элементами самоорганизации. Это характерно для биологических природных мембран, а также для синтезированных полимерных мембранных систем, моделирующих процессы метаболизма [1—4]. [c.16]


Смотреть страницы где упоминается термин Процессы на мембране: [c.127]    [c.131]    [c.74]    [c.154]    [c.154]    [c.22]    [c.13]    [c.21]    [c.24]    [c.36]    [c.50]   
Смотреть главы в:

Элементы теории биологических анализаторов -> Процессы на мембране




ПОИСК







© 2024 chem21.info Реклама на сайте