Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аппаратура для очистки азота

    Для очистки конвертированного газа от окиси углерода применяют абсорбцию медноаммиачными растворами, отмывку жидким азотом и метанирование. Наибольшей опасностью отличается метод промывки газа жидким азотом, что обусловлено возможностью образования в аппаратуре взрывоопасных смесей горючих газов с кислородом, попадающим с азотом из системы воздухо-разделения при нарушениях режима ее работы, а также с конвертированным газом при нарушении дозирования воздуха, подаваемого на конверсию. [c.22]


    Мероприятия, рекомендуемые для предотвращения подобных взрывов, основаны на контроле накопления окислов азота в аппаратуре низкотемпературного блока, поскольку полностью удалить окислы азота из промываемого газа не представляется возможным. Установлена максимально допустимая норма накопления окислов азота в аппаратуре низкотемпературного блока. В аппаратах типа КР-32 содержание окислов азота, определяемое перманганатным методом, не должно превышать 5 кг. Если расчетное количество окислов азота в аппаратуре достигает 5 кг, то блок должен быть остановлен на отогрев и промывку. Количество накопившихся в аппаратуре окислов азота во многих случаях определяют по их содержанию в газе и расходу через низкотемпературный блок. Такая методика определения количества окислов азота, накапливающихся в аппаратуре, весьма несовершенна, так как анализы проводятся два раза в смену, и не исключена возможность залпового поступления больших количеств окислов азота в периоды между отборами проб газа. Поэтому для повышения безопасности процесса очистки конвертированного и коксового газа необходим непрерывный автоматический контроль содержания окислов азота с записью результатов на диаграмме. [c.23]

    Сборка аппаратуры. Баллон с азотом (см. рис. 8) соединяют с четырьмя последовательно расположенными стеклянными колонками 2 высотой 1 м и диаметром 45 мм, служащими для очистки азота от кислорода. [c.50]

    В установке были применены многие новые технологические процессы и аппаратура бескислородная каталитическая конверсия природного газа с водяным паром в трубчатых печах иод давлением 3 МПа, глубокая конверсия окиси углерода на низкотемпературном катализаторе, очистка азото-водородной смеси от кислородсодержащих соединений каталитическим гидрированием (метанирование) использовались поршневые компрессоры для сжатия синтез-газа до рабочего давления 30 МПа, так как фирма не располагала турбокомпрессорами. Оборудование было смонтировано на Черкасском химическом комбинате и вступило в строй действующих в 1970 г. [c.29]

    Сильными осушителями являются металлические калий и натрий. Аппаратура для высушивания азота парами калия при 340° описана в работе Харрингтона [125]. 100 г калия снижают содержание паров воды в 50 азота до остаточного давления 2-10 мм рт. ст. Одновременно происходит очистка азота от следов кислорода. [c.191]


    Более совершенная конструкция установки, предназначенной для осушки и очистки азота, гелия, аргона, ксенона, криптона, используемых в хроматографической аппаратуре в качестве газов-носителей, реализована в системе очистки инертных газов Г 711 Очистку осуществляют методами сорбционной, хемосорбционной и механической фильтрации. [c.84]

    Установка с аргоно-азотной средой включает адсорберы для поглощения влаги и реакторы для связывания кислорода. Начальная концентрация азота определяется качеством используемого инертного газа, обычно технического аргона. В дальнейшем содержание азота увеличивается вследствие подсоса воздуха например, если подсос извне составляет 0,05%/ч, то содержание азота за 5 суток возрастет на 5%. Периодически в зависимости от допустимого уровня содержания азота система продувается техническим аргоном. При однократной продувке одним объемом газа содержание азота в системе может снизиться от 6 до 1%. Если содержание азота должно поддерживаться приблизительно на одном уровне, то в систему очистки включают аппаратуру для непрерывного удаления азота, например с использованием низкотемпературной дистилляции. Поскольку не требуется удаление всего азота, в аппаратуру очистки от азота направляется только часть всего циркулирующего газа. [c.227]

    Например, основной метод разделения и очистки элементарных газов (азота и кислорода) состоит в дробной перегонке предварительно сжиженного воздуха и последующего избирательного поглощения примесных газов на специальных поглотителях. В последнее время в целях глубокой очистки газов щироко применяются процессы, основанные на диффузии (струйное фракционирование, диффузия через полупроницаемые мембраны, препаративная газовая хроматография, метод молекулярных сит). Однако до сих пор высшая степень очистки простых газов все же не превышает 99,99 %и лишь в отдельных наиболее благоприятных случаях приближается к пяти девяткам (99,999 %). Общей помехой для получения чистых газов является адсорбция влаги и посторонних газов на стенках емкостей, применяемых в ходе их очистки. Удалить посторонние прилипчивые газы со стенок стеклянной или металлической аппаратуры можно лишь путем длительного отжига в вакууме. Вместе с тем следует учесть также возможность поглощения самих эталонируемых газов конструкционными материалами (азота — титаном, танталом, цирконием и их сплавами водорода — платиной, осмием, иридием кислорода — медью, серебром и другими металлами). Кроме того, многие металлы и сплавы оказываются частично проницаемыми для отдельных газов (в первую очередь это относится к легким газам — водороду и гелию), что приводит к нх просачиванию в сосуды с эталонными газами извне. Таким образом, проблема эталонирования даже простых газов оказывается далеко не легким делом. [c.52]

    Большая опасность при эксплуатации агрегатов очистки синтез-газа от окиси углерода промывкой жидким азотом создается при нарушении установленного содержания двуокиси углерода в конвертированном газе, поступающем в низкотемпературный блок после предварительной очистки, так как аппаратура забивается твердой СОг. Известна авария, происшедшая по этой причине. [c.24]

    Смеси низкокипящих углеводородов и газов На, N2, и СО можно разделять путем перегонки как при атмосферном давлении с применением специальных хладоагентов, так и при повышенном давлении. Если разделение проводят при повышенном давлении, то стремятся повысить температуру головки колонны до такого значения, чтобы можно было использовать обычные охлаждающие средства (см. разд. 5.4.5). Из-за того, что для перегонки под давлением необходима более сложная аппаратура, чаще применяют лабораторные и пилотные установки низкотемпературной ректификации. Методика проведения низкотемпературной ректификации разработана очень подробно. Созданы полностью автоматизированные установки для проведения низкотемпературной ректификации в интервале от —190 до 20° С. В этих установках применяют как насадочные, так и полые спиральные колонны. Во многих случаях отбираемые пробы дистиллята и кубового продукта анализируют методом газовой хроматографии (см. разд. 5.1.2). Низкотемпературную ректификацию используют для очистки газов, а также как сравнительную ректификацию, аналогичную промышленному процессу. Это относится прежде всего к очистке отходящих промышленных газов без концентрирования в них водорода и, главным образом, к очистке природного газа, например выделение гелия и азота из природного газа, что по-прежнему является трудной проблемой. [c.250]

    Для инициирования реакции окисления метана применяются также гомологи метана [84, 85], озон [86], атомарный водород [87], нитрометан [88], хлористый нитрозил и хлористый нитрил [89]. электроразряд [90], фотохимические средства воздействия [91] и т. д. Все перечисленные способы инициирования дороги и сложны, а эффективность средств воздействия незначительна (выход до 2% СНоО на пропущенный метан). Так, при использовании углеводородов наблюдается разветвленность процесса с образованием большого числа различных продуктов, что требует сложных и дорогостоящих процессов разделения полученной смеси. Окислы азота оказывают коррозионное воздействие на аппаратуру, а малейшие следы окислов в конечном продукте — СНаО — являются нежелательными примесями, от которых освобождаются тщательной и дорогостоящей очисткой с применением ионообменных смол. [c.166]


    Несмотря на меньшие расходы платины, установки под атмосферным давлением в настоящее время потеряли свое значение из-за малой производительности, громоздкости аппаратуры и соответственно больших капитальных вложений, значительных потерь аммиака и необходимости применения дорогостоящей щелочной очистки отходящих газов от оксидов азота. [c.105]

    Для нормальной работы низкотемпературной аппаратуры ожижительной установки газообразный водород требуется предварительно очищать до содержания примесей 10 —10 объемных долей. Существующие методы очистки водорода позволяют удовлетворить указанные требования. Так, метод каталитического восстановления позволяет очистить водород от кислорода до содержания последнего 10" ° объемных долей, а методом адсорбции можно очистить водород от азота и кислорода до содержания их не более 2- 10 ° объемных долей [27]. [c.60]

    Очистка. В этом процессе происходит удаление из ОКГ высококипящих примесей, оксидов азота и сероводорода. Такие вещества как вода, бензол, нафталин, оксид углерода (IV) при низких температурах могут кристаллизоваться на стенках аппаратуры, ухудшая теплообмен. Оксиды азота способны образовывать взрывоопасные смеси. Удаление из газа сероводорода, помимо предотвращения коррозии аппаратуры, вызвано также целесообразностью его последующего использования для производства элементарной серы и серной кислоты, так как в ОКГ переходит до 30% серы, содержащейся в коксуемой угольной шихте. [c.207]

    При синтезе аммиака из азота и водорода в качестве катализатора применяется железо 0,01 % серы в железе заметно снижает каталитическую активность железа, а при 0,1% серы железо полностью теряет каталитические свойства. Некоторые веш,ества отравляют одни катализаторы и не отравляют другие. В обш,ем каждый катализатор имеет свой список ядов. Каталитические яды ограничивают, снижают срок службы катализаторов. В технологии очень важно тш,ательно предохранять катализаторы от отравления, предъявляя специальные требования к аппаратуре и очистке исходных веществ. Иногда действие яда удается использовать для ведения процесса в желательном направлении. Так, например, гидрирование хлористого бензоила в бензольном растворе над платиной приводит через ряд последовательных стадий к образованию толуола  [c.430]

    Примеси кислорода, азота, углерода резко ухудшают механические свойства титана, а при большом содержании превращают его в хрупкий материал, непригодный для практического использования. Поскольку при высоких температурах титан реагирует с названными неметаллами, его восстановление проводят в герметичной аппаратуре в атмосфере аргона, а очистку и переплавку — в высоком вакууме. [c.505]

    Получение металлического лития. В получении металлического лития есть ряд особенностей, связанных с его высокой химической активностью. Во всех металлургических процессах его получения должна предусматриваться та или иная защита от азота, кислорода, двуокиси углерода и паров воды, снижающих выход металла, затрудняющих получение его в чистом состоянии и создающих опасность самовозгорания. Ограничен выбор материалов для аппаратуры, так как корродирующее действие расплавленного металла очень велико. Особенно сложна проблема глубокой очистки металлического лития [10]. [c.68]

    В первом томе справочника под общей редакцией Е. Я. Мельникова приведены физико-химические свойства газообразных и жидких веществ, применяемых и получаемых на предприятиях азотной промышленности. Описаны различные методы получения и очистки технологических газов (азото-водородной смеси, синтез-газа). Рассмотрены физикохимические основы процессов синтеза аммиака и метанола, промышленные схемы и принципы автоматизации их производства даны некоторые методы технологических расчетов, приведены характеристики катализаторов, описана применяемая аппаратура. [c.4]

    Наибольшую опасность в азотной промышленности представляют производства аммнака и азотной кнслоты, так как прн нарушениях режима в этнх производствах возможно выделение в рабочую зону водорода, аммнака, оксидов азота и углерода, сероводорода н других горючих н токсичных газов. При недостаточной герметичности аппаратуры н коммуникаций, а также прн аварийном выбросе таких газов в атмосферу, как правило, может возникать сильная загазованность рабочих помещений н близлежащей территории. Поэтому герметизации аппаратуры н очистке отходящих газов следует уделять особое внимание. [c.431]

    Двуокись углерода должна быть полностью удалена из газа, так как она забивает теплообменную аппаратуру блоков разделения и промывки жидким азотом. Для удаления СО 2 после контактного ап парата устанавливают щелочной скруббер. Расход щелочи для очистки определяется образующейся двуокисью углерода. [c.442]

    Для предупреждения образования в аппаратуре и помещении взрыво- и пожароопасных газовых смесей состав выходящих из электролизера газов непрерывно и автоматически фиксируется приборами и, когда чистота водорода становится ниже 98,5%, а кислорода ниже 98%, подаются световой-и звуковой аварийные сигналы не менее одного раза в смену производится контрольный анализ газов переносными газоанализаторами в различных местах технологической схемы контролируется уровень жидкости в газо-сборниках, не допуская работу электролизера при отсутствии в мерном стекле видимого уровня столба жидкости систематически производится тщательная очистка опорных изоляторов электролизера для предотвращения токов утечки в землю электролизеры после остановки и перед пуском продуваются азотом. Для контроля за содержанием водорода в помещении имеются автоматически действующие газоанализаторы, включающие аварийный сигнал, когда содержание водорода в воздухе более 0,4%. При содержании водорода выше % технологическое оборудование цеха автоматически останавливается. При загорании водород тушат СОг, азотом или хладонами. [c.22]

    Комплект аппаратуры, содержащий приспособление для очистки азотом, показан на фиг. 61. Образец газа пропускают через аппарат из склянки 1 с помощью вакуумной установки, присоединенной к капиллярной трубке 2. Образец последовательно проходит через трубку 3, сосуды с хромовой кислотой 4 и 5, -образную трубку 6, трубку с пятиокисью иода 7, трубку 8, содержащую иодистый калий, и ртутный затвор 9 перед вакуумной линией, присоединенной к капиллярной трубке 2. В то время как образец газа проходит по аппарату, азот выпускается через трубку 10 при закрытом кране 11. После наролнения аппарата закрывают газовый кран /2 и открывают кран 11. Вследствие этого азот проходит через ртутный затвор [c.132]

    Получение лития, рубидия и цезия в виде металлов связано с рядом особенностей, обусловленных прежде всего высокой химической активностью этих металлов. В частности, все металлургические процессы приходится осуществлять либо в вакууме, либо в среде аргона, так как присутствие в аппаратуре следов влаги, азота, кислорода и двуокиси углерода не только снижает выход металла и создает опасность самовозгорания, но и затрудняет получение продукта в чистом состоянии. Высокая коррозионная активность расплавленных щелочных металлов ограничивает выбор необходимых конструкционных материалов. Особенно сложной проблемой является разработка методов глубокой очистки металлических лития, рубидия и цезия. [c.379]

    Прн получении под вакуумом в чистом внде можно также запаивать эти вещества в ампулы. Последние вносят затем в реакционный сосуд и разбивают магнитным бойком (см. выше). Гигроскопичные жидкости и растворы можно, кроме того, вслед за операциями нх очистки перенести в реакционный сосуд при помощи инъекционного шприца нли с использованием специальной техники работы, описанной выше (ч. I, разд. 13). Гигроскопичные твердые вещества в ряде случаев целесообразно вносить в тонкостенных разбиваемых ампулах. Отдельные части установки следует по возможности спаивать друг с другом, а число кранов в ней должно быть небольшим. Если это окажется невыполнимым, то уплотнение мест соединения должно выполняться с особой тщательностью. В местах соединения аппаратуры с вакуумной системой или с атмосферой помещают трубки с осушающими веществами нли, еще лучше, вымораживающие ловушки, охлаждаемые жидким азотом, ч-го предотвращает попадание в аппаратуру влаги из воздуха. Поскольку большинство неорганических соединений дейтерия способно так же, как и тяжелая вода, обменивать в присутствии обычной воды часть дейтерия на водород, указанные выше меры предосторожности необходимо учитывать при проведении всех описываемых ниже реакций. [c.158]

    В реакционную трубку на расстоянии 15 см от входного шлифа помещают 50 г обезжиренной циркониевой стружки или губки. В течение 6— 8 ч аппаратуру промывают азотом при комнатной температуре и еще 8 ч при 650 °С, в результате чего на цирконии образуется поверхностный слой нитрида. Газообразный хлор сначала высушивают конц. H2SO4 и затем конденсируют при —50н—60 °С в сосуде-сборнике, что необходимо для очистки хлора от примеси кислорода. Хлорирование циркония проводят при 360— 380 °С в потоке азота, проходящем через сосуд с жидким хлором со скоростью 1—2 пузырька в секунду. Хлорирование идет в узкой раскаленной зоне циркониевой стружки. [c.1451]

    Получение двуфтористого фторметилбора F HaBFa [25]. Синтез осуществлен в аппаратуре,- изображенной на рис. 9. В верхней и средней части аппаратуры производится очистка исходного BFs, в левой верхней части— очистка азота. Исходный диазометан получается в левой нижней части аппаратуры реакционный сосуд расположен внизу, в сере-дине. 1Справа внизу расположена аппаратура для обработки продукта реакции, а также для манипуляций с трехфтористым бором. [c.132]

    Мицуками и др. [10] провели исследование, посвященное очистке азота, используемого в качестве газа-носителя, с целью уменьщения поправки, определяемой из холостого опыта. В результате исследования слой металлической меди (500°С) был заменен на слой никеля Ренея, работающего при комнатной температуре. Эти же исследователи [11] определяли содержание кислорода по убыли в массе поглотительной трубки, заполненной ангидроиодноватой кислотой (1 мг кислоты эквивалентен 0,2354 мг кислорода). Сведения об аппаратуре, наиболее подходящей для определения кислорода, приведены в Микрохимическом журнале [12]. [c.326]

    Все промышленные способы получения азотной кислоты основаны иа контактном окислении аммиака кислородом воздуха с последующей переработкой оксидов азота в кислоту путем поглощения нх водой. Основными стадиями производства неконцентрированной азотной кислоты являются очистка сырья, каталитическое окисление аммиака, утилизация тепла, вывод из иитрозиого газа реакционной воды, абсорбция оксидов азота, очистка газовых выбросов. К современным тенденциям развития технологии относятся обеспечение наибольшей надежности конструкций аппаратуры и машинных агрегатов повышение степеии кислой абсорбции, а также степеии использования тепла химических реакций и к.п.д. энергии сжатых газов снижение вредных выбросов в атмосферу. [c.9]

    В крупных производственных установках осушка вымораживанием влаги целесообразна только в сочетании с использованием метода низкотемпературной очистки, когда охлаждение газа необходимо также для других целей (цапример, при очистке аргона от азота низкотемпературной дистилляцией, очистке гелия от примесей низкотемпературной адсорбцией и т. д.). В этих установках влага высаживается в теплообменниках, являющихся частью аппаратуры очистки [24]. [c.218]

    Установка очистки конвертированного раза состояла из системы двухступенчатой абсорбции 20 и 12%-ным раствором моноэтаноламина и системы отмывк газа от окиси углерода жидким азотом. При аварийной остановке насоса прекратилось орошение моноэтаноламином скруббера первой ступени, что привело-к увеличению содержания двуокиси углерода в газе, выходящем из системы-очистки моноэтаноламином. Однако подача газа на агрегаты отмывки жидким, азотом прекращена не была, и в течение 30 мин газ поступал в низкотемпературный блок на очистку от окиси углерода. В результате аппаратура блока отмывки газа жидким азотом была забита двуокисью углерода и остановлена на-отогрев. [c.25]

    Графитация карбонизованного волокна осуществляется при очень БЫС0Ы1х температурах (до 3000°С) в инертной среде, обычно азоте или аргоне. На этой стадии еще в большей мере, чем при карбонизации, необходима тщательная очистка защитных газов от следов кислорода, а также применение аппаратуры, исключающей попадание кислорода воздуха в реакционное пространство. Как и при карбонизации, к основным условиям графитации относятся среда, температурно-временные реясимы, степень вытягивания волокна. [c.62]

    Для очистки кислорода применяют химические методы — промывку концентрированными растворами перманганата кадия, едкого кали и концентрированной серной кислотой. Окончательную очистку кислорода проводят методом повторной фракционированной дистилляции в вакууме при темоературе жидкого азота. Перед конденсацией га высушивают, прбпускйя его через пятиокись фосфора. При каждой дистилляции отбрасывают первую и, последнюю фракции. Применяемые аппаратура и методика описаны а етр. 313. [c.103]

    Адсорбция окиси азота и ацетилена может происходить на пори-бтых сорбентах молекулярных ситах, силикагеле, активированном угле и др. Очистку газа в ряде случаев цте-лесообразно проводить при низких температурах, располагая адсорбционную аппаратуру в блоках разделения коксового газа или в кабинах промывки газа жидким азотом. Недостатком метода является периодичность процесса, необходимость проведения регенерации путем нагревания адсорбентов до высокой температуры (например, молекулярных сит до 350—400 "С, активированного угля до 200—250 °С). [c.434]

    Очистка газов предусматривает удаление из промышленных или природных газов вредных и балластных прпмесей с том, чтобы очищенный газ был пригоден для трансиор-тирования, дальнейшей химической переработки и непосредственного использования. Газы очпщают от примесей, которые отравляют катализаторы, ухудшают качество продукции, вызывают коррозию п загрязнение аппаратуры. В ряде случаев, главным образом в процессах глубокого охлаждения, газ необходимо очищать от взрывоопасных примесей (например, удалять ацетилен при разделении воздуха, окись азота при разделении коксового газа, кислород при сжижении водорода). [c.213]

    При очистке газа промывкой жидким азотом поступаюгцпй в аппаратуру глубокого холода газ не должен содержать более 10 млн. долей СО2. Поэтому после очистки газа водой его направляют на последующую абсорбцию СОг раствором едкого натра  [c.300]

    В период подготовки к пуску производится промывка трубо проводов и аппаратуры водой с целью удаления грязи, мусора, окалины и т.д., продувка их воздухом для удаления воды, опрессовка (если блок пускается в первый раз), проверка готовности контрольно-измерительных приборов и систем автоматизации. В этот период производят прием технической воды, воздуха, азота, пара и электроэнергий. После завершения операций по очистке аппаратов и трубопроводов производят продувку азотом с определением содержания кислорода в сисаеме, коли чество которого должно быть не более 0,5% об. В случае необходимости для сокращения времени удаления кислорода можно сочетать эту операцию с вакуумированием системы с помощью эжектора. [c.312]

    Аппаратура для осаждения, очистки и выделения легкоокисляющнхся веществ из водных растворов прн полной изоляции от воздушной атмосферы, разработанная для получения Ре (ОН) 2, подробно описана во 2-ом издаини этой книги, ч. 1, с. 74—76. Однако в большинстве случаев используют прибор, показанный на рис. 58. В приборе, который предварительно несколько раз попеременно откачивают и наполняют инертным газом, можно проводить взаимодействие между двумя растворами с последующим отделением и очисткой продукта реакции. Растворы, при необходимости прокипяченные в инертной атмосфере и насыщенные очищенным азотом и аргоном, помешают в сосуды 1 к 2. Реакцию осаждения проводят в колбе 2 путем добавлеиня раствора из колбы 1 прн одновременном перемешивании и подаче инертного газа. Осадок отделяют путем фильтрования иа фильтре 3. Промывать осадок можно при охлаждении или нагревании сушат осадок в вакууме. Фильтрат из приемника 4 можно слить по трубке сифона до того, как туда попадет промывной раствор. [c.103]

    В аппаратуре из платины, никеля или монель-металла в отеутетвие влаг-ги к 1000 г фтороеерной кислоты прибавляют по каплям 100 г DjO. Реакционную емееь постоянно перемешивают при помощи магнитной мешалки (с тефлоновой оболочкой). Устанавливают такую скорость добавления D2O, чтобы при наружном охлаждении колбы температура внутри ее была в пределах 50—70 °С. Образующийся фторид дейтерия непрерывно отгоняют и собирают в приемнике из полиэтилена, охлаждаемом смесью сухой лед+ацетон. По окончании реакции через колбу пропускают поток сухого азота, а температуру поднимают до 100 С, что приводит к полному удалению растворенного фторида дейтерия. С целью очистки продукт еще раз перегоняют. Выход составляет 94,5 г (90% от теоретического). [c.165]

    В ловушку помещают раствор 0.348 г LiAlH4 (9,19 ммоль) в 12,5 г сухогО" эфира, свободного от пероксида. Ловушку соединяют с высоковакуумной аппаратурой. раствор замораживают жидким азотом, систему вакуумируют, раствор размораживают, снова охлаждают жидким азотом и еще раз вакуумируют. Затем на затвердевший раствор конденсируют 1,33 г Si U (7,82 ммоль), который в газообразном состоянии лучше всего брать из специальной колбы, снабженной манометром (175,2 мл газообразного СЦ при н. у.). После этого-ловушку медленно нагревают. При температуре около 0°С начинает бурно выделяться газ. Продукт реакции конденсируют во второй ловушке, охлаждая ее жидким азотом. Затем, нагрев эту ловушку на ледяной бане до —130°С, продукт отгоняют в следующую ловушку, охлажденную до —196 °С, отделяя при этом основное количество эфира, сконденсировавшегося вместе с сырым силаном. Для дальнейшей очистки из последней ловушки, нагрев ее иа охлаждающей бане до —159 °С, отгоняют уже чистый силан в ловушку, охлажден--ную до —196 °С. Таким образом получают 175 мл чистого газообразного SiH4.-Выход составляет 99%. [c.715]


Смотреть страницы где упоминается термин Аппаратура для очистки азота: [c.252]    [c.241]    [c.152]    [c.75]    [c.352]    [c.322]    [c.711]    [c.1488]   
Практическое руководство по синтезу и исследованию свойств полимеров (1976) -- [ c.45 ]




ПОИСК





Смотрите так же термины и статьи:

Азот очистка



© 2025 chem21.info Реклама на сайте