Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетон полярность

    Ко второй группе относятся полярные растворители с высоким дипольным моментом. Взаимодействие полярных растворителей с растворяемым веществом носит смешанный характер и складывается из дисперсионного эффекта и ориентационного, причем последний часто является преобладающим. Полярными растворителями, широко применяемыми при очистке масел, являются фенол, фурфурол, крезолы, Ы-метилпирролидон, ацетон, метилэтилкетон и некогорые другие. [c.217]


    Одним из первых технических методов получения изопрена является синтез на основе ацетилена и ацетона. Этот синтез базируется на так называемой реакции этинилирования — присоединении ацетилена к полярным двойным связям с сохранением тройной связи, под влиянием щелочных агентов. Реакция этинилирования была открыта практически одновременно в самом конце XIX в. Нефом и Фаворским. Последним эта реакция разрабатывалась именно в направлении взаимодействия ацетилена с ацетоном с получением ацетиленового спирта и его превращения в изопрен, благодаря чему весь этот синтез получил название метода Фаворского. [c.380]

Таблица 2.2. Растворимость метана, этана, хлорметана и диметилового эфира в тетрахлорметане (неполярном растворителе) и ацетоне (полярном растворителе) [22] Таблица 2.2. <a href="/info/158694">Растворимость метана</a>, этана, хлорметана и <a href="/info/17587">диметилового эфира</a> в тетрахлорметане (<a href="/info/23184">неполярном растворителе</a>) и ацетоне (полярном растворителе) [22]
    Н2С(00Я )—НС(ООН")—Н2С(ООК"0- в этой формуле символами R Я" и К " обозначаются углеродные цепи из 8—22 атомов насыщенного или ненасыщенного характера. В сырых продуктах находятся еще и другие соединения, но в небольших количествах, как-то свободные жирные кислоты, фосфатиды, стиролы, протеины, витамины, токоферол и др. В зависимости от назначения жиры и масла подвергаются соответствующей обработке, цель которой—разделение сырой смеси на разные группы соединений (насыщенных и ненасыщенных глицеридов), отвечающие по своим свойствам требованиям потребителей особенно ценной является фракция витаминов. Экстракция является одним из методов разделения, обеспечивающих наибольший выход и высшее качество продуктов по сравнению с другими методами, например химическими, что объясняет ее широкое применение. Растворителями служат преимущественно жидкости полярного строения нитропарафины, ЗОз, сульфоналы, фурфурол [139, 151, 153, 157], метанол с этанолом [144], пропан [148], ацетон [156], изопропанол с этанолом [141] идр. [154]. В промышленных установках применяются пропан и фур- [c.406]

    Растворимость углеводородов и смол в ацетоне — полярном растворителе с таким же углеродным скелетом, как и пропан (рис. 11), отличается тем, что при пониженных температурах, да- [c.65]

    Предложено . использовать для перекристаллизации смесь неполярного и полярного растворителей. В качестве неполярного компонента можно применять бензол и его гомологи (например, ксилол) в количестве 85—95% от массы смеси. Подходящими для этой цели полярными компонентами являются одноатомные спирты Сх—Сд или их эфиры (этанол, пропанол, бутанол, бутилацетат), а также алифатические и циклоалифатические кетоны (ацетон, циклогекс-анон). благодаря тому что растворимость дифенилолпропана в этих полярных растворителях высока, необходимое количество неполярного растворителя значительно снижается. Смесь растворителей и дифенилолпропан берут в соотношении 1 1. Перекристаллизацией из этих смесей можно получать дифенилолпропан с т. пл. 154— [c.170]


    Как ацетон, так и вода являются сильно полярными молекулами с диполь-ными моментами 2,84 и 1,84 дебай соответственно [24]. Эти вещества смешиваются в любых соотношениях с незначительным выделением тепла, а поэтому естественно ожидать чрезвычайно сильного диноль-дипольного взаимодействия между их молекулами. Касаясь деталей строения жидкости, можно предположить, что в разбавленных растворах ацетона каждая молекула ацетона может быть связана с четырьмя молекулами Н2О, например, следующим образом  [c.479]

    Одним из первых кинетических примеров такого каталитического переноса протона была реакция галогенирования ацетона. Найдено, что в полярных растворителях скорость галогенирования ацетона первого порядка по ацетону, нулевого порядка по галогену Х2, причем реакция подвергается общему кислотно-основному катализу [49]  [c.490]

    На печи установлены приборы контроля температуры и передаваемого тепла, которые предохраняют адсорбент от перегрева, увеличивая таким образом срок его службы. Регенерация адсорбентов после перколяции осуществляется десорбцией и вытеснением адсорбированных веществ полярными растворителями, которые исследованы и запатентованы. Среди них спирт в смеси с ледяной уксусной кислотой [50], водные растворы сульфоновых мыл [51], изопропиловый снирт, содержащий до 20% воды [52], и смесь 90% бензола и 10% ацетона [53] — все они исследованы, но не применяются в промышленности. Магнезол, который используется в контактном процессе для очистки смазочных масел, может быть регенерирован лигроино-ацетоновой смесью при 32—38° С [54]. [c.274]

    Поэтому быстрая полимеризация протекает одновременно на разделенных ионных парах и, с еще большей (в 100 раз) скоростью, на свободных анионах [10]. В полярном растворителе, например ацетоне, равновесие (33) смещается вправо и очень быстрая нолимеризация протекает в основном на свободных анионах [5]. [c.480]

    Низкоплавкие углеводороды, например парафин с пл = 44°С, при 10°С растворимы в ацетоне всего на 0,12% (масс.). При повышении числа атомов углерода в радикале полярного растворителя усиливаются его дисперсионные свойства, а следовательно, и растворяющая способность по отношению к твердым углеводородам. [c.141]

    Простота регенерации методом элюирования с помощью некоторых полярных органических растворителей типа метанола, ацетона и других низкомолекулярных спиртов и кетонов, причем регенерацию можно проводить непосредственно в адсорбере. При этом, во-первых, отпадает необходимость в дорогостоящем оборудовании для регенерации во-вторых, практически исключаются потери сорбента при регенерации в-третьих, снижаются эксплуатационные затраты, особенно при относительно высоких концентрациях органических загрязнений в сточных водах. [c.96]

    Смеси, из которых получается бутадиен, состоят из большого числа веществ. Основными компонентами этих смесей являются изобутан, н-бутан, изобутилен, бутилен-1, бутилены-2 и бутадиен-1,3. Большое значение имеет также примесь ацетиленовых углеводородов, оказывающих вредное влияние в процессе полимеризации бутадиена. Выделение бутиленов и бутадиена из этих смесей методами обычной ректификации невозможно, поэтому разделение производится с использованием обычной, а также азеотропной и экстрактивной ректификации. Наибольшее затруднение вызывает разделение смесей н-бутана и бутиленов-2, изобутана и бутилена-1, а также бутадиена и бутена-1. Оно осуществляется с помощью экстрактивной ректификации. В качестве разделяющих агентов для последней было испытано большое число полярных веществ в чистом виде и с добавкой воды [291], а также смесей различных веществ [292]. Наибольшее практическое применение в настоящее время получили фурфурол [258, 293—296], ацетон [297] и фенол, содержащий от 2 до 10% воды [298]. [c.277]

    Для выбора разделяющих агентов на основании представлений о связи между полярностью молекул и характером отклонений от идеального поведения в образуемых ими системах, последние было предложено [20] разделять на следующие группы 1) высокополярные, 2) неполярные, 3) один компонент полярный, другой неполярный и 4) оба компонента с умеренной полярностью. К первой группе относятся, например, системы ацетон—метиловый спирт, вода—уксусная кислота и вода—этиловый спирт. Для первой из этих систем подходящими разделяющими агентами являются, например, дихлорметан [51] — неполярное вещество и вода [52], имеющая резко выраженную полярность. Разделение смесей уксусной кислоты и воды облегчается при проведении ректификации в присутствии таких полярных веществ, как эфиры уксусной кислоты или неполярных углеводородов и их хлорпроизводных [53]. Разделяющими агентами для системы вода—этиловый спирт являются неполярное вещество — бензол [54], — а также полярные вещества — высшие жирные спирты, например амиловый [55] или фенол [56]. [c.62]


    Примерами систем второй группы являются различные смеси углеводородов. Для них в качестве разделяющих агентов используются полярные вещества, например спирты (жирные и фенол), кетоны (ацетон) и амины (анилин). [c.62]

    Необходимость экстракции разделяющего агента для его регенерации существенно усложняет технологическое оформление процессов разделения. Для того чтобы уменьшить связанные с этим трудности, было предложено применять в качестве разделяющих агентов в процессах азеотропной ректификации смеси полярных органических веществ (например, метанола, ацетона, метилэтилкетона) с водой [281—286]. В качестве примера на рис. 99 изображена принципиальная схема процесса выделения толуола из углеводородных смесей с водным раствором метилэтилкетона (МЭК) как разделяющим агентам. [c.275]

    Разделяющими агентами в двухстадийном процессе выделения аро.матических углеводородов могут быть неароматические углеводороды. Так, очистка бензола от примесей последних может быть произведена путем двухступенчатой азеотропной ректификации, при которой в первой стадии разделяющим агентом является неароматический углеводород [289]. Процесс осуществляется следующим образом. В первой стадии к исходной смеси добавляется избыток неароматического углеводорода с т. кип. 75—85°, образующий с бензолом азеотроп с 40—60% содержанием последнего. Подходящим углеводородом является, например, циклогексан. Отогнанный в первой стадии процесса азеотроп разделяется путем азеотропной ректификации с полярным разделяющим агентом, например, с метанолом, этанолом, ацетоном, метилэтилкетоном, ацетонитрилом и др. В виде дистиллата отгоняется азеотроп разделяющих агентов первой и второй стадий процесса в кубе получается чистый бензол.,  [c.276]

    При выборе разделяющих агентов для смесей углеводородов 4 принималось во внимание, что в полярных веществах лучше всего растворяются диолефины, а хуже всего — парафины. Моноолефины занимают промежуточное положение. Следовательно, полярные вещества должны увеличивать летучесть парафинов и моноолефинов по отношению к диолефинам. Принималась во внимание также стабильность, доступность и стоимость полярных веществ. С учетом этих требований на основе определения коэффициентов относительной летучести смесей углеводородов в присутствии разных веществ наилучшими разделяющими агентами были признаны фурфурол, ацетон и фенол в смеси с водой. [c.290]

    Из всех применяемых при депарафинизации и обезмасливании полярных растворителей в наибольшей степени исследованы кетоны [1], имеются некоторые сведения о спиртах [2]. Сведения об эфирах как растворителях процессов депарафинизации и обезмасливания весьма ограничены. Известно, что в качестве растворителя был предложен дихлорэтиловый эфир в смеси с хлористым метиленом [3], а также ( -дихлорэтиловый эфир в смеси с 1,2-дихлорэтаном [4]. Кроме этого, в качестве растворителя предлагался диизопропиловый эфир в смеси с изопропиловым спиртом и ацетоном [5]. Однако ни один из предложенных эфиров не нашел практического применения в качестве растворителя для депарафинизации рафинатов. [c.135]

    Через обозначен ацентрический фактор гомоморфа полярных компонентов. Гомоморфом полярной молекулы является неполярная молекула, имеющая примерно те же самые размеры и форму, что и рассматриваемая полярная молекула. Например, гомоморфом ацетона является изобутан. [c.25]

    Уравнение (П1-15) было выведено на основе вириальных коэффициентов для 50 веществ (для 17 не имелось констант ассоциации). В их число входили такие соединения, как ацетон, двуокись серы и дихлордифторметан. Представителями ассоциирующих соединений были этанол, метиламин и метил-ацетон. Большинство полярных веществ перечислено в Приложении. Средняя ошибка определения вириальных коэффициентов составляет менее 10% их значения, или 100 см моль. [c.26]

    При растворении полярных полимеров в полярных рас-tвopитeляx, например нитрата целлюлозы в ацетоне, полярные группы полимера (0N02) сильно притягивают молекулы растворителя (ацетона). Уменьшение парциальной энтропии смешения ацетона может являться результатом ориентации его молекул на отдельных полярных группах полимера. Однако уменьшение парциальной энтропии смешения бензола или этил-бензола при взаимодействии их с полистиролом нельзя объяснить взаимодействием полярных групп, поскольку оно отсутствует. Причиной уменьшения энтропии в данном случае является ориентация молекул низкомолекулярного компонента в порах рыхло упакованного стеклообразного полимера. [c.371]

    Растворители, применяемые для депарафтизадии. Для депарафинизации дизельных фракций используют смесь полярных растворителей (ацетон, метилэтилкетон и др.) с неполярными (бензол, толуол). Применение смеси обусловлено тем. что полярные растворители при температуре депарафинизации не растворяют твердые углеводороды, а избирательно растворяют масляные углеводороды. обеспечения растворимости н-алканов в полярных растворителях к ацетону добавляют смесь бензола и толуола или только толуол. Требуемая глубина депарафинизации дизельных топлив из разных нефтей достигается различное степенью охлаждения депарафинируемой смеси. [c.164]

    Ранее нами было показано [4], что введение в ацетон полярных апротонных растворителей практически не влияет на скорость разложения б -комплекса м-динитробензола (м-ДНБ) с ацетонатом калия (I), тогда как протонодонорные растворители сами участвуют в указанном процессе. Прщ малых концентрациях в смеси спиртов или воды реакция имеет первый порядок как по этим компонентам, так и по разлагаицемуся комплексу. По мере увеличения содержания ЦСН разложение резко ускоряется и наблюдается сложная зависимость скорости реакции, а также спектральных характеристик б -комплекса от состава растворителя. Найдено также И, что в смеси ацетон-вода энергия активации остается практически постоянной при изменении содержания воды в широких пределах, в то время как энтропия активации возрастает симбатно с константой скорости реакции. Отсюда следует, что механизм разложения б -комплекса зависит от соотношения компонентов бинарного растворителя, а изменение скорости реакции вызвано специфической сольватацией комплекса спиртом или водой и смещением сольватационного равновесия при увеличении их концентрации. Большое значение имеют также эффекты, связанные [c.15]

    Для процессов депарафинизации масел и обезмасливания гачен и нетролатумов экстрактивной кристаллизацией предложены и испытаны сотни полярных и Е1егюлярных растворителей и их смеси. Однако только некоторые из иих нашли применение в промышленных условиях. Наибольшее распространение в современных производствах масел получили кетон—ароматические углеводороды смеси метилэтилкетона (МЭК) или ацетона с толуолом (см. табл. 6.1). За рубежом все более широкое распространение получает смесь МЭК с метилизобутилкетоном. [c.249]

    Низкий температурный эффект процессов депарафинизации данной группы обусловливается слишком высокой растворяющей способностью применяемых углеводородных разбавителей в отношении застывающих компонентов. Для повышения температурного эффекта депарафинизации к углеводородному растворителю-разбавителю добавляют растворитель-осадитель, обладающей пониженной растворяющей способностью к перерабатываемому сырью, главным образом к его застывающим компонентам, Растворитель-осадитель вводят в депарафинизируемый раствор в таких количествах, чтобы при существенном снижении растворимости застывающих комнонентов низкозастываюнще компоненты оставались полностью в растворенном состоянии, В качестве растворителей-осадителей применяют легкокипящие полярные растворители, в частности ацетон, метилэтилкетон, дихлорэтан и др. В качестве же углеводородного компонента обычно берут низкокипящие ароматические углеводороды — ббтаол или смесь его с толуолом, поскольку эти углеводороды хорошо растворяют входящие в дена рафинируемый продукт низкозастывающие масла. [c.97]

    Фракции смол, извлеченные смесью спирта и ацетона, имеют большую кислотность и в соответствии с этим большее содержание кислорода. По сравнению со спирто-ацетоновыми фракциями смол, СМОЛЫ1 извлеченные бензолом, характеризуются большим содержанием сернистых соединений и меньшим — азотистых. Разумеется, такое распределение сернистых, кислородных и азотистых соединений является результатом применения частной методики, однако можно утвернгдать, что по сравнению с азотистыми и кислородными соединениями сернистые соединения характсри-луются меньшей полярностью и большей нейтральностью. [c.67]

    При депарафинизации применяются неполярные растворители— пропан и узкая бензиновая фракция (нафта), а также полярные растворители — ацетон, метилэтилкетон, дихлорэтан. Неполярные растворители полностью растворяют жидкую часть масла, а полярными растворителями она растворяется слабо. Твердые углеводороды также гораздо лучше рг створяются неполярными растворителями. Чтобы повысить растворяющую способность полярных растворителей, к ним добавляют органические неполярные углеводороды такие полярные растворители, как ацетон, метилэтилкетон, дихлорэтан, используются тoJ[ькo в смеси с бензолом и толуолом или только в смесн с толуолом. Механизм действия бензола и толуола на растворяющую спосоСность полярных растворителей до конца не изучен. Вероятно, молекулы ароматического растворителя под действием полярной группы основного растворителя приобретают некоторый индукционный дипольный момент, происходит ориентационное взаимодействие их с молекулами полярного растворителя, которое ведет к усилении) дипольного момента системы. Одновременно в присутствии бензольного ядра усиливается дисперсионное взаимодействие. [c.327]

    Стойкость к набуханию в жидкостях зависит от типа полисилоксана и от содержания наполнителя. Обычные силоксановые вулканизаты, как правило, сильно набухают в неполярных жидкостях и слабо в полярных, а бензомаслостойкие (фтор- и нитрилсилоксановые)—наоборот [3, с. 154—156 33 72, с. 176]. Меньше набухают твердые (более наполненные) вулканизаты. Набухание увеличивается с повышением температуры и сопровождается ухудшением механических показателей, не всегда обратимым, так как некоторые жидкости разрушают сетку вулканизата. Примерами жидкостей, в которых обычные вулканизаты набухают на 100—275%, а бензомаслостойкие на 5—30%, являются ССЦ, хлороформ, толуол, ксилол, циклогексан, фреон-114, керосин, силиконовые масла. В ацетоне, наоборот, первые набухают на 15—25%, вторые на 150—200%. Фторсилоксановые резины разрушаются фреоном-22 и этаноламином. Оба типа вулканизатов стойки к водным растворам солей, кислот и оснований, слабо (на 5—25%) набухают в спиртах, ацетонитриле, ледяной уксусной кислоте, средне (на 40—50%) в дихлорэтане и дибутилфталате, сильно (больше 150%) в бутилацетате. [c.495]

    Скорость изомеризации значительно возрастает при введении полярного растворителя (ацетона, этилового спирта, диметоксиэта-на) и зависит от структуры олефина. Как правило, чем сильнее экранирована двойная связь, тем ниже скорость реакции. Особенно заметно скорость уменьшалась при переходе от цис-а- к ц с-р-олефинам, а далее уменьшение происходит в ряду  [c.107]

    Роль подвижности водорода изучали, применяя гидроксилсо-держащие растворители — спирты С1—С4 и уксусную кислоту. Влияние полярности среды определяли в растворителях с высоким дипольным моментом (ацетон и нитробензол) в качестве растворителя с нулевым дипольным моментом использовали бензол (табл. 34). [c.119]

    Электрокинетические явления, происходящие в неводных дисперсных системах, в частности влияние постоянного однородного электрического поля на суспензии твердых углеводородов нефти в органических растворителях, описано в работах [104, 114]. В качестве дисперсионной среды были взяты органические растворители разной природы, многие из которых широко применяются в процессах производства масел, парафинов и церезинов (н-гексан, н-гептан, изооктан, бензол, толуол, метилэтилкетон, ацетон и др.). Поведение суспензий в электрическом поле исследовали при 20 °С в стеклянной ячейке с плоскими параллельными никелевыми электродами в интервале напряженностей до 12,5 кВ/см. Установлено, что в алифатических растворителях происходит перемещение частиц дисперсной фазы (твердых углеводородов) в сторону катода, в то время как в ароматических растворителях эти же частицы перемещаются к аноду. Для твердых углеводородов, очищенных от ароматических компонентов и смол, в дисперсных системах с той же дисперсионной средой наблюдается явление двойного электрофореза, т. е. частицы дисперсной фазы перемещаются в сторону как положительного, так и отрицательного электрода. В суспензиях твердых углеводородов, где дисперсионной средой являются полярные растворители (МЭК, ацетон), явление электрофореза выражено слабо. Для таких систем характерна можэлектродная циркуляция, сопровождаемая агрегацией частиц. Эти электрокинетические явления в суспензиях твердых углеводородов объясняются существованием двойного электрического слоя на границе раздела фаз. Двойной электрофорез и меж-электродная циркуляция объясняются [115] поляризацией частиц твердой фазы и свойственны частицам, не имеющим заряда или находящимся в изоэлектрическом состоянии с мозаичным распределением участков с различным знаком заряда. Таким образом, у частиц дисперсной фазы как в полярной, так и в неполярной среде, отсутствует электрический заряд, а если он и есть, то весьма неустойчив. [c.187]

    Важными отличиями олефинов от парафинов с тем же числом углеродных атомов являются более высокая растворимость и способность сорбироваться, обусловленная наличием ненасыщенной углерод-углеродной связи. Олефииы лучше, чем парафины, адсорбируются твердыми веществами, поглощаются медноаммиачными растворами и растворяются в полярных жидкостях, таких как ацетон и фурфурол. Это позволяет выделять их сиециальными методами, из которых наиболее важное значение приобрела экстрактивная перегонка. Принцип ее состоит в том, что ири наличии третьего компонента, имеющего меньшую летучесть и способного к диполь-дипольному взаимодействию или образованию различных комплексов с олефинами, парциальное давление олефинов снижается в большей мере, чем у парафинов. В результате относительная летучесть парафинов, измеряемая отношением давлений насыщенных иаров u = PhlPv значительно возрастает (табл. 4). [c.34]

    Растворители обычно состоят из полярных компонентов (оса-дителей парафина) и неполярных (углеводородных) компонентов— разбавителей масла. Полярные компоненты растворителя осаждают парафин из охлаждаемого раствора сырья. Поскольку масляная часть сырья плохо растворяется в полярных растворителях, к ним добавляют неполярные компоненты, способствующие растворению масла. Кетоны, спирты, хлорпроизводные и альдегиды являются полярными веществами в качестве неполярных компонентов могут использоваться простейшие ароматические углеводороды (бензол, толуол), углеводороды метанового ряда (пропан, гептан и др.), непредельные углеводороды (пропилен) и др. В некоторых процессах применяют растворитель, состоящий только из полярного (высшие кетоны, метилэтилкетон, дихлорэтан) или только из неполярного (пропан, гептан и др.) компонента. Иногда растворитель состоит из смеси двух полярных компонентов, например дихлорэтана с дихлорметаном (процесс Ди-Ме), метилэтилкетона с метилизобутилкетоном, ацетоном и др. Природа применяемого растворителя оказывает существенное влияние на эффективность, обеэмас и 1я. Так, при использовании для переработки дистиллятного сырья пропана необходимо к сырью добавить модификаторы кристаллической структуры. В противном случае образуются тонкие пластинчатые кристаллы парафина, трудно отделяемые от жидкой фазы. [c.112]

    При применении некоторых полярных растворителей (ацетон, дихлорэтан и др.) введение модификаторов кристаллической структуры не требуется, так как в присутствии этих растворителей образуются сложные формы кристаллов парафина. Так,.люв№Н -ние концентрации кетона в смеси с толуолом способствует проте-J aiшю.-Кристаллизации в дендритной форме. По этой же причине углеводородные (неполярные) растворители, в отличие от полярных, требуют более низких скоростей охлаждения суспензий в процессе кристаллизации (при применении гептановой фракции скорость охлаждения суспензии обычно 3—4°С в 1 ч, а смеси МЭК, [c.112]

    Для первой системы значительные отклонения от идеального поведения объясняются тем, что компоненты этой системы (ацетон, метанол, вода) являются полярными веше-ствами, способными к образованию водородных связей между собой. Вторая система содержит относительно простые неполярные молекулы (азот, аргон, кислород) и, тем не менее, при температуре, соответствующей насыщенному состоянию, в ней также возникли немалые отклонения от идеальности, поскольку вторые вириальные коэффициенты для этих веществ очень велики. [c.29]

    Глубина охлаждения масляной фракции зависит от заданной температуры застывания депарафинированного масла и растворяющей способности растворителя. Так как растворимость твердых углеводородов определяется природой растворителя, то для достижения необходимой температуры застывания масел необходима различная степень охлаждения депарафинируемой смеси. Разность между температурами процесса депарафинизации и застывания получаемого депарафинированного масла называется температурным эффектом депарафинизации (ТЭД). ТЭД полярных растворителей невелик для ацетона он равен 8—9°С, для метилэтилкетона — от 2 до 3°С, а для мс тилизобутилкстона — 0°С. При депарафинизации пропаном или нафтой ТЭД составляет [c.327]


Смотреть страницы где упоминается термин Ацетон полярность: [c.210]    [c.14]    [c.610]    [c.221]    [c.256]    [c.271]    [c.454]    [c.150]    [c.337]    [c.66]    [c.67]    [c.141]    [c.62]    [c.71]   
Органическая химия (1979) -- [ c.176 ]




ПОИСК







© 2025 chem21.info Реклама на сайте