Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодическая система элементо электронная структура атомов

    Графические формулы часто пишут в одну строку, как это сделано для скандия (5с —первый -элемент в периодической системе Д. И. Менделеева). Тогда между обозначениями энергетических уровней рекомендуется проводить двойную черту, как это сделано на рисунке. Во многих стучаях указывают структуру лишь периферических (застраиваемых) уровней. Так, например, атом лютеция (Ьп, 2 = 71) на пятом энергетическом уровне содержит 9 электронов, а на шестом— [c.39]


    Льюисовыми структурами (валентаыми структурами, валентными схемами) называются графические электронные формулы молекул и комплексных ионов, где для обозначения обобществленных между атомами связьшающих электронных пар (связей) используются прямые линии (валентные штрихи), а для обозначения неподеленных пар электронов используются две точки. Для молекул и комплексных ионов, содержащих только элементы первого и второго периодов, наилучшие льюисовы структуры характеризуются тем, что в них каждый атом окружен таким же числом электронов, как атом благородного газа, ближайшего к данному элементу по периодической системе. Это означает, что атом Н должен быть окружен двумя электронами (одна электронная пара, как у Не), а атомы неметаллических элементов второго периода (В, С, К, О, Г) должны быть окружены восемью электронами (четыре электронные пары, как у 1 е). Поскольку восемь электронов образуют замкнутую конфигуращ1Ю 2х 2р , правило записи льюисовых структур требует окружать каждый атом элемента второго периода октетом (восьмеркой) электронов, и поэтому называется правилом октета. [c.501]

    Полупроводниковые кристаллические соединения типа А " В представляют собой химические соединения, образующиеся при взаимодействии элементов В и В подгрупп периодической системы элементов Менделеева. Эти соединения характеризуются наличием у А на внешних оболочках по 3 валентных электрона в состоянии а у В по 5 электронов в состоянии и, вследствие этого, в химических соединениях А В на каждый атом приходится такое же, как и в элементах IV группы, количество электронов, а отсюда идентичность в кристаллической структуре и электронных свойствах этих соединений с алмазом, кремнием, германием и другими элементами IV группы. Однако в отличие от элементов IV группы, имеющих в кристаллической структуре только гомеополярные связи, соединения типа А В имеют как гомеополярные, [c.249]

    Алюминий, следующий за магнием, обладает заметной биологической активностью и является активатором некоторых энзимов,, а недостаток его в организме приводит к недостатку витамина Однако его роль все-таки значительно меньше, чем роль ионов натрия и магния. Атом алюминия слишком тян ел и велик для включения в структурную организацию клеток, а ион слишком мал и недостаточно поляризуем, чтобы попасть в число важнейших биологических катализаторов. Высокий заряд иона АР+ и склонность солей алюминия к гидролизу являются факторами, ограничивающими его роль в биохимических процессах. Другие качества, благоприятствующие участию в процессах жизнедеятельности (ковалентность связей, акцепторные свойства и т. п.) в большей степени присущи бору — аналогу алюминия во 2-м периоде. Предпочтительность бора, по сравнению с алюминием, доказывает предпочтительность элементов 2-го периода перед членами 3-го, Это становится особенно ясным при сравнении углерода с кремнием, который расположен в периодической системе под углеродом и так же как углерод способен к образованию четырех ковалентных связей. Кремния на Земле примерно в 135 раз больше углерода, но в биохимическую эволюцию включился все же углерод. Причина этого, в первую очередь, в стабильности связей С—С и 51—51. В первом случае расстояние между атомами в 1,5 раза меньше и соответственно энергия разрыва связи в 2 раза больше, т. е. связь С—С стабильнее. Поскольку построение организмов предполагает образование длинных цепей атомов, то устойчивые связи углерода имеют несомненное преимущество перед связями кремния. Кроме того, у кремния имеется лишь небольшая тенденция к образованию кратных связей. Все это делает соединения кремния неустойчивыми в присутствии воды, кислорода или аммиака. Однако кроме устойчивости другой очень важной особенностью биогенных элементов является способность к образованию кратных связей. Это можно проиллюстрировать сравнением свойств СОо и ЗЮг. В оксиде углерода (IV) между атомами С и О имеются кратные (двойные) связи, каждая из которых образована двумя парами общих электронов. Внешний слой каждого пз атомов в СОг приобретает стабильную структуру октета. Все возмол<-ности образования связей у этой молекулы исчерпаны. Благодаря легкости атомов и ковалентности связей СОг является газом, довольно легко растворяется в воде, реагирует с ней и в такой форме может быть использован живыми организмами. У кремния способность к образованию кратных связей практически отсутствует или, во всяком случае, гораздо ниже, чем у атома углерода. Поэтому атом 81 соединен с О простыми связями, при образовании которых остаются неспаренными два электрона у кремния и по одному у каждого из атомов кислорода. Лишенные возможно- [c.181]


    Периодическая система элементов и электронная структура ат( мов. Для каждого атома в принципе возможно неограниченное число отдельных состояний, различающихся по своей энергии. Среди них одно единственное состояние с наименьшей энергией называется нормальным или невозбужденным. Все остальные энергетические состояния с большим запасом энергии называются возбужденными. Для перевода атома из нормального в возбужденное состояние необходимо сообщить ему некоторую энергию — энергию возбуждения. Когда речь идет об электронной структуре атомов, имеют в виду прежде всего их нормальное состояние. [c.54]

    Элементы подгруппы хрома. X р о м Сг и его электронные аналоги— молибден Мо и вольфрам Ш — являются элементами побочной подгруппы шестой группы периодической системы элементов Д. И. Менделеева. Электронная структура их атомов выражается формулой. ..(п — 1 или. .. п— )с1 п8 . У ато- [c.320]

    Наиболее полно методом ЯКР исследованы комплексы галогенидов металлов. В подавляющем большинстве исследованы частоты галогенов, связанных с центральным атомом. Как правило, их сдвиги направлены в низкочастотную область и интерпретируются как увеличение ионности связи М—Hal. В тех случаях, когда и центральный атом обладает квадрупольным ядром, имеется возможность более полного изучения изменений электронной структуры молекулы акцептора в результате комплексообразования. Обсуждаемый материал удобно расположить в порядке увеличения номера группы центрального атома в периодической системе элементов Менделеева. [c.138]

    Нитриды бора и алюминия относятся к соединениям Бор и алюминий находятся в III а подгруппе, а азот — в V а подгруппе периодической системы элементов. Элементы этих подгрупп образуют соединения при соотношении атомов компонентов 1 1. Важнейшим фактором, определяющим свойства этих соединений, является образование стабильных электронных / -конфигураций элементов при их взаимодействии. При этом число валентных электронов на атом становится равным четырем, как у элементов IV группы (С, Si, Ge, Sn), образующих тетраэдрические структуры типа алмаза. [c.84]

    Прочность связи в структурах металлов зависит от числа валентных электронов, которые может отдавать каждый атом. Так, если рассматривать элементы вдоль первого длинного периода Периодической системы элементов, то атомы К, Са, 5с, Т1, V и Сг будут отдавать соответственно 1, 2, 3, 4, 5 и 6 электронов. Увеличение прочности связи при переходе от К к Сг очевидно, так как при этом повышаются точки плавления и твердость и уменьшаются межатомные расстояния. Эти физические свойства остаются примерно постоянными от Мп до N1, на основании чего Полинг приписал этим элементам металлическую валентность 6. Приведенные им значения металлической валентности меди и цинка (5,5 и 4,5 соответственно) вычислены на основании магнитных свойств этих элементов. Дробные значения соответствуют ситуации, при которой в данный момент некоторые атомы находятся в одном валентном состоянии (например, 6), а некоторые в другом (например, 3 или 4). Однако эти значения подвергались критике. [c.137]

    В результате тщательного изучения ироцессов прохождения а-частнц через различные материалы было показано, что атомы обладают чрезвычайно ажурной структурой, и общий объем всех частиц, образующих данный атом, составляет лишь ничтожную долю (примерно от 10 до 10" ) объема самого атома. При этом отрицательные заряды в виде электронов находятся в разных частях атома, а все положительные заряды находятся в центральной части атома — в атомном ядре, в котором сосредоточена также и практически вся масса атома (так как масса электронов очень мала). Величина заряда ядра оказалась строго одинаковой для всех атомов данного элемента. При выражении ее в единицах, равных заряду электрона, она равняется порядковому номеру элемента в периодической системе. Очевидно, что число электронов в атоме, находящемся в нейтральном состоянии, должно быть также равно этому числу. [c.27]

    Используемое ныне в научной литературе выражение "превращение химических элементов" некорректно. Оно подменяет конкретный объект превращения (атом), неопределенным понятием (химический эле.мент). Недостатком формулировки закона радиоактивных смещений (правильнее превращений ) является то, что она не выделяет подвиды атомов как объект превращения. Она, по-прежнему, "вяжет" их к смещениям в Периодической системе. Возникает принципиальное несоответствие между законом и наглядной его иллюстрацией. Периодическая система химических элементов имеет в основе своей структуры устройство электронной оболочки атомов. Строение ядра имеет здесь лишь опосредованное значение через равенство Ерц. = 1 . Закон же радиоактивных превращений касается исключительно ядерных преобразований и индифферентен (в рамках данных рассмотрений ) к структуре электронной оболочки. И в этом аспекте рассмотрения система атомов идентична системе ядер. Мы как бы на время, игнорируем присутствие электронной оболочки. [c.102]

    Полупроводниковые свойства кремния, германия и некоторыя других простых веществ и соединений элементов IV группы периодической системы определяются прежде всего особенностями их электронной структуры и характером связи атомов в кристаллической решетке. Они имеют тетраэдрическую кристаллическую решетку каждый атом связан с четырьмя другими атомами ковалентной связью. При образовании этой связи происходит как бы перекрывание электронных орбит атомов и зр -гибридизация связей. Все связи становятся равноценными в любом тетраэдрическом направлении. Вследствие этого электроны сравнительно прочно связаны с атомами свободных электронов, способных проводить ток, насчитывается примерно [c.94]


    Валентность — это связывающая сила элемента, оцениваемая числом атомов водорода (или его эквивалентов), с которыми атом элемента может соединиться с образованием устойчивых молекул. Хорошо известно, что валентность элемента определяется его положением в периодической системе. Атом с незаполненной внешней оболочкой стремится достичь электронной структуры инертного газа , т. е. заполнить свой внешний уровень. Существуют две принципиальные возможности достижения этого устойчивого состояния электровалентность приводит к потере или приобретению атомом электронов, в результате чего образуются заряженные частицы (ионы) с завершенными внешними оболочками при ковалентности электронная структура атома становится эквивалентной электронной конфигурации инертного газа за счет обобществления электронов. [c.14]

    Общими физическими свойствами, характеризующими металлы, обладают в свободном состоянии 82 элемента из 105. Естественно предположить, что атомы этих элементов должны быть сходными и по строению. Атомы элементов главных подгрупп I—III групп периодической системы на внешнем энергетическом уровне имеют мало электронов (от одного до трех) и, стремясь принять более устойчивое состояние (структуру атомов благородных газов), сравнительно легко отдают эти электроны, превращаясь в положительно заряженные ионы. Эта особенность обусловливает своеобразное строение кристаллической решетки металлов, которая состоит из положительных ионов и атомов, находящихся в узлах решетки. Между узлами находятся электроны, не принадлежащие каким-либо определенным атомам. Малые размеры электронов позволяют им более или менее свободно перемещаться по всему кристаллу металла, переходя от одного атома или иона к другому атому или иону. При достаточном сближении электронов с ионами образуются нейтральные атомы, которые снова распадаются на ионы и электроны. Следовательно, в кристалле металла существует своеобразное равновесие  [c.390]

    Дж. Н. Льюис (1895—1946) был одним из наиболее выдающихся американских химиков. Именно Льюис предположил, что существует связь между электронной структурой элементов, их полон<ением в периодической системе, зарядом их ионов и числом связей, образуемых элементами в органических молекулах. Согласно Льюису, атом можно представить в виде остова и внешних электронов остов состоит из ядра и внутренних электронов и остается неизменным при всех обычных химических изменениях. Химические изменения по Льюису затрагивают только внешние электроны (их обычно называют валентными электронами). Комбинация из восьми валентных электронов рассматривается как весьма стабильная. Подтверждением этого служат инертные газы, атомы которых содержат на внешней оболочке восемь электронов . (Гелий, у которого лишь два валентных электрона, является исключением.) [c.38]

    Из приведенного разбора уже видна общая тенденция развития атомных структур при сохранении гелиевой электронной пары в первом слое постепенно заполняется электронами второй слой. Заполнение второго электронного слоя будет, очевидно, продолжаться до тех пор, пока не будет достигнуто число электронов, соответствующее максимальной устойчивости этого слоя. Но тогда это должен быть атом элемента, обладающего свойствами инертного газа. Рассматривая элементы, следующие в периодической системе за углеродом, находим здесь азот (2 и 5 электронов), кислород (2 и 6) и фтор (2 и 7), которые являются химически активными элементами. Лишь элемент с порядковым номером 10 — неон — с двумя электронами в первом слое и с восемью электронами во втором оказывается аналогом гелия — [c.76]

    Двойственность свойств водорода определяется оригинальностью строения его атома — один протон и один электрон. Потеряй водород электрон, и останется голый протон — частица, а не атом. Никакой другой элемент не имеет подобной структуры ато ма. Но где бы он ни находился — в I группе или в VII, нижняя граница периодической системы проходит по этому элементу. [c.183]

    К первой группе относятся, например, кристаллы германия и кремния, в которых точечные дефекты возникают при растворении в них небольших количеств элементов III и V групп периодической системы с образованием твердых растворов замеш ения. В качестве примера рассмотрим германий, кристаллическая структура которого относится к типу алмаза. В кристаллической решетке германия могут размещаться небольшие количества фосфора или мышьяка, причем каждый атом примеси занимает регулярное место в решетке (см. рис. 12). Но каждый атом фосфора имеет пять валентных электронов. Распределение этих электронов можно представить себе следующим образом четыре из них делятся с каждым соседним атомом германия (образуя ковалентные связи, подобные таковым между смежными германиевыми атомами), а пятый электрон становится квазисвободным. Он весьма [c.221]

    Кислород, простейший элемент VIA группы периодической системы, имеет электронную структуру ls 2s 2p и поэтому способен проявлять ковалентность, равную двум, образуя либо две одинарные связи, либо одну двойную связь с другими атомами. Он обладает очень сильной способностью к образованию двойной связи, и в последующих разделах будут рассмотрены разнообразные соединения, в которых кислород образует двойные связи с углеродом или другими элементами. Настоящая глава посвящена химии связи С — О, а также О — Н-связи. Среди классов соединений, содержащих С — 0-связь, имеются простые эфиры типа ROR, в которых R и R могут быть насыщенными, ненасыщенными или ароматическими углеводородными группами трехчленный циклический эфир (СН2)гО, известный под названием окись этилена или, более строго, 1,2-эпоксиэтан, Который обладает необычными свойствами алканолы ROH и фенолы АгОН некоторые полиоксисоеди-нения, в частности глюкоза, являющаяся типичным представителем очень важных природных сахаров — альдогексоз. Помимо способности к образованию двух ковалентных связей, атом кислорода проявляет слабые основные свойства и образует оксониевые соединения, в которых атом кислорода окружен тремя атомами или группами. Соли, образующиеся при протонировании эфира или алканола, являются, однако, слишком нестойкими для того, чтобы можно было их выделить при обычной температуре, хотя в некоторых случаях это удается при очень низкой температуре. [c.329]

    Бор - первый р-элемент в периодической системе элементов. Строение внешней электронной оболочки его атома в невозбужлениом состоянии 2х 2р . Возбуждение переводит атом в состояние 2f 2p p и далее в ip -тбридное валентное состояние, в котором орбитали расположены под углом 120. Этому состоянию отвечает структура соединений бора, в которых атом В связан с тремя другими атомами (три <г-связи в ВРз в анионе ВО и т. д.). Образование донорно-акцепторной ж-связи (акцептор - атом бора) стабилизирует ip -гибридное состояние. Это приводит к уменьшению межатомных расстояний В-Г, В-О и др. Благодаря наличию в небольшом по размеру атоме бора свободной орбитали бор - один из сильнейших акцепторов неподеленных электронных пар. Многие соединения бора являются кислотами Льюиса, они энергично взаимодействуют с основаниями Льюиса, например [c.343]

    Органическая химия — часть общей химии. Она тесно связана с неорганической, физической и биологической химией и вместе с тем в отличие от них имеет глубокую специфику. Базой органической химии являются гидриды углерода, т. е. углеводороды с их особыми свойствами, которых нет у гидридов других элементов. Специфика углеводородов заложена в своеобразных и неповторимых свойствах атома углерода — в его электронной структуре. Находясь в четвертой группе периодической системы Д. И. Менделеева, атом углерода в возбужденном состоянии, в котором он вступает в химические взаимодействия, не имеет на валентной оболочке ни электронных пар, ни вакантных низколещщих орбиталей. [c.5]

    Пример первого из них рассмотрен в работе Ю. Б. Ру-мера и А. И. Фета [11], едва ли не единственной в своем роде. В ней авторы приходят к таблице химических элементов, полученной без использования модели Резерфорда, из общих принципов симметрии, разработанных в теории адронов . Рассматривая атом как бесструктурную частицу (как бы не имеющую ядра и электронных оболочек) и применяя к нему общие принципы физики симметрии (кулоновское поле в развиваемую теорию входит неявно), Ю. Б. Румер и А. И. Фет показывают, что состояния такого бесструктурного атома должны изображаться векторами пространства, где определено некоторое представление группы Spin (4) . В результате математически очень сложного вывода получается модель, описывающая совокупность состояний бесструктурного атома , причем эта модель без сколь-либо заметных отклонений соответствует структуре периодической системы элементов. Чрезвычайно существенно, что исходным пунктом рассуждений является представление об атоме как [c.36]

    Недостатком правила эффективного атомного номера явля-к>тся затруднения, которые возникают при переходе к рассмотрению механизма карбонилообразования элементами пяти первых групп периодической системы элементов. Выше приводился пример с атомом цезия, показьгваюш ий, что центральный атом должен приобрести электронную структуру инертного газа, стоящего влево или вправо от рассматриваемого элемента в зависимости от энергетических соотношений в каждом отдельном случае. [c.15]

    Как отмечает В. И. Кузнецов [17] Даже при беглом в гляде на состав химических соединений мы убеждаемся, что атомность только в исключительных случаях, прежде всего для кислорода, водорода и фтора, неизменна. Элементарные атомы часто проявляют к положительным элементам другую атомность, чем к отрицательным . Это очень важное замечание. Оно побуждает к иному объяснению природы валентности, так как взаимодействуют не только положительный атом с отрицательным атомом. Взаимодействуют друг с другом и однознаковые атомы, что, казалось бы, ломает все предписанные им Периодической системой правила поведения . Э го кажущееся противоречие снимается, как только мы переходим к рассмотрению химической связи на электронном уровне. Решающим фактором здесь является относительная электронодонорность атомов, участвующих во взаимодействии. При взаимодействии двух однозначных атомов в каче-стие положительного будет выступать тот, электронодонорность которого вьш1е, т. е. электроны внешнего слоя (слоев) подвижнее. А это, в свою очередь, зависит от типа внешнего слоя (слоев) в структуре электронной оболочки, что и является нсриопричиной структуры системы химических элемен-юн. [c.175]

    Однако реальные полупроводники всегда имеют примеси, которые существенно влияют на характер электрической проводимости, в этом случае называемой примесной. Примеси бывают донорные и акцепторные. Донорные примеси имеют на валентной электронной оболочке большее число электронов, чем их число на валентной электронной оболочке атома основного элемента полупроводника. Например, примеси атомов элементов V или VI главных подгрупп периодической системы в кристаллической решетке кремния (IV главная подгруппа) будут донорными. В зонной структуре полупроводника появляются дополнительные электроны проводимости. Если атом примеси содержит меньше валентных электронов, чем атом основного элемента, то полупроводник содержит в валентной зоне дополнительные свободные МО, на которые могут переходить валентные электроны. Такие примеси называются акцепторными, они приводят к появлению дополнительных дырок проводимости. По отношению к кремнию такими примесями будут элементы III главной подгруппы. Полупроводники с преобладающим содержанием донорных примесей называются полупроводниками с электронной проводимостью или п-типа. Если же преобладают примеси акцепторные, то полупроводники называются полупроводниками с дырочной проводимостью или р-типа. Для получения примесных полупроводников полупроводники, полученные специальными кристаллофизическими методами в сверхчистом состоянии, легируются элементами акцепторами или донорами электронов в микродозах, не превышающих 10 %. Примеси резко изменяют собственную электрическую проводимость полупроводников, поскольку количество носителей заряда, поставляемых ими обычно больше, чем их число в чистом полу-прово,цнике. Так, чистый кремний имеет удельное электрическое сопротивление электронной проводимости около 150-10 Ом-м, дырочной проводимости в.4 раза, электронной проводимости после легирования фосфором и дырочной проводимости после легирования бором — в 20 раз меньше. [c.636]

    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]

    Несмотря на то, что актинидная теория позволила предсказать химические свойства транскюриевых элементов, она совершенно недостаточно объясняет поведение первых, к тому же наиболее изученных элементов ряда. Дело прежде всего заключается в том, что главная валентность первых пяти элементов, следуюш,их за актинием, выше трех. Валентные состояния ТЬ, Ра, и, Np, Ри и Ат уже не являются малыми отклонениями от главной валентности 3, как это имеет место у лантанидов, а образуют самостоятельную закономерную последовательность. Электронные структуры, химия этих элементов, а также требование непрерывности размещения элементов в периодической системе по атомным номерам подсказывают иной подход к определению обсуждаемого ряда. [c.16]

    В этой таблице обращает па себя внимание разнообразие формул сплавов для одного и того же структурного типа. Юм-Розерп впервые дал объяснение этим формулам, предположив, что существование определенной структуры обусловлено числом валентных электронов, приходящихся на один атом. Так, если принять обычное число валентных электронов для всех атомов периодической системы (за исключением триад VIH группы), то для формул в первых двух колонках отношение числа электронов к числу атомов п Пд равно 3 2, для формул третьей колонки — 21 13, а для четвертой — 7 4. Элементы триад вписываются в общую схему лин1ь в том случае, если считать их электронный вклад равным пулю, что в - , t сле- [c.485]

    Электронное строение и типы связей элементов периодической системы - ключ к пониманию Сфуктуры и свойств простых и сложных веществ, образованных эти.ми элементами Два или более атомов располагаются друг около друга так, как это энергетически выгодно. Это справедливо независимо от того, сильно или слабо связана фуппа атомов, содержит эта фуппа лишь несколько или 10 атомов, является расположение атомов упорядоченным (как в кристалле) или неупорядоченным (как в жидкости). Группа ато.мов устойчива тогда и только тогда, когда энергия атомов, расположенных вместе, ниже, чем у отдельных атомов. Единственной физической причиной конкретной кристаллической сфуктуры любого элемента и его модификаций является перекрытие валентных и подвалентных оболочек его атомов, приводящее к образованшо определенных межатомных связей. Число протяженность и симмефия орбиталей атомов данного конкретного элемента полностью определяют число, длину, ориентиров и энергию межатомных связей, образующихся в результате перекрытия этих орбита-лей, а следовательно, размещение атомов в пространстве, т е. кристаллическую структуру, основные физико-химические свойства элемента. [c.30]

    В фазах Лавеса АВг для трех близких структурных типов (М 2пг, М Си2 и М Ы12) атом А имеет координацию 12В + 4А, что согласуется с представлением об определяющей роли в этих структурах размерного фактора. Эти фазы образуются с участием большого числа элементов периодической системы, причем один и тот же элемент в различных соединениях может оттюситься к типу А или к типу В. В некоторых тройных системах в различных областях составов могут существовать две или более фазы, причем переход от одного структурного типа к другому происходит при определенном числе электронов, приходящихся на один атом. Это свидетельствует о том, что выбор той или иной структуры из нескольких близких может быть обусловлен более чем одним фактором. [c.481]

    Группа пятичленных ароматических гетероциклов насчитывает гораздо больше представителей, чем группа шестичленных, так как один атом цикла должсен быть двухвалентным, и поэтому большее число гетероатомов мюжет быть включено в пятичленный цикл. Например, атом кислорода может заменить группу СН в анионе циклопентадиенила. Гетероцикл фуран представляет собой плоскую молекулу, имеющую подобный пирролу тип делокализованной структуры, где одна из неподеленных пар электронов кислорода участвует в образованши ароматического секстета. Но делокализация в молекуле фуранга не столь эффективна, как в молекуле пиррола, поскольку атом кислорода более электроотрицателен и сильнее удерживает свою неподеленную пару (рис. 2.8). Тиофен, в котором неподеленная пара ато>ма серы вовлечена в ароматический секстет, также может быть отяесен к ароматическим системам. Другие элементы V и VI групп периодической системы могут подобным же образом участвовать в образовании гетероароматических соединений. Кроме того, незаряженные ароматические гетероциклы могут быть образованы заменой одной или более оставшихся групп СН на атом азота. [c.23]

    Такая закономерность обусловлена устойчивостью электронных структур, состоящих из нар эл(зктронов (принадлежащих одному атому или одновременно двум), что приводит к четным окислительным состояниям для элементов четных групп периодической системы и к нечетным окислительным состояниям для элементов нечетных групп. [c.221]

    Инертные элементы (подгруппа УП1А) играют большую роль в теории периодической системы. В оболочке их атомов завершается построение периферического энергетического уровня — вся электронная оболочка атома становится устойчивой. Весь атом данного инертного элемента приобретает характер прочного очередного атомного остова, как основы для построения последующего периода (см. рис. 4-3), причем ход заполнения элементами нового периода как бы повторяется по сравнению с предыдущим отчетливо проявляется периодичность в изменении электронной структуры, а следовательно, и химических свойств элементов в пределах каждого данного периода. Однако в этой периодичности нет простого повторения развития по замкнутому кругу каждый последующий период, как это видно из рисунка 4-3, по сравнению с предыдущим в своей основе имеет иной ядерно-электронный остов соответствующего инертного элемента. Структура этого остова от периода к периоду изменяется, его конфигурация усложняется, что существенным образом влияет на химические свойства каждого элемента периода на энергию связи валентных электронов с атомом, на свойства соединений, даже у элементов прн проявлении ими одинаковой валентности. Это в основном зависит [c.65]


Смотреть страницы где упоминается термин Периодическая система элементо электронная структура атомов: [c.57]    [c.19]    [c.149]    [c.18]    [c.51]    [c.242]    [c.22]    [c.481]    [c.242]    [c.444]    [c.12]    [c.371]   
Общая химия (1984) -- [ c.54 , c.58 ]




ПОИСК





Смотрите так же термины и статьи:

Атомы структура

Периодическая система

Периодическая система Д. И. Менделеева как естественная классификация элементов по электронным структурам атомов

Периодическая система и электронные структуры атомов

Периодическая система элементо

Периодическая система элементов

Периодическая система элементов и структура электронной оболочки атомов

Периодическая система элементов к электронная структура атомов

Периодическая система элементов к электронная структура атомов

Периодическая система элементов, структура

Принцип Паули. Электронная структура атомов и периодическая система элементов

Структура периодической системы

Структуры периодические

Электрон в атомах

Электронная оболочка атома (II). Периодическая система Д. И. Менделеева как j естественная классификация элементов по электронным структурам атомов

Электронная структура атомов

Электронные структуры атомов и система элементов

Элемент периодическая

электронная система



© 2025 chem21.info Реклама на сайте