Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронные структуры атомов и система элементов

    Периодическая система элементов и электронная структура ат( мов. Для каждого атома в принципе возможно неограниченное число отдельных состояний, различающихся по своей энергии. Среди них одно единственное состояние с наименьшей энергией называется нормальным или невозбужденным. Все остальные энергетические состояния с большим запасом энергии называются возбужденными. Для перевода атома из нормального в возбужденное состояние необходимо сообщить ему некоторую энергию — энергию возбуждения. Когда речь идет об электронной структуре атомов, имеют в виду прежде всего их нормальное состояние. [c.54]


    Полупроводниковые свойства кремния, германия и некоторыя других простых веществ и соединений элементов IV группы периодической системы определяются прежде всего особенностями их электронной структуры и характером связи атомов в кристаллической решетке. Они имеют тетраэдрическую кристаллическую решетку каждый атом связан с четырьмя другими атомами ковалентной связью. При образовании этой связи происходит как бы перекрывание электронных орбит атомов и зр -гибридизация связей. Все связи становятся равноценными в любом тетраэдрическом направлении. Вследствие этого электроны сравнительно прочно связаны с атомами свободных электронов, способных проводить ток, насчитывается примерно [c.94]

    Валентность — это связывающая сила элемента, оцениваемая числом атомов водорода (или его эквивалентов), с которыми атом элемента может соединиться с образованием устойчивых молекул. Хорошо известно, что валентность элемента определяется его положением в периодической системе. Атом с незаполненной внешней оболочкой стремится достичь электронной структуры инертного газа , т. е. заполнить свой внешний уровень. Существуют две принципиальные возможности достижения этого устойчивого состояния электровалентность приводит к потере или приобретению атомом электронов, в результате чего образуются заряженные частицы (ионы) с завершенными внешними оболочками при ковалентности электронная структура атома становится эквивалентной электронной конфигурации инертного газа за счет обобществления электронов. [c.14]

    Дж. Н. Льюис (1895—1946) был одним из наиболее выдающихся американских химиков. Именно Льюис предположил, что существует связь между электронной структурой элементов, их полон<ением в периодической системе, зарядом их ионов и числом связей, образуемых элементами в органических молекулах. Согласно Льюису, атом можно представить в виде остова и внешних электронов остов состоит из ядра и внутренних электронов и остается неизменным при всех обычных химических изменениях. Химические изменения по Льюису затрагивают только внешние электроны (их обычно называют валентными электронами). Комбинация из восьми валентных электронов рассматривается как весьма стабильная. Подтверждением этого служат инертные газы, атомы которых содержат на внешней оболочке восемь электронов . (Гелий, у которого лишь два валентных электрона, является исключением.) [c.38]


    Двойственность свойств водорода определяется оригинальностью строения его атома — один протон и один электрон. Потеряй водород электрон, и останется голый протон — частица, а не атом. Никакой другой элемент не имеет подобной структуры ато ма. Но где бы он ни находился — в I группе или в VII, нижняя граница периодической системы проходит по этому элементу. [c.183]

    Наиболее полно методом ЯКР исследованы комплексы галогенидов металлов. В подавляющем большинстве исследованы частоты галогенов, связанных с центральным атомом. Как правило, их сдвиги направлены в низкочастотную область и интерпретируются как увеличение ионности связи М—Hal. В тех случаях, когда и центральный атом обладает квадрупольным ядром, имеется возможность более полного изучения изменений электронной структуры молекулы акцептора в результате комплексообразования. Обсуждаемый материал удобно расположить в порядке увеличения номера группы центрального атома в периодической системе элементов Менделеева. [c.138]

    Нитриды бора и алюминия относятся к соединениям Бор и алюминий находятся в III а подгруппе, а азот — в V а подгруппе периодической системы элементов. Элементы этих подгрупп образуют соединения при соотношении атомов компонентов 1 1. Важнейшим фактором, определяющим свойства этих соединений, является образование стабильных электронных / -конфигураций элементов при их взаимодействии. При этом число валентных электронов на атом становится равным четырем, как у элементов IV группы (С, Si, Ge, Sn), образующих тетраэдрические структуры типа алмаза. [c.84]

    Фтор — элемент из семейства галогенов, в которое входят также хлор, бром, иод и искусственно полученный радиоактивный астат. Фтору свойственны все особенности собратьев по подгруппе, однако он подобен человеку без чувства меры все увеличено до крайности, до предела. Это объясняется прежде всего положением элемента № 9 в периодической системе и его электронной структурой. Его место в таблице Менделеева — полюс неметаллических свойств , правый верхний угол. Атомная модель фтора заряд ядра 9-Ь, два электрона расположены на внутренней оболочке, семь — на внешней. Каждый атом всегда стремится к устойчивому состоянию. Для этого ему нужно заполнить внешний электронный слой. Атом фтора в этом смысле — не исключение. Захвачен восьмой [c.144]

    Полупроводниковые кристаллические соединения типа А " В представляют собой химические соединения, образующиеся при взаимодействии элементов В и В подгрупп периодической системы элементов Менделеева. Эти соединения характеризуются наличием у А на внешних оболочках по 3 валентных электрона в состоянии а у В по 5 электронов в состоянии и, вследствие этого, в химических соединениях А В на каждый атом приходится такое же, как и в элементах IV группы, количество электронов, а отсюда идентичность в кристаллической структуре и электронных свойствах этих соединений с алмазом, кремнием, германием и другими элементами IV группы. Однако в отличие от элементов IV группы, имеющих в кристаллической структуре только гомеополярные связи, соединения типа А В имеют как гомеополярные, [c.249]

    В подавляющем большинстве случаев бинарные алмазоподобные вещества являются единственными соединениями, которые образуются в данных системах, при соотношении компонентов, равном 1 1. Это обстоятельство, по-видимому, является естественным следствием того, что именно в бинарных соединениях, образованных элементами, равноотстоящими от середины Периодической системы, одновременно удовлетворяется нормальная валентность атомов и возникает симметричная структура валентных оболочек атомов, аналогичная электронным оболочкам атомов инертного газа. Среднее число электронов на атом становится равным четырем, что обеспечивает возможность кристаллизации в структуре, аналогичной структуре простых тел — алмаза и его аналогов. Эта последняя аналогия может быть прослежена, как мы увидим дальше, во многих свойствах бинарных соединений. [c.81]

    Прочность связи в структурах металлов зависит от числа валентных электронов, которые может отдавать каждый атом. Так, если рассматривать элементы вдоль первого длинного периода Периодической системы элементов, то атомы К, Са, 5с, Т1, V и Сг будут отдавать соответственно 1, 2, 3, 4, 5 и 6 электронов. Увеличение прочности связи при переходе от К к Сг очевидно, так как при этом повышаются точки плавления и твердость и уменьшаются межатомные расстояния. Эти физические свойства остаются примерно постоянными от Мп до N1, на основании чего Полинг приписал этим элементам металлическую валентность 6. Приведенные им значения металлической валентности меди и цинка (5,5 и 4,5 соответственно) вычислены на основании магнитных свойств этих элементов. Дробные значения соответствуют ситуации, при которой в данный момент некоторые атомы находятся в одном валентном состоянии (например, 6), а некоторые в другом (например, 3 или 4). Однако эти значения подвергались критике. [c.137]


    Итак, многие вопросы, связанные с теорией системы элементов, нашли свое решение с развитием представлений о заряде ядра и структуре электронной оболочки. Напомним, что Менделеев предвидел ряд принципиальных положений, связанных с особенностями ядерных реакций. Так, в 1871 г. он писал Согласившись даже с тем, что материя элементов совершенно однородна, нет повода думать, что и п весовых частей одного элемента или п его атомов, давши один атом другого тела, дадут п же весовых частей, то есть что атом второго элемента будет весить ровно в п раз более, чем атом первого . Действительно, в настоящее время мы знаем, что масса атомных ядер всегда меньше суммы масс образующих их протонов и нейтронов, находящихся в свободном состоянии  [c.100]

    Некоторое дополнительное обсуждение требуется для определения места водорода в системе. При формальном подходе к структуре его атома водород был бы аналогом лития. Но характер внешней электронной оболочки определяет аналогию элементов не сам по себе, а лишь в свете общей закономерности развития структур. Согласно последней переход в периодах 2 -> 1 сопровождается у аналогичных элементов уменьшением положительного заряда ядра и числа внешних электронов на восемь единиц (Ne—>Не). Поэтому в действительности нейтральный атом водорода является аналогом атома фтора. При отрицательной валентности водород совершенно так же относится к фтору, как Не к Ne, Li+ к Na+ и т. д., а при положительной (будучи голым протоном)) вообще не может иметь аналогов среди других элементов и стоит совершенно особняком. В общем, следовательно, водород является неполным аналогом фтора. Близость его к семейству галоидов согласуется и со всей совокупностью физических свойств водорода. [c.237]

    Основные положения теории, предложенной в 1916 г. Косселем [34], заключались в следующем. Атомные электроны распределяются по оболочкам, причем атомы всех элементов с 2 (т. е, после гелия) имеют внутреннюю группу электронов (атомНый остаток, по Косселю), которая соответствует электронной структуре атома ближайшего предшествующего благородного газа. Началу каждого периода в системе элементов соответствует появление новой оболочки в структуре атома. Каждая оболочка содержит определенное максимальное число электронов. Далее, по Косселю, числа электронов в оболочках отвечают числам в указанном выше математическом ряду Ридберга. Электроны, принимающие участие в обычных химических реакциях, находятся во внешней зоне атома. Они могут быть перенесены с одного атома на другой, причем атом, теряющий электрон, становится положительным, а приобретающий — отрицательным ионом. Процесс ионизации, согласно Косселю, заключается в превращении данного атома в электронный аналог ближайшего благородного газа. [c.248]

    Элементы подгруппы хрома. X р о м Сг и его электронные аналоги— молибден Мо и вольфрам Ш — являются элементами побочной подгруппы шестой группы периодической системы элементов Д. И. Менделеева. Электронная структура их атомов выражается формулой. ..(п — 1 или. .. п— )с1 п8 . У ато- [c.320]

    В результате тщательного изучения ироцессов прохождения а-частнц через различные материалы было показано, что атомы обладают чрезвычайно ажурной структурой, и общий объем всех частиц, образующих данный атом, составляет лишь ничтожную долю (примерно от 10 до 10" ) объема самого атома. При этом отрицательные заряды в виде электронов находятся в разных частях атома, а все положительные заряды находятся в центральной части атома — в атомном ядре, в котором сосредоточена также и практически вся масса атома (так как масса электронов очень мала). Величина заряда ядра оказалась строго одинаковой для всех атомов данного элемента. При выражении ее в единицах, равных заряду электрона, она равняется порядковому номеру элемента в периодической системе. Очевидно, что число электронов в атоме, находящемся в нейтральном состоянии, должно быть также равно этому числу. [c.27]

    Используемое ныне в научной литературе выражение "превращение химических элементов" некорректно. Оно подменяет конкретный объект превращения (атом), неопределенным понятием (химический эле.мент). Недостатком формулировки закона радиоактивных смещений (правильнее превращений ) является то, что она не выделяет подвиды атомов как объект превращения. Она, по-прежнему, "вяжет" их к смещениям в Периодической системе. Возникает принципиальное несоответствие между законом и наглядной его иллюстрацией. Периодическая система химических элементов имеет в основе своей структуры устройство электронной оболочки атомов. Строение ядра имеет здесь лишь опосредованное значение через равенство Ерц. = 1 . Закон же радиоактивных превращений касается исключительно ядерных преобразований и индифферентен (в рамках данных рассмотрений ) к структуре электронной оболочки. И в этом аспекте рассмотрения система атомов идентична системе ядер. Мы как бы на время, игнорируем присутствие электронной оболочки. [c.102]

    Однако реальные полупроводники всегда имеют примеси, которые существенно влияют на характер электрической проводимости, в этом случае называемой примесной. Примеси бывают донорные и акцепторные. Донорные примеси имеют на валентной электронной оболочке большее число электронов, чем их число на валентной электронной оболочке атома основного элемента полупроводника. Например, примеси атомов элементов V или VI главных подгрупп периодической системы в кристаллической решетке кремния (IV главная подгруппа) будут донорными. В зонной структуре полупроводника появляются дополнительные электроны проводимости. Если атом примеси содержит меньше валентных электронов, чем атом основного элемента, то полупроводник содержит в валентной зоне дополнительные свободные МО, на которые могут переходить валентные электроны. Такие примеси называются акцепторными, они приводят к появлению дополнительных дырок проводимости. По отношению к кремнию такими примесями будут элементы III главной подгруппы. Полупроводники с преобладающим содержанием донорных примесей называются полупроводниками с электронной проводимостью или п-типа. Если же преобладают примеси акцепторные, то полупроводники называются полупроводниками с дырочной проводимостью или р-типа. Для получения примесных полупроводников полупроводники, полученные специальными кристаллофизическими методами в сверхчистом состоянии, легируются элементами акцепторами или донорами электронов в микродозах, не превышающих 10 %. Примеси резко изменяют собственную электрическую проводимость полупроводников, поскольку количество носителей заряда, поставляемых ими обычно больше, чем их число в чистом полу-прово,цнике. Так, чистый кремний имеет удельное электрическое сопротивление электронной проводимости около 150-10 Ом-м, дырочной проводимости в.4 раза, электронной проводимости после легирования фосфором и дырочной проводимости после легирования бором — в 20 раз меньше. [c.636]

    Несмотря на то, что актинидная теория позволила предсказать химические свойства транскюриевых элементов, она совершенно недостаточно объясняет поведение первых, к тому же наиболее изученных элементов ряда. Дело прежде всего заключается в том, что главная валентность первых пяти элементов, следуюш,их за актинием, выше трех. Валентные состояния ТЬ, Ра, и, Np, Ри и Ат уже не являются малыми отклонениями от главной валентности 3, как это имеет место у лантанидов, а образуют самостоятельную закономерную последовательность. Электронные структуры, химия этих элементов, а также требование непрерывности размещения элементов в периодической системе по атомным номерам подсказывают иной подход к определению обсуждаемого ряда. [c.16]

    Пример первого из них рассмотрен в работе Ю. Б. Ру-мера и А. И. Фета [11], едва ли не единственной в своем роде. В ней авторы приходят к таблице химических элементов, полученной без использования модели Резерфорда, из общих принципов симметрии, разработанных в теории адронов . Рассматривая атом как бесструктурную частицу (как бы не имеющую ядра и электронных оболочек) и применяя к нему общие принципы физики симметрии (кулоновское поле в развиваемую теорию входит неявно), Ю. Б. Румер и А. И. Фет показывают, что состояния такого бесструктурного атома должны изображаться векторами пространства, где определено некоторое представление группы Spin (4) . В результате математически очень сложного вывода получается модель, описывающая совокупность состояний бесструктурного атома , причем эта модель без сколь-либо заметных отклонений соответствует структуре периодической системы элементов. Чрезвычайно существенно, что исходным пунктом рассуждений является представление об атоме как [c.36]

    Льюисовыми структурами (валентаыми структурами, валентными схемами) называются графические электронные формулы молекул и комплексных ионов, где для обозначения обобществленных между атомами связьшающих электронных пар (связей) используются прямые линии (валентные штрихи), а для обозначения неподеленных пар электронов используются две точки. Для молекул и комплексных ионов, содержащих только элементы первого и второго периодов, наилучшие льюисовы структуры характеризуются тем, что в них каждый атом окружен таким же числом электронов, как атом благородного газа, ближайшего к данному элементу по периодической системе. Это означает, что атом Н должен быть окружен двумя электронами (одна электронная пара, как у Не), а атомы неметаллических элементов второго периода (В, С, К, О, Г) должны быть окружены восемью электронами (четыре электронные пары, как у 1 е). Поскольку восемь электронов образуют замкнутую конфигуращ1Ю 2х 2р , правило записи льюисовых структур требует окружать каждый атом элемента второго периода октетом (восьмеркой) электронов, и поэтому называется правилом октета. [c.501]

    Бор - первый р-элемент в периодической системе элементов. Строение внешней электронной оболочки его атома в невозбужлениом состоянии 2х 2р . Возбуждение переводит атом в состояние 2f 2p p и далее в ip -тбридное валентное состояние, в котором орбитали расположены под углом 120. Этому состоянию отвечает структура соединений бора, в которых атом В связан с тремя другими атомами (три <г-связи в ВРз в анионе ВО и т. д.). Образование донорно-акцепторной ж-связи (акцептор - атом бора) стабилизирует ip -гибридное состояние. Это приводит к уменьшению межатомных расстояний В-Г, В-О и др. Благодаря наличию в небольшом по размеру атоме бора свободной орбитали бор - один из сильнейших акцепторов неподеленных электронных пар. Многие соединения бора являются кислотами Льюиса, они энергично взаимодействуют с основаниями Льюиса, например [c.343]

    Некоторое дополнительное обсуждение требуется для определения места водорода в системе. При формальном подходе к структуре его атома водород был бы аналогом лития. Но характер внешней электронной оболочки определяет аналогию элементов не сам по себе, а лишь в свете общей закономерности развития структур. Согласно последней переход в периодах 2 1 сопровождается у аналогичных элементов уменьшением положительного заряда ядра и числа внешних электроноз на восемь единиц (Ме- -Не). Поэтому в действительности нейтральный атом водорода является аналогом атома фтора. При отрицательной валентности водород так же относится к фтору, как Не к Ые, Ь к Ыа и т. д., а при положительной (бу-д чк голым протоном) вообще не может иметь аналогов среди других элементов и [c.235]

    Органическая химия — часть общей химии. Она тесно связана с неорганической, физической и биологической химией и вместе с тем в отличие от них имеет глубокую специфику. Базой органической химии являются гидриды углерода, т. е. углеводороды с их особыми свойствами, которых нет у гидридов других элементов. Специфика углеводородов заложена в своеобразных и неповторимых свойствах атома углерода — в его электронной структуре. Находясь в четвертой группе периодической системы Д. И. Менделеева, атом углерода в возбужденном состоянии, в котором он вступает в химические взаимодействия, не имеет на валентной оболочке ни электронных пар, ни вакантных низколещщих орбиталей. [c.5]

    Этим объясняется широкое развитие И. среди переходных металлов по группам, горизонтальным и диагональным рядам пераодаческой системы элементов. В связи с этим при легировании сталей и чугунов главнейшими металлами являются титан, ванадий, хром, марганец, никель, молибден и вольфрам. В первом приближении период решетки твердых растворов аддитивно связан с периодами решеток компонентов. При несовершенном И. с понижением т-ры может происходить распад твердых растворов с образованием двух- или многофазных систем. Подобное яв-.тоние используют для старения металлов, т. е. получения после закалка дисперсноупрочненных сплавов (см. Дасперсноупрочненные материалы), характеризующихся повышенной твердостью, изменением магн. и электр. св-в. В твердых растворах второго рода атомы компонентов отличаются электронным строением и геометрическими характеристиками. В междоузлия металла внедряются атомы неметалла, не изменяя структуры исходного металла (сплава), что предполагает низкую концентрацию внедренных атомов. Твердые растворы внедрения образуют водород, углерод и азот. Содержание углерода в твердом растворе альфа-железа (см. Железо) — 0,025 ат.%, в гамма-железе — 2,03, в твердом растворе ниобия — 0,02 ат.%. Увеличение концентрации усиливает хим. взаимодействие атомов металла и неметалла, изменяет электронную и кристаллическую структуру, вызывает образование внедрения фазы,. Расчет радиусов междоузлий для гексагональных плотноупакованных, гранецентрированных кубических и объемноцентрированных кубических структур позволил сделать вывод о возможности внедрения атомов при гх/гщ < 0,59, где — радиус атома неметалла — радиус ато- [c.487]

    Такая закономерность обусловлена устойчивостью электронных структур, состоящих из нар эл(зктронов (принадлежащих одному атому или одновременно двум), что приводит к четным окислительным состояниям для элементов четных групп периодической системы и к нечетным окислительным состояниям для элементов нечетных групп. [c.221]

    Инертные элементы (подгруппа УП1А) играют большую роль в теории периодической системы. В оболочке их атомов завершается построение периферического энергетического уровня — вся электронная оболочка атома становится устойчивой. Весь атом данного инертного элемента приобретает характер прочного очередного атомного остова, как основы для построения последующего периода (см. рис. 4-3), причем ход заполнения элементами нового периода как бы повторяется по сравнению с предыдущим отчетливо проявляется периодичность в изменении электронной структуры, а следовательно, и химических свойств элементов в пределах каждого данного периода. Однако в этой периодичности нет простого повторения развития по замкнутому кругу каждый последующий период, как это видно из рисунка 4-3, по сравнению с предыдущим в своей основе имеет иной ядерно-электронный остов соответствующего инертного элемента. Структура этого остова от периода к периоду изменяется, его конфигурация усложняется, что существенным образом влияет на химические свойства каждого элемента периода на энергию связи валентных электронов с атомом, на свойства соединений, даже у элементов прн проявлении ими одинаковой валентности. Это в основном зависит [c.65]

    Гриммом и Зоммерфельдом [1] были предложены на основе рассмотрения экспериментальных данных следующие правила образования тетраэдрической координации для бинарных недефектных соединений—аналогов элементарных полупроводников четвертой группы а) компоненты должны принадлежать к группам, равноотстоящим от четвертой группы, и б) среднее число валентных электронов на атом соединения должно равняться четырем. Этим правилам действительно удовлетворяет большинство известных бинарных соединений со структурой сфалерита и вюрцита. однако имеют место и исключения (сульфид и селенид марганца, а также ряд бинарных соединений элементов, принадлежащих нижним периодам системы Менделеева). [c.387]

    Электронную структуру молекул ковалентных соединений, образуемых элементами главных групп периодической системы, обычно можно записать на основании подсчета числа валентных электронов в данной молекуле и затем распределения валентных электронов на неподеленные И поделенные электронные пары таким образом, чтобы каждый атом достигал аргоноидной структуры. [c.141]

    Кислород, простейший элемент VIA группы периодической системы, имеет электронную структуру ls 2s 2p и поэтому способен проявлять ковалентность, равную двум, образуя либо две одинарные связи, либо одну двойную связь с другими атомами. Он обладает очень сильной способностью к образованию двойной связи, и в последующих разделах будут рассмотрены разнообразные соединения, в которых кислород образует двойные связи с углеродом или другими элементами. Настоящая глава посвящена химии связи С — О, а также О — Н-связи. Среди классов соединений, содержащих С — 0-связь, имеются простые эфиры типа ROR, в которых R и R могут быть насыщенными, ненасыщенными или ароматическими углеводородными группами трехчленный циклический эфир (СН2)гО, известный под названием окись этилена или, более строго, 1,2-эпоксиэтан, Который обладает необычными свойствами алканолы ROH и фенолы АгОН некоторые полиоксисоеди-нения, в частности глюкоза, являющаяся типичным представителем очень важных природных сахаров — альдогексоз. Помимо способности к образованию двух ковалентных связей, атом кислорода проявляет слабые основные свойства и образует оксониевые соединения, в которых атом кислорода окружен тремя атомами или группами. Соли, образующиеся при протонировании эфира или алканола, являются, однако, слишком нестойкими для того, чтобы можно было их выделить при обычной температуре, хотя в некоторых случаях это удается при очень низкой температуре. [c.329]

    Базируясь почти исключительно на примерах карбонилов металлов восьмой группы периодической системы, Паулинг, Льюис и Сиджвик [4, 16, 17, 18] связывают образование карбонилов с формированием вокруг центрального атома электронной структуры, аналогичной структуре инертного газа, расположенного в периодической системе вслед за рассматриваемым элементом. Было выдвинуто правило эффективного атомного номера (ЭАН). Эффективным атомным номером Сиджвик назвал общее число электронов, находящихся в сфере центрального атома, когда учитываются как собственные электроны этого атома, так и полученные им от окружающих его координируемых атомов (групп, молекул). Разность между эффективным и настоящим атомными номерами атома показывает, сколько электронов приобретает центральный атом при образовании комплекса. Когда эффективный атомный номер равен атомному номеру инертного газа, во-1К руг центрального атома создается замкнутое поле, а от симметрии расположения электронных групп внутри сферы комплек-обобразователя зависит устойчивость соединения. Далее, если пО Ля окружающих групп тоже замкнуты (за исключением того случая, когда они взаимно нейтрализуются полем центрального атома), то весь комплекс будет замкнутым. [c.15]

    Недостатком правила эффективного атомного номера явля-к>тся затруднения, которые возникают при переходе к рассмотрению механизма карбонилообразования элементами пяти первых групп периодической системы элементов. Выше приводился пример с атомом цезия, показьгваюш ий, что центральный атом должен приобрести электронную структуру инертного газа, стоящего влево или вправо от рассматриваемого элемента в зависимости от энергетических соотношений в каждом отдельном случае. [c.15]

    Как отмечает В. И. Кузнецов [17] Даже при беглом в гляде на состав химических соединений мы убеждаемся, что атомность только в исключительных случаях, прежде всего для кислорода, водорода и фтора, неизменна. Элементарные атомы часто проявляют к положительным элементам другую атомность, чем к отрицательным . Это очень важное замечание. Оно побуждает к иному объяснению природы валентности, так как взаимодействуют не только положительный атом с отрицательным атомом. Взаимодействуют друг с другом и однознаковые атомы, что, казалось бы, ломает все предписанные им Периодической системой правила поведения . Э го кажущееся противоречие снимается, как только мы переходим к рассмотрению химической связи на электронном уровне. Решающим фактором здесь является относительная электронодонорность атомов, участвующих во взаимодействии. При взаимодействии двух однозначных атомов в каче-стие положительного будет выступать тот, электронодонорность которого вьш1е, т. е. электроны внешнего слоя (слоев) подвижнее. А это, в свою очередь, зависит от типа внешнего слоя (слоев) в структуре электронной оболочки, что и является нсриопричиной структуры системы химических элемен-юн. [c.175]

    Циклопентадиенильный анион образует с катионами таких металлов, как железо, кобальт и др., интересные соединения. Одним из таких веществ, обладающих ароматическими свойствами, является ферроцен (бициклопентадиенилжелезо). Он относится к органическим производным переходных элементов. Ферроцен имеет сандвичевую ( бутербродную ) структуру два цнклопентадие-нильных кольца заключают между собой атом двухвалентного железа. Вся эта система связывается единой молекулярной орбиталью обобществленных электронов  [c.336]

    Обращает на себя внимание большое значение AG l для оксида фосфора. Во всех биологических системах, а также и в минералах этот элемент представлен группой РО4 , в которой атом фосфора окружен тетраэдрически четырьмя атомами кислорода. В этом отношении фосфор сходен с кремнием, который в минералах также встречается, как правило, в тетраэдрическом кислородном окружении. Но жесткие структуры силикатов гораздо менее реакционноспособны, чем фосфаты, по крайней мере при умеренных температурах, и связи кремний — кислород не выполняют тех функций аккумуляторов энергии , какие свойственны макроэрги-ческим связям фосфор — кислород, что, несомненно, обусловлено большой электронной нагрузкой на эти последние (Пюльман). [c.374]

    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]


Смотреть страницы где упоминается термин Электронные структуры атомов и система элементов: [c.57]    [c.51]    [c.41]    [c.57]    [c.22]    [c.19]    [c.43]    [c.54]    [c.149]    [c.18]    [c.76]   
Смотреть главы в:

Электронные структуры атомов и химическая связь -> Электронные структуры атомов и система элементов




ПОИСК





Смотрите так же термины и статьи:

Атомы структура

Периодическая система Д. И. Менделеева как естественная классификация элементов по электронным структурам атомов

Периодическая система элементо электронная структура атомов

Периодическая система элементов и структура электронной оболочки атомов

Периодическая система элементов к электронная структура атомов

Принцип Паули. Электронная структура атомов и периодиче-у.ская система элементов

Принцип Паули. Электронная структура атомов и периодическая система элементов

Электрон в атомах

Электронная оболочка атома (II). Периодическая система Д. И. Менделеева как j естественная классификация элементов по электронным структурам атомов

Электронная структура атомов

электронная система



© 2025 chem21.info Реклама на сайте