Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьма определение ванадием оловом

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]


    Метод отгонки также применяют при определении ванадия, вольфрама, молибдена, олова, сурьмы, иода, фтора, осмия, серы, селена, теллура, кремния и других элементов. [c.360]

    Рще лучшие результаты получены при определении элементов с низкой и средней энергией ионизации (менее 9 эВ) при воздействии на дуговой разряд однородного магнитного поля (О/уШ). В работе [225] приведены результаты исследования этого эффекта. Работа выполнена с вертикальной дугой постоянного тока силой 10 А нижний электрод с шейкой, диаметр кратера 4,4 мм, глубина 2 мм верхний электрод заточен на конус аналитический промежуток 3 мм. Напряженность магнитного поля 8, 16 и 24 кА/ м, Угольный пороиюк содержал металлы в виде оксидов магния — 0,00003% алюминия, железа, индия, марганца, хрома, олова, сурьмы, свинца, ванадия— 0,001% цинка—0,01%. При наложении ОМП любой напряженности возрастает эффект прикатодного усиления атомных и особенно ионных линий. Так, при наложении ОМП оптимальной напряженности (8 кА/м) атомные линии Мп 279,4 нм М 285,2 нм Сг 301,7 нм и Ре 302,0 нм усиливаются у катода соответственно в 2,5 3,4 4,2 и 3,2 раза, а ионные линии Мп 294,9 нм Mg 279,6 нм Сг 283,5 нм и Ре 259,8 нм — соответственно в 5,7 4,1 5,3 и 5,2 раза. При наложении ОМП усиление линий начинается уже вблизи анода и достигает максимума в прикатодном участке. Авторы объясняют такое усиление линий эффектом магнитодинамического сжатия плазмы у катода ( пинч-эффект ), благодаря чему происходит увеличение количества частиц элементов в плазме вдоль всего разрядного промежутка по направлению от аиода к катоду. [c.122]

    Влияние свинца устраняется добавлением в раствор сульфита натрия, который одновременно с удалением растворенного кислорода и восстановлением четырехвалентного свинца осаждает свинец (II) в виде труднорастворимого сульфита. Сурьма (III) олово (II) окисляются при сплавлении с перекисью натрия до высших валентностей и не мешают определению. Ванадий, молибден, уран и церий, которые мешают колориметрическому определению хрома (VI), в щелочном растворе не влияют на полярографическое определение его. Все сказанное позволяет полярографически определять хром в рудах упрощенным методом [4, 15]. [c.88]

    Методы, описанные в книге Сендела, могут быть также использованы для определения в железных порошках содержания меди, магния, кальция, бария, цинка, кадмия, алюминия, скандия, церия, редкоземельных элементов, галлия, индия, таллия, германия, олова, свинца, титана, мышьяка, сурьмы, висмута, ванадия, хрома, молибдена, вольфрама, марганца, кобальта и никеля. [c.19]


    Определению молибдена роданидным методом не мешают ионы алюминия, кобальта, урана, тантала, натрия, калия, кремния, кальция, магния, титана, ванадия, хрома, марганца, никеля, цинка, мышьяка, серебра, олова, сурьмы и ртути. Соединения железа (III) и меди усиливают интенсивность окраски, вероятно, вследствие образования много-ядерных комплексов, содержащих молибден, железо (или медь) и роданид. Мешающее влияние вольфрама устраняют введением винной кислоты, препятствующей образованию роданидных комплексов вольфрама. [c.379]

    Многие спектральные методы, разработанные для определения натрия в элементах, применимы для определения натрия в сплавах и соединениях этих элементов. Поэтому такие методы также рассмотрены в данном разделе. Спектральные методы применяют для определения натрия в рубидии [42, 421], магнии [1112], кальции [485], алюминии [537, 690, 820, 844, 956, 974, 1006, 1112, 1114, 1208, 1215], графите [936], кремнии [138], олове [388], свинце [495, 522, 773], ванадии [78], мышьяке [1007], сурьме [115, 149, 1007], ниобии [35], тантале [129], селене [123, 969, ИЗО], теллуре [123, 140, 1198], хроме [406, 679], молибдене [179, 469, 862], вольфраме [35, 469, 798, 898, 1013], уране [156, 589, 1054], осмии [124, плутонии [1245]. [c.163]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Кулонометрическое титрование имеет в ряде случаев значительные преимущества перед обычным титрованием. Не нужно заранее готовить рабочие растворы и устанавливать их точную концентрацию. В качестве генерирующих титрующих веществ могут применяться вещества, мало устойчивые в обычных условиях и непригодные поэтому для приготовления рабочих растворов. Различные окислители легко определять генерированными ионами двухвалентного олова, одновалентной меди, трехвалентного титана, двухвалентного хрома и др. Так титруют, например, хром, марганец, ванадий, уран, церий и некоторые другие элементы после предварительного перевода их в соединения высшей валентности. Для титрования восстановителей, например, трехвалентных мышьяка и сурьмы, одновалентного таллия, двухвалентного железа применяют генерированные свободный бром и иод, ферри-цианид и др. Подбирая соответствующие индикаторные системы для установления конца электролиза, можно также определять два или более окислителей или восстановителей в смеси, если их потенциалы восстановления различны. Известны, например, методы кулонометрического титрования урана и ванадия, хрома и ванадия, железа и ванадия, железа и титана в смеси. Наконец, кулонометрический метод допускает автоматизацию процесса титрования и управление им на расстоянии, что имеет важное значение при определении, например, различных искусственных радиоактивных элементов. [c.273]

    Например, для определения до 10" % свинца в минералах, метеоритах и подобных объектах его предварительно отгоняют в виде металла в струе водорода при 1100—1400° С, пары свинца улавливают в кварцевом холодильнике, охлаждаемом водой. В полученном конденсате определяют свинец известными методами Нагревание свыше 2000° С при пониженном давлении приводит за 1—1,5 мин к практически полной отгонке примесей щелочных металлов, а также кадмия, олова, сурьмы, свинца из двуокиси циркония з2. Отгонкой хрома в виде хлористого хромила (СгОгСЬ) выделяют 2- 10" г хрома из 10 2 г железа, меди, ванадия [c.73]

    Видно, что определению натрия, калия, рубидия, цезия, меди, кальция, стронция, алюминия, галлия, индия, скандия, лантана, европия, самария, иттербия, титана, сурьмы, ванадия, вольфрама, хрома, хлора, иода, марганца, железа, кобальта, практически не мешают другие элементы. Такие элементы, как серебро, магний, барий, кадмий, ртуть, золото, олово, мышьяк, селен, молибден, бром, никель, можно определять (с учетом вклада мешающего изотопа) по другим его гамма-липиям или другим гамма-линиям определяемых элементов. Серьезными конкурентами являются евроний, скандий нри определении цинка галлий — для кремния рубидий, золото — для германия бром, серебро — для мышьяка  [c.95]

    Смесь оксидов 18 элементов разбавили отдельно угольным порошком и фторидом лития до концентрации 0,01—0,17о затем из этих двух смесей приготовили девять образцов, основы которых содержали 0,5, 10, 25, 50, 75, 90, 95 и 100% фторида лития. Концентрация примесей во всех образцах была одинаковой. Пробы испаряли из канала угольного электрода диаметром 3 и глубиной 4 мм в дуге переменного тока силой 15 А. Исследовали влияние лития на чувствительность анализа и испарение элементов во время горения дуги. Добавление до 25% фторида лития повышает чувствительность определения всех элементов (за исключением цинка и сурьмы). Наибольшее почернение линий меди, кремния, железа, алюминия и серебра наблюдается при концентрации буфера около 25% хрома, никеля, ванадия, молибдена и титана — 25—75% свинца и олова— 100%. Почернение линий цинка и сурьмы с 5% буфера несколько повышается, но при дальнейшем увеличении его содержания снижается. Аналогичные данные были получены р при испарении пробы из канала угольного электрода диаметром [c.110]


    При содержании до 25% фтористого лития повышается чувствительность определения всех элементов, за исключением цинка и сурьмы (рис. 44—46). Наибольшее почернение линий меди, кремния, железа,-алюминия и серебра наблюдается при концентрации буфера около 25% хрома, никеля, ванадия, молибдена и титана 25—75% свинца й олова 100%. Почернение линий цинка и сурьмы с 5% буфера несколько повышается, но при дальнейшем увеличении его содержания снижается. [c.98]

    Химико-спектральное определение бериллия, магния, кальция, бария, алюминия, титана, ванадия, вольфрама, хрома, марганца, железа, кобальта, никеля, меди, серебра, золота, цинка, кадмия, индия, олова, свинца, висмута, галлия и сурьмы в боре, борном ангидриде и борной кислоте Химико-спектральное определение магния, кремния, алюминия, меди, свинца, железа, фосфора, мышьяка, молибдена и натрия в боре..... [c.527]

    Мешающие ионы. При восстановлении железа (III) раствором хлорида олова (II) титан не восстанавливается. Ванадий (V), хром (VI) и уран (VI) восстанавливаются соответственно до ванадия (IV), хрома (III) и урана (IV). Первые два не титруются бихроматом, а уран (IV) титруется до урана (VI). Сурьма (III) и мышьяк (III) мешают определению. [c.767]

    Ванадий (IV), уран (VI), сурьма (III), висмут и олово (IV) осаждаются. Алюминий, медь, кобальт, хром (III), ртуть (I), таллий (I), марганец, цинк, железо, кадмий, титан, молибден, железо (II), вольфрам, ванадий (V), мышьяк (III) и мышьяк (V) не мешают определению не мешают также сульфат-, хлорид-, нитрат- и фосфат-ионы. [c.802]

    Интересный способ определения содержания кобальта в солях никеля состоит в предварительном окислении o + до Со " перборатом натрия в аммиачном буферном растворе [16]. После разрушения избытка окислителя сульфатом гидроксиламина раствор полярографируют в пределах от —0,2 до —0,8 в. Потенциал полуволны Со + равен —0,4 в. Определению не мешают мышьяк, кадмий, сурьма, олово, цинк и, если находятся в умеренных количествах, висмут, медь, железо, марганец, молибден. Свинец н хром, присутствующие в больших количествах, удаляют путем осаждения хлоридом бария или сульфатом натрия. При содержании кобальта около 0,1% ошибка определения не превышает 2,6%. В 0,01 М растворе триэтаноламина и 0,1 М растворе КОН было определено содержание свинца и железа в пергидроле и меди, свинца и железа в плавиковой кислоте и фториде аммония в количестве 1.10 —5.10 % [17]. В растворе фторидов проводилось также определение олова, основанное на получении его комплексных ионов [18]. Разработан метод определения растворимой окиси кремния в уранилнитрате, основанный на полярографическом восстановлении кремнемолибденового комплекса [19]. Можно определить 2 мкг ЗЮг с точностью до 10%. Мешают ванадий и железо. [c.83]

    Фотоколориметрическим методом легко определить десятые доли микрограмма ванадия в 1 мл. Определению мешает присутствие веществ, имеющих собственную окраску, а также висмута, сурьмы, олова, калия и аммония. [c.231]

    ИСО 11885 устанавливает метод определения растворенных и нерастворенных элементов, а также их общего количества в питьевой воде и в природных и сточных водах атомно-эмиссионной спектроскопией. Данным методом можно определять алюминий, барий, бериллий, бор, ванадий, висмут, вольфрам, железо, кадмий, калий, кальций, кобальт, кремний, литий, магний, марганец, медь, молибден, мышьяк, натрий, никель, олово, свинец, селен, серебро, серу, стронций, сурьму, титан, фосфор, хром, цинк, цирконий. [c.334]

    Мешающие вещества. Краситель образует окрашенные соединения при содержании в анализируемой пробе 1 мкг золота (III) и таллия(I), Ю мкг хрома (VI), индия(III), сурьмы(V), олова (IV) и ванадия( ), 500 мкг железа(III). Поэтому мешающие ионы при большом их содержании необходимо предварительно отделять. Определению иода также мешают нитрит-ионы при их содержании больще 5. мкг в анализируемой пробе. Определению не мешают до [c.340]

    Чувствительность определения (в %) меди, серебра, никеля, титана, марганца, хрома, висмута и свинца — 3-10 , олова и молибдена — 3-10", ванадия, кобальта, золота, алюминия и железа 1-10" , цинка и сурьмы — 3-10- . [c.101]

    Далеко не все элементы, входящие в эти группы, могут быть определены методом ААА с приемлемыми для практических целей пределами обнаружения. К последним относятся из IV группы — кремний, титан, олово и свинец из V — ванадий, сурьма и висмут из VI — хром, селен, теллур и молибден. Кроме того, можно определять мышьяк и селен гидридным методом (см. разд. 3.8). Предложены также косвенные методики определения серы, основанные на предварительном окислении содержащейся в анализируемых объектах серы до сульфата, последующем его осаждении барием и определении серы по разности после определения содержания бария в растворе методом ААА. Примеры таких методик даны в работах [82, 83], а также монографии В. Прайса [11, с. 297]. [c.190]

    Определению титана не мешают железо (И), тантал, хром, алюминий, марганец, цинк, кадмий, олово, сурьма, цирконий, комплексон III, фториды и фосфаты, небольшие количества никеля ванадия. Мешают кобальт, вольфрам, молибден, ниобий. [c.144]

    Методами кулонометрии при контролируемом потенциале успешно определяют олово [216, 265, 266], свинец [79, 199, 210, 267, 268], мышьяк [269, 270], сурьму [271] и ванадий [204] —как порознь, так и при совместном присутствии, например в сплавах на основе свинца и олова [219]. В случае определения мышьяка может быть использован ускоренный вариант, подробно описанный Делахеем [2, стр. 338]. [c.29]

    При дегидратации кремневой кислоты выпариванием с хлорной кислотой практически полностью выделяются сурьма, ниобий, тантал, олово и вольфрам. Если присутствуют висмут, германий, молибден и ванадий в больших количествах, то они могут частично попадать в осадок. Так как эти элементы мешают определению кремния большинством фотометрических методов, то их необходимо удалять, что осуществляют следующим образом. Помешают бумажный фильтр с дегидратированной кремневой кг слотой в платиновую лодочку для сожжения и осторожно сжигают бумагу. Затем помещают лодочку в трубку печи для сожжения, нагретой примерно до 700°, и медленно пропускают [c.38]

    В золе исследуемых фракций нефтей Таджикской депрессии нолуколичественным спектральным анализом были обнаружены следующие микроэлементы натрий, медь, серебро, берилий, магний, кальций, стронций, барий, цинк, алюминий, лантан, кремний, олово, свинец, титан, цирконий, сурьма, висмут, ванадий, хром, молибден, марганец, железо, никель. Чтобы проследить распределение по фракциям тех микроэлементов (ванадий, хром, марганец, железо, никель, медь, свинец, молибден), которые были количественно определены в самой нефти, подобное определение их производилось и во всех изученных фракциях. Как видно из таблицы, микроэлементы распределены по фракциям неравномерно. Основная масса, например ванадия, сконцентрирована в асфальтенах и спирто-бензольных смолах, а никеля — в асфальтенах и петролейноэфирных маслах (исключение составляют фракции нефти Алмасы). Соответствук>щие данные показаны па рис. 5, 6. Что касается других микроэлементов (хром, марганец, медь, свинец, молибден), то в их распределении также наблюдается определенная закономерность. [c.127]

    Представляет интерес работа Шпеккера [68] по изучению пригодности различных экстракционных методов отделения железа применительно к определению в нем примесей других элементов. Котрбова [69] разработала спектральный метод качественного определения в металлическом железе меди, серебра, магния, цинка, кадмия, бора, алюминия, кремния, олова, свинца, титана, сурьмы, висмута, ванадия, хрома, вольфрама, марганца, кобаль- [c.26]

    С фенилфлуороном реагируют также титан, цирконий, гафний, олово ( V), ниобий, тантал, сурьма (III), теллур, молибден, вольфрам. Окислители ванадий (V),xpoM (VI), марганец (VII) и церий (IV) окисляют реагент. Поны галлия и мышьяка в кислых раствора.ч не реагируют с фенилфлуороном. Не мешают определению фторид (<1 м-г в 10 мл) и железо (III) (100 мкг в 10 мл). [c.381]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Катионы алюминия, сурьмы, мышьяка, бария, бериллия, висмута, бора, кадмия, кальция, церия (III), хрома (III), галлия, германия, железа (III), ланггана, свинца, магния, марганца, ртути (II), молибдена, никеля, ниобия, серебра, стронция, тантала, тория, титана, таллия, олова (IV), вольфрама, урана (VI), ванадия (V), цинка и циркония не мешают определению 10— 15 мкг кобальта, если каждый из них присутствует в количествах, не больших чем 0,1 г [1255]. [c.137]

    Определение кобальта в виде комплекса с пиридин-2,6-дикарбоновой кислотой С5Нз (СООН)2 [813]. Ионы двухвалентного кобальта легко окисляются броматом калия в азотнокислой или сернокислой среде в присутствии пиридиндикарбоновой кислоты, образуя окрашенный в красный цвет анионный комплекс трехвалентного кобальта, в котором на один ион кобальта приходится две молекулы реагента. Комплекс имеет максимум поглощения при 514 ммк и молярный коэффициент погашения при этой длине волны, равный 672. Можно определять 2—100 мг мл Со. Комплекс устойчив по отношению к ионам двухвалентного олова и тиогликолевой кислоте это позволяет определять кобальт в присутствии трехвалентного марганца, который также образует окрашенный комплекс, но легко восстанавливается при действии указанных восстановителей. Не мешают катионы меди, железа и никеля, а также щелочноземельных металлов, алюминия, кадмия, ртути, галлия, индия, свинца, сурьмы, мышьяка, висмута, титана, циркония, цинка, ванадия, церия, тория, хрома, серебра, анионы перманганата, молибдата, вольфрамата, хромата. [c.145]

    Альфонси [9—13] провел широкое исследование потенциостатического выделения и определения содержания сурьмы в сплавах, состоящих из свинца, олова, висмута и меди. Танака [14—16], работавший, главным образом, с синтетическими образцами, определил условия, при которых следует производить отделение сурьмы от золота, серебра, ртути, меди, висмута, кадмия, цинка и ванадия в целом ряде общеизвестных электролитов. Данлэп и Шульц [17] разработали две кулонометрические методики, дающие возможность определять содержание сурьмы в каждой из ее окисленных форм отдельно, а также полное содержание сурьмы. По первой методике после предварительного восстановления сурьмы (V) в присутствии гидразингидрата сурьма (П1) восстанавливается до амальгамы на ртутном катоде при потенциале —0,28 в в фоновом электролите, содержащем 0,4Ai винной кислоты и М соляной кислоты. По второй методике сурьма (V) сначала восстанавливается до сурьмы (П1) при потенциале —0,21 в, а затем далее до амальгамы при потенциале —0,35 в. Процесс восстановления проводится в электролите, содержащем 0,4 М винной кислоты и 6 М соляной кислоты. Даже в присутствии небольших количеств мышьяка, свинца, олова, железа или урана можно добиться точности 0,5% (средняя квадратичная погрешность) при содержании сурьмы 5 мг. В табл. 1 приведены различные условия эксперимента при определениях сурьмы потенциостатическим методом. [c.45]

    Объемному определению каждого из элементов после восстановления в редукторе, само собой разумеется, мешают все прочие восстанавливающиеся наряду с ним элементы, а именно железо, титан, европий, хром, молибден, ванадий, уран, ниобий, вольфрам и рений. Помимо того, следует упомянуть азотную кислоту, органические вещества, олово, мышьяк, сурьму и политионаты. Наиболее часто приходится сталкиваться с азотной кислотой, которая восстанавливается до гидроксил-амина и других соединений, на которые при титровании расходуется окислитель. Например, при определении железа в белой глине можно получить неверные результаты вследствие содержания нитрата аммония в осадке от аммиака, даже тщательно промытом. Для полного удаления азотной кислоты обычно требуется двукратное, даже лучше трехкратное, выпаривание раствора с серной кислотой до появления ее паров, причем стенки сосуда необходимо каждый аз тщательно обмывать. Иногда, как, например, в присутствии урана или при разрушении фильтровальной бумаги обработкой азотной и серной кислотами, азотная кислота удерживается настолько прочно, что для ее удаления двукратного выпаривания с серной кислотой недрстаточно. При разрушении фильтровальной бумаги можно избежать введения азотной кислоты, для чего к раствору, выпаренному в закрытом стакане до появления паров серной кислоты, прибавляют осторожно по каплям насыщенный раствор перманганата калия до появления неисчезающей розовой окраски, а затем продолжают нагревание в течение нескольких минут. [c.138]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    Наилучшим колориметрическим методом определения малых количеств оло1 а, по-видимому, является метод, основанный на реакции его с дитиолом (1-метил-3,4-димеркаптобензолом). Этот реактив образует с оловом (II) розово-красный осадок, а при малых количествах олова— коллоидный раствор, для стабилизации которого прибавляют агар-агар. Мешают висмут, медь, серебро, ртуть, молибден, ванадий, теллур, мышьяк, сурьма, германий, большие количества хрома, никеля и кобальта. Доп. ред.  [c.344]

    Платина мешает титрованию как бихроматом, так и перманганатом, ванадий мешает при титровании КМПО4, но не мешает при титровании КаСг О . Из других мешаюш,йх определению элементов следует отметить золото, молибден, мышьяк сурьму и вольфрам Все мешаюгцие вещества лучше удалять церед прибавлением хлорида олова (II), потому что восстановление их не протекает количественно и нельзя вычислить поправку, даже если их количества известны. Уран хлоридом олова (II) не восстанавливается. I [c.442]

    Эти методы менее над(зжны, чем объемный метод, изложенный на стр. 659, но они обладают тем преимуществом, что ими можно пользоваться в присутствии железа. При использовании для титрования метиленовой сини солянокислый раствор хлорида титана восстанавливают цинком, предпочтительно в редукторе Джонса (стр. 135). Полученный после восстановления раствор защищают от действия воздуха, создавая атмосферу двуокиси углерода, и титруют раствором метиленовой сини до появления неисчезающей голубой окраски. Восстанавливать и титро- вать лучше горячие растворы. Присутствие азотной и серной кислот нежелательно, так как они затрудняют определение конечной точки титрования. Мешают титрованию также молибден, ванадий, вольфрам, хром и олово, которые реагируют с метиленовой синью. Метод применим в присутствии кремния, железа, алюминия, сурьмы, мышьяка и фосфора. [c.662]

    При использовании метода глобульной дуги [167] пробы растворяют в азотной кислоте, прибавляют небольшое количество аммиака и осаждают гидроокиси, высушивают, прокаливают в муфельной печи при 700° С в течение 20 мин н брикетируют. Анализ проводят в две стадии сначала, включая иробу-брикет ан0Д0]М, регистрируют спектр легколетучих примесей (свинца, олова, кадхмия, цинка и сурьмы), затем переключают полярность (схему генератора и переключений см. в параграфе об определении вольфрама в настоящей главе) и, воздействуя разрядом на каплю расплава, регистрируют спектр для определения малолетучих примесей алюминия, никеля, кобальта, хрома, кремния, магния, марганца, меди, молибдена, бериллия (возможно, по-видимому, определение и других элементов, часто представляющих интерес кальция, титана, ванадия и др.). [c.125]


Смотреть страницы где упоминается термин Сурьма определение ванадием оловом: [c.370]    [c.430]    [c.204]    [c.738]    [c.646]    [c.20]   
Новые окс-методы в аналитической химии (1968) -- [ c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадий определение

Олово определение



© 2025 chem21.info Реклама на сайте