Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фракции точки перехода

    Индукционное взаимодействие. Установлено, что раствори — тели, обладающие значительным дипольным моментом, способны индуцировать дипольный момент у молекул асимметричной и сла— боасимметричной структуры. Следовательно, индуцированию подвержены как полярные, так и некоторые неполярные углеводороды масляного сырья. Поляризации подвержены в большей степени полициклические ароматические углеводороды, у которых ароматические кольца слабо экранированы нафтеновыми циклами и короткими алкильными цепями (то есть голоядерные). Под влиянием элв стростатического поля растворителя в таких молекулах масляной фракции возникает дeфopмai ия внешнего электронного слоя, что приводит к неравномерному распределению зарядов на отдельных участках молекул. В результате неполярная молекула временно превращается в индуцированный диполь. Молекулы с индуцированным дипольным моментом подвергаются далее ориентационному взаимодействию и переходят и раствор полярного растворителя. Индукционные силы взаимодействия зависят от силы электростатического поля полярной молекулы, то есть от значения дипольного момента и химической природы неполярных молекул, а именно от способности их поляризоваться. Индуцированный дипольный момент пропорционален напряженности поля Е, то есть =аЕ, где а характеризует степень поляризуемости индуцированной молеку — лы. [c.215]


    Степень извлечения низкоиндексных компонентов зависит от расхода растворителя, определяемого сочетанием его растворяющей способности и избирательности, химическим составом сырья и требуемой степенью очистки. С повышением пределов выкипания масляных фракций в их составе -увеличивается содержание полициклических ароматических и нафтено-ароматических углеводородов, а также смол и серосодержащих соединений, подлежащих удалению. Поэтому при прочих постоянных условиях (температуре, способе экстракции) расход растворителя, необходимый для очистки, увеличивается по мере утяжеления сырья. В то же время при увеличении кратности растворителя к сырью выход рафината уменьшается, одновременно изменяются его химический состав, а следовательно, и свойства. На рис. 21 и 22 показано влияние кратности растворителя на показатели селективной очистки дистиллята одной из восточных нефтей [19]. С увеличением расхода растворителя независимо от его природы выход рафината снижается, а его индекс вязкости растет. Однако при практически одинаковой кратности растворителя к сырью выход рафината заметно ниже в случае очистки фенолом. Высокая растворяющая способность фенола при средней его избирательности приводит к большему извлечению смолистых веществ от их потенциального содержания в дистилляте (см. кривые 4) и большему переходу в экстракт парафино-нафтеновых компонентов (см. кривые 1). [c.94]

    Однако для осуществления ряда превращений часто требуется более высокая температура, неблагоприятная для гидрирования ароматических углеводородов необходимая глубина гидрирования в таких случаях обеспечивается применением более высокого давления водорода и активного гидрирующего катализатора. При одной и той же температуре реакции глубина гидрирования уменьшается по мере увеличения молекулярной массы ароматических углеводородов, поэтому глубокое гидрирование ароматических углеводородов масляных фракций осуществить довольно сложно эта сложность возрастает при переходе от менее вязких фракций к более вязким. [c.298]

    Точки 2,4 данной кривой определяют соответственно максимальные размеры элементов структур, образуемых парафино-нафтено-выми углеводородами дистиллятных фракций и асфальто-смолисты-ми компонентами тяжелых остатков. С, и С - концентрация остатка компаундируемой НДС. Точка 3 - точка перехода от кристаллизационной надмолекулярной структуры к коагуляционной. [c.8]


    Перегонка заключается в постепенном переходе жидкой смеси веществ в газовую фазу и в последующей конденсации паров. Этот процесс проводят в перегонном аппарате, и с его помощью можно отделить друг от друга компоненты смеси, достаточно различающиеся по температурам кипения. Перегонку можно проводить при нормальном или пониженном давлении (так называемая перегонка в вакууме), а также при пропуска НИИ водяного пара (так называемая перегонка с водяным паром). Если при перегонке нет фракций, то говорят о простой перегонке. Если же наблюдаются отдельные фракции, перегоняющиеся в определенных температурных интервалах, то говорят о дробной перегонке. [c.11]

    ВЫЧИСЛЕНИЕ точки ПЕРЕХОДА ФРАКЦИИ ПО СПОСОБУ МАРТИНА [c.364]

    Истинная точка перехода фракции —97,5°С [c.364]

    Р и с. 23. Иллюстрация нахождения точек перехода фракций по способу средней температуры и способу равных площадей. Площадь А равна площади Б. [c.364]

    Так как по схеме кристаллизатор — пресс можно перерабатывать только высококонцентрированную фракцию, то прессовые оттеки с содержанием нафталина 60% направляются в смолу, поступающую на фракционирование. При фракционировании этой смеси около 80—90% нафталина, содержащегося в оттеках, переходит в нафталиновую фракцию, а О—20% — в поглотительную. Прессовые оттеки можно подавать вторым питанием во фракционную колонну ниже отбора нафталиновой фракции, до подачи в колонну они должны быть нагреты до равновесной температуры. [c.141]

    Другой особенностью расчета процесса ректификации нефтяных смесей является необходимость комплексной оценки свойств получаемых продуктов. Как известно, расчет процесса ректификации выполняется с целью определения таких условий его проведения, которые обеспечивают получение продуктов с заданными эксплуатационными свойствами. В то же время большинство эксплуатационных свойств нефтепродуктов определяется не температурными пределами выкипания получаемых фракций, лежащих в основе термодинамического расчета процесса ректификации. Эго вызывает необходимость использоваиия дополнительных расчетов для перехода от эксплуатационных свойств нефтепродуктов к температурам выкипания нефтяных смесей или для обратных пересчетов. [c.88]

    Переход фигуративной точки, представляющей на изобарной диаграмме 1 — 2 состояние системы нефтяная фракция — Н2О, [c.116]

    Если процесс испарения происходит при постоянной концентрации с=](1ет (что характерно только для однородных жидкостей), то формула (У.25) переходит в формулу (У.22). Таким образом, скорость испарения капель ш неоднородных жидкостей может быть теоретически определена по уравнению (У.25), но для этого необходимо знать закономерность изменения концентрации испаряющихся фракций от времени с=/(т). [c.106]

    Для одной и той же нефти коэффициент уменьшается с переходом от низкокипящих к более высококипящим фракциям этой же нефти. [c.62]

    При охлаждении фракций твердых углеводородов, не образующих карбамидные комплексы (см. рис. 32), фиксируется температурная точка, ниже которой отмечается излом рефрактометрической кривой и кривой интенсивности ИК-полосы при 720 см- и не наблюдается показатель преломления, т. е. точка излома представляет собой точку исчезновения жидкой фазы (расплава). Наличие точки излома рефрактометрической кривой, а не разрыва, как в случае углеводородов, образующих комплекс, показывает, что в точке исчезновения расплава не происходит изменения объема и состояния обеих фаз в этой точке совпадают. Смеси углеводородов, образующих карбамидный комплекс, характеризуются упорядоченной структурой твердых фаз, образованием в процессе затвердевания гексагональной структуры и затем после полиморфного перехода — структуры с ромбической подъячейкой. Смеси углеводородов, не образующих ком плекса, претерпевают своеобразные фазовые превращения они образуют из расплава стеклоподобную фазу, превращающуюся затем в твердую фазу с ромбической подъячейкой. Для них характерно сохранение значительной области температур существования молекул с неупорядоченной конфигурацией алкильных цепей. Эти исследования [c.125]

    На рис. 2.4 приведена зависимость выхода пироуглерода от массового соотношения пар сырье при пиролизе пропановой фракции при 800 °С и времени реакции 1 с. Как видно из данных этого рисунка, введение до 20% масс, на сырье водяного пара влияет на выход пироуглерода в значительно большей степени, чем дальнейшее увеличение его подачи. При подаче водяного пара более 20% масс, выход пироуглерода снижается в той же степени, что и парциальное давление углеводородов. Это связано с тем, что реакция газификации углерода водяным паром при повышении его парциального давления изменяет порядок по НаО от первого к ну левому. Ясно, что с точки зрения подавления образования пироуглерода повышение концентрации водяного пара в смеси с углево дородами технологически оправдано до перехода реакции газификации в область нулевого порядка. Дальнейшее повышение концентрации водяного пара снижает образование пироуглерода в той же степени, в какой снижается производительность реакционного устройства по сырью. Данные табл. 2.4 характеризуют влияние парциального давления паров сырья (фракция 40—160°С) на состав газа пиролиза. [c.96]


    Если меняется исходное сырье, то должна измениться оптимальная пористая структура и соответственно условия синерезиса. Переход от легких к тяжелым фракциям нефти требует увеличения доли широких пор. А это означает, что температура синерезиса должна быть повышена цри неизменных остальных параметрах режима. Основным же критерием оптимальной пористой структуры, температуры синерезиса и других технологических характеристик является всегда максимальный выход целевого продукта. Рассмотрим это на примере крекинга фракции бакинской нефти с температурой 350—500° С. Если ставится задача получения максимального выхода бензина, то оптимальной пористой структуре соответствуют поры размером менее 20 А. Температура синерезиса [c.236]

    Состав газа, покрывающего поверхность нефтяного слоя, является функцией давления. Повынюние давления вызывает конденсацию фракций, находящихся в парообразном состоянии. Если, наоборот, давление уменьшается, то легкие фракции нефти переходят в газ. [c.130]

    Практика показывает, что при повторной перегонке узких фракций нефти, пол, енных однократной перегонкой с дефлегматором, легкие фракции в значительной мере кипят при других температурах, тогда как тяжелая (200 и выше), почти целиком переходят в тех температлфных интервалах, в каких были собраны. Получается впечатление, что дальнейшей фракционировке и очистке поддаются, только более легкокипящие фракции. То, что высшие не изменяют пределов отгонки может быть объяснено или тем, 1чгго в условиях перегонки дефлегмация и фракционировка не достигаются вовсе или, как это Б свое время объяснял Тихвинский, что обилие флегмы для высококипящих фракций уже в первой перегонке выделяву их в достаточно концентрированном виде. [c.115]

    В ТО время как прн кислой сульфитной варке легкогидролизуемая фракция метилглюкуроноарабиноксилана переходит в раствор уже на первых стадиях варки [464, 665]. [c.301]

    Смеси, принадлежащие к тому или иному классу, типу и подтипу, характеризуются специфическим поведением компонентов при осуществлении фазовых процессов, например, таких, как дистилляция и ректификация [29, 44, 45]. Так, в процессе непрерывной ректификации для смесей определенного класса, типа и подтипа характерны как специфическое поведение отдельных компонентов по высоте ректификационного аппарата, так и вполне определенная последовательность выделения фракций предельно возможного состава при переходе от одной колонны к другой в технологической схеме ректификации. В реакционно-ректификационных процессах, где скорость химической реакции конечна, зона реакции, как правило, сосредоточена в какой-то части аппарата, а в остальных частях идет обычная ректификация. Полный термодинамико-топологический анализ всей диаграммы в целом дает возможность не только разместить зону реакции в наиболее благоприятных условиях относительно концентраций реагентов, но и выявить определенные ограничения по составу конечных продуктов ректификации. Эти ограничения обусловлены тем, что в случае наличия азеотропов в рассматриваемой смеси, соответствующий этой смеси симплекс составов распадается на ряд ячеек, названных областями непрерывной ректификации [29], причем каждая ячейка характеризуется предельно возможными составами конечных фракций, которые можно получить в одном ректификационном аппарате непрерывного действия. Возможные конфигурации областей непрерывной ректификации и их границ рассмотрены в работах 29, 46]. [c.194]

    Для парафинов, полученных дробной кристаллизацией из одной и той же фракции рафината, степень сжатия при кристаллизации и фазовом переходе уменьшается с понижением температуры плавления парафина. Если же сравнить парафины с близкими температурами плавления, но выделенные из различных фракций, то, чем ниже температура кипения исходной фракции, тем выше степень сжатия парафи-па при кристаллизации и фазово1М переходе (см. табл. 1). [c.359]

    Изменение фракционного состава белковых веществ имеет максимальные точки, когда процесс образования одной фракции белка заканчивается и начинается процесс образования новой фракции (например, переход белков из водорастворимой фракции в щелочерастворимую и щелоченерастворимую). Благодаря этому можно получать шроты с заданным фракционным составом белковых веществ, изменяя продолжительность и интенсивность воздействия тепла. [c.233]

    Для придания высокодеформируемой структуры веществу, которое само по себе способно только к небольшим эластическим деформациям, используются два основных принципа открытой сетки и спиральной молекулы. Ранние теории эластичности каучука основаны либо на одном, либо на другом (а иногда на обоих) принципе. Одно время очень популярной была двухфазная модель, предполагающая, что структура открытой сетки состоит из жесткоупругих компонентов, погруженных в подобную жидкости среду, которая в принципе не вносит вклад в эластические сократительные силы, но заполняет ячейки сетки. Предположение, что каучук содержит два разных компонента, находило подтверждение в различных фактах. Один из них заключался в том, что натуральный каучук не полностью растворим в таких растворителях, как бензин. Одна часть — так называемая золь-фракция — легко переходит в раствор, в то время как другая — гель-фракция — остается нерастворимой или же растворяется очень и очень медленно. Считалось, что эти две части различаются химически, хотя их точное строение не было ясно. В соответствии с этими представлениями казалось реальным предположение, что нерастворимый (и более жесткий) из компонентов структуры является эластичным он способен выдерживать приложенную нагрузку, в то время как растворимый, более жидкий компонент играет роль нейтральной среды, разделяющей элементы более жесткой структуры, но не препятствующий их перемещению. [c.52]

    Полиэтилен, так же как и некоторые другие полимеры, является частично кристаллическим при комнатной температуре. Возрастание температуры вызывает рост аморфных областей за счет кристаллических до тех пор, пока температура возрастет до такой величины, при которой веш ество становится полностью аморфным и неотличимым от вязкой жидкости. Этот переход сопровождается изменением ряда свойств. Эти изменения свойств могут быть использованы для изучения плавления и кристаллизации и дают возможность вычислять относительпое содержание кристаллическо11 и аморфной. частей при любой температуре. Наиболее под- ходящие свойства для этой цели — удельный объем и удельная теплоемкость. Результа-ты подобных измерений для полиэтилена приведены на рис. 33. Если Вх— вес кри- ид сталлических фракций, то наблюдаемый удельный объем (Кн) может быть выражен таким уравнением -1оо [c.50]

    Если бы растительные и животные жиры были первичным исходным веществом нефти, то на ранних стадиях олефиновый продукт, имеющийся в изобилии, способствовал бы реакциям иона карбония. Действительно, одна сторона проблемы происхождения заключается в объяснении присутствия насыщенных парафинов в нефтях. Реакции, указанные выше, объясняют образование некоторых парафиновых углеводородов одновременно с ароматическими. Как было показано выше, жиры из животных и растительных морских оргашхзмов обычно содержат около 20 % насыщенных кислот и главным образом пальмитиновую кислоту. Если принять, что при механизме указанного выше водородного перехода три насыщенные молекулы образуют одно бензольное кольцо, то отношения ароматических углеводородов к парафиновым в пяти бензинах, приведенные в табл. 2, являются приблизительно равновесными. Однако эти анализы характеризуют только бензиновые фракции. [c.90]

    Для иарафино-нафтеновых ут леводородов, но данным ПМР (рис. 2.5-2.7), с ростом температуры процесса характерно увеличение доли метильного водорода за счет увеличения доли изоструктур, раскрытия нафтеновых циклов. Снижение Н.,/Н ,. обусловлено процессами дегидрирования нафтеновых колец. За счет группы парафино-нафтенов происходит максима. 1ьное снижение выхода остаточной фракции, что связано ие то гг>ко со снижением молекулярной массы за счет их разложения, но и с последовательным переходом к а]-)оматическим и асфальтеновым структурам. [c.53]

    Хладотекучесть СКД (см. табл. 3) ниже, чем у СКДЛ, что связано с некоторой, хотя и очень небольшой, его разветвленностью. Установлено также [68], что хладотекучесть СКД уменьшается с увеличением коэффициента полидисперсности (при той же средней М). При сопоставлении каучуков СКД с узким и широким ММР обнаруживается инверсия текучести при переходе от малых напряжений сдвига (хладотекучесть) к высоким (вальцуемость). Полимеры с широким ММР обладают за счет высокомолекулярных фракций определенной каркасностью , которая препятствует течению при малых напряжениях сдвига. В то же время присутствующие в них низкомолекулярные фракции являются своеобразным пластификатором, облегчающим течение при высоких напряжениях сдвига. Подобная инверсия была подтверждена экспериментально [68] при исследовании текучести каучуков с различным ММР (рис. 3). [c.190]

    Реакционная камера представляет собой горизонтальный цилиндр. Тяжелое масло удаляется из аппарата, в то время сак легкие пары проходят через дефлегматор. Необходимо здесь отметить, что высокие давления, применяемые в способе Кросса, позволяют сократить потерю калорий, затрачйеаемых при переходе в парообразное состояние средних фракций. Кроме того лучше происходит теплообмен. Таким образом процесс Кросса сокращает расход топлива. [c.285]

    Гораздо легче (но и то неполно) нефть растворяется в амиловом, а затем и в этиловом спиртах, причем и здесь растворимость падает по мере перехода от низших фракций к высшим. Р. За-лозецкий, пользуясь вышеуказанными свойствами амилового и этилового спиртов, определяет содержание парафина в нефти, для чего последняя на холоду обрабатывается вначале амиловым спиртом, а затем этиловым, причем первый из них растворяет пара фин, а второй осаждает его из раствора. Таким образом, по отношению парафина амиловый спирт является растворителем, а этиловый — осадителем. Лучшими растворителями нефтей и ее продуктов являются серный эфир, бензол, сероуглерод, хлороформ и четыреххлористый углерод .  [c.72]

    Вместе с тем накопленный фактический материал позиолил выявить определенные зависимости между свойствами и глубиной зал< гания нефтей и высказать предположения, связанные с генезисом нефти в условиях Апшерон-ского полуострова. При сопоставлении свойств всех пластовых нефтей каждого месторождения установлено, что в пределах одного отдела нродуктивной толщи принципиальной разницы в свойствах индивидуальных нефтей нет. В то же время по каждому месторождению нефти верхнего отдела продуктивной толщи отличаются от нефтей нижнего отдела, особенно по соотношению нафтеновых и парафиновых углеводородов. Нефти при переходе от верхнего отдела к нижнему характеризуются резким повышением вязкости, смолистости и способности к коксованию. Нефти верхнего отдела содержат больше светлых фракций, а в составе последних — больше нафтеновых и меньше ароматических и парафиновых углеводородов. Такая тенденция прослеживалась в нефтях всех основных месторождений Апшерона (Сураханского, Ка-линского, Балаханского, Карачухурского и др.). [c.8]

    В цилиндре (фиг. 13) приготовляется суспензия из исследуемого порошка и жидкости (чаще всего воды) примерно в отношении 1 50. При меньшем относительном количестве жидкости возможно искажение результатов анализа, вследствие коллективного осаждения частиц. Предварительны.м расчетом устанавливается время осаждения частиц граничных размеров для всех выбранных размерных интервалов. После перемешивания суспензии в цилиндре, она отстаивается в течение времени, установленного расчетом для осаждения частиц с наименьшим граничным размером. После этого частично отстоявшуюся суспензию спускают в сосуд, цилиндр дополняют до нужного уровная чистой жидкостью, после перемешивания она отстаивается то же вре.мя, перекачивается в сосуд и т. д. Эти процедуры продолжаются до полного осветления суспензии по назначенной высоте осаждения. Затем переходят к извлечению из суспензии следующей размерной фракции порошка и т. д. После- [c.44]

    Для характеристики условий полного перехода различных газонефтяных смесей в газовую фазу при разных температурах приведены кривые зависимости давления схождения этих смесей (Рсу) от температуры (рис. 19). Под давлением схождения в нефтяной литературе понимают то давление при данной тем1пературе системы, при котором константы фазового равновесия всех ее компонентов становятся равными единице. В. термодинамике это давление называют критическим давлением системы при дайной температуре. Оно отличается от истинного критического давления, характерного для системы при ее,критической температуре. Кривые (см. рис. 19) построены по материалам, полученным при изучении фазового равновесия ряда систем, состоящих из широких нефтяных фракций и газа, при пх весовом соотношении 1 1 и при температурах 60, 100, 130 и 160° С. На основе этих данных были рассчитаны константы фазового равновесия (/( УВ нефти и экстраполированы до [c.39]

    Методика расчета фазовых переходов при фенольной экстракции аналогична методике расчета деасфальтизацин пропаном. В отличие от процесса деасфальтизацин в параметр растворимости вводят изменение энтальпии за счет теплоты смешения, функцию энтропии вводят с обратным знаком, так как фенольные растворы имеют верхнюю экстремальную точку на кривой КТР (в отличие от пропановых растворов, имеющих минимум КТР). Переход фракций в раствор избирательного растворителя рассчитывается по величинам (1—X) в той же последовательности, что п при деасфальтизацин пропаном. [c.250]

    Одно11 из характеристик углеводородов (подобно показателю прелом ления, плотности и т. д.) служит анилиновая точка. Определение анилиновых точек основано на неодинаковой растворимости углеводородов различных рядов в полярных растворителях при обработке углеводородной фракции анилином она разделяется на два слоя, ( месь подогревают до момента полного смешения (исчезновения) слоев, и температуру растворения называют анилиновой точкой или критичес1сой температурой растворения в aнпJинo. Чем легче углеводород растворяется в анилине, том ниже его анилиновая точка. Анилиновые точки возрастают при переходе от углеводородов ароматического ряда 1> нафтенам и от нафтенов к парафинам. Олефины и циклоолефины имеют не- [c.170]

    Несмотря на то, что основная масса соединений, содержащих металлы, переходит в тяжелые остаточные фракции нефти, некоторые из них, обладая летучестью, попадают и в дистиллятные фракции. Так, содержание ванадия в вакуумном газойле восточных нефтей в зависимости от природы нефти составляет (0,06— 0,1)Х10- %, а никеля (0,3—0,6)ХЮ- %. В мазуте и полумазуте содержание металлов резко увеличивается, достигая соответственно 0,005—0,012 и 0,003—0,004%, [48]. Все эти металлпроиз-водные, даже находясь в масле в очень незначительных количествах, могут катализировать их окисление в процессе работы и поэтому нежелательны. В процессах переработки нефтей (при перегонке, получении кокса, во вторичных процессах), при использовании топлив в двигателях или в котлах наличие металлов также крайне нежелательно. Продукты сгорания топлив, содержащих металлы (особенно окислы ванадия), резко увеличивают коррозию оборудования лопаток газовых турбин, хвостовых поверхностей котлоагрегатов и т. п. [c.39]

    Комплексное исследование глубины иабирательного извлечения углеводородов из сырых нефтей опубликовано в работах [54, 81]. По разработанной авторами методике путем шестиступенча-той обработки карбамидом из ряда нефтей выделена вся гамма н-парафинов, способных к ком плексообразованию (табл. 43), причем по мере перехода от ступени к ступени их углеводородный состав сужается за счет уменьшения содержания высокоплавких компонентов, что показано на рис. 102 применительно к долинской нефти. Из этих даиных видно, что многоступенчатая карбамидная дапарафинизация эффективна и для сырой нефти. Исследование выделенных фракций определяет схему производства твердых углеводородов с определенными свойствами. Кроме того, предварительная депарафинизация нефти может облегчить процесс ее переработки на действующем оборудовании маслоблоков с сохранением существующей мощности установок. [c.241]

    I - исходное сырье 2- подготовленное сырье 3- реакционная смесь после термообработки 4- удаление низкомолекуляртшх фракций 5- слив готового пека 6,7- осадки на фильтрах 8- ПК фракция (<250°С) 9- тяжелый остаток процесса экстракционной очистки 10- отбор проб 11 - перегретый водяной пар Г2 - блоки воздействия на движущийся поток сырья в точках структурных фазовых переходов [c.23]


Смотреть страницы где упоминается термин Фракции точки перехода: [c.190]    [c.7]    [c.37]    [c.199]    [c.30]    [c.163]    [c.113]    [c.119]    [c.22]    [c.49]    [c.116]    [c.176]    [c.173]   
Перегонка (1954) -- [ c.364 ]




ПОИСК







© 2025 chem21.info Реклама на сайте