Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Навье Стокса потока

    Рассмотрим плоскопараллельное стационарное течение несжимаемой жидкости, ограниченной динамически гладкой непроницаемой поверхностью, при отсутствии продольного градиента давления. Ось х направим по течению, а ось у — перпендикулярно граничной плоскости. Тогда уравнения, описывающие поведение флуктуаций скорости в турбулентном потоке, получаемые вычитанием уравнении Рейнольдса из полных уравнений Навье—Стокса, примут вид  [c.171]


    Трудности математического характера, так как частные дифференциальные уравнения очень сложны по своей структуре. Например, уравнение Навье — Стокса для импульсного потока в своей полной форме [см. последнее уравнение системы (6-50)] не интегрируется. Следовательно, для его решения необходимо ввести упрощения. Как будет показано ниже, в качестве решения уравнения Навье — Стокса в простейшем случае можно получить хорошо известное из практики уравнение Гагена — Пуазейля. [c.81]

    Таким образом, становится понятным, почему важное значение приобретают методы, которые позволяют привести дифференциальные уравнения, описывающие процесс, к зависимостям безразмерных комплексов величин . Перед описанием этих методов остановимся на решении основного уравнения потока, т. е. уравнения Навье — Стокса, для простейшего случая. [c.81]

    Уравнение Навье — Стокса для импульсного потока может быть выражено таким методом с помощью трех критериев. Так как безразмерные комплексы образуются как частное от деления физических величин и число их конечно [3], то считают, что эти комплексы величин, которые описывают поток или элемент процесса, образуют конечную свободную абелеву группу (см. Дополнение). Зависимость между безразмерными комплексами обычно представляют в форме степенного многочлена. В случае уравнения Навье — Стокса для импульсного потока можно записать  [c.85]

    Уравнения гидродинамики реальных потоков обычно очень сложны (например, уравнения Навье-Стокса для однофазных потоков) или даже вообще не могут быть записаны в общем виде (например, для двухфазных потоков типа газ—жидкость ) из-за отсутствия возможности задания граничных условий на нестационарной поверхности раздела фаз. Поэтому на практике прн составлении математических описаний обычно используют приближенные представления о внутренней структуре потоков. С одной стороны, это облегчает постановку граничных условий для уравнений, а с другой— позволяет наметить определенные экспериментальные исследования, необходимые для нахождения параметров уравнений движения потоков. [c.56]

    Движение реальной несжимаемой жидкости описывается уравнением Навье- Стокса. Для потока / его можно записать следующим образом  [c.18]

    Баланс действующих в потоке сил выражается в случае движения идеальной жидкости уравнениями Эйлера, а в случае движения реальной жидкости — уравнениями Навье—Стокса. [c.276]


    Использование уравнения движения реальной жидкости совместно с уравнениями неразрывности позволяет решить основную задачу гидродинамики — определить поля скоростей, давление и плотность жидкости, движущейся под действием заданных внешних сил. Однако решение уравнений Навье—Стокса получено только для простейших случаев одно- и двухмерного потока. Кроме того, это уравнение ие описывает течение жидкости при турбулентном режиме. [c.276]

    Основные критерии гидродинамического подобия. Эти критерии можно получить из уравнения Навье — Стокса для стационарного потока вязкой несжимаемой жидкости в направлении пространственной координаты % [8, 91  [c.136]

    Основные критерии теплового подобия. При переносе тепла сохраняет силу и уравнение Навье — Стокса, т. е. тепловое подобие требует геометрического и гидродинамического подобия. Уравнения переноса тепла потоком в направлении оси при стационарном режиме имеют вид [8, 9]  [c.137]

    Эти критерии можно получить из уравнения Навье — Стокса для стационарного потока вязкой несжимаемой жидкости в направлении пространственной координаты 2 [14, 15]  [c.23]

    Для решения задачи с отрывом пограничного слоя от поверхности перегородок при возникновении за ними обратных течений и сосредоточенных вихрей целесообразно использовать известную схему решения задачи о суперкавитирующей наклонной плоской пластинке (режим обтекания, при котором вся тыльная часть соприкасается с каверной) или дуге в неограниченной жидкости под свободной поверхностью или в канале. При этом вводится ряд допущений, согласно которым рассматриваются плоские, потенциальные, установившиеся течения несжимаемой невесомой жидкости [64—66]. Анализ такой схемы суперкавитационного обтекания базируется на применении аппарата теории функций комплексного переменного и комплексного потенциала в отличие от непосредственного решения уравнений Навье—Стокса. Согласно упомянутой схеме, задача движения газового потока в канале с системой наклонных перегородок сводится к рассмотрению плоского течения идеальной жидкости, для которого справедливы условия [c.175]

    При течении газа в тесных каналах между элементами насадки существенную роль играют силы вязкости, что приводит к необходимости применения к процессу движения газа в насадке основных уравнений движения вязкой жидкости Навье—Стокса. Однако прямое интегрирование уравнений Навье—Стокса при столь сложных граничных условиях, какие обусловливает насадочная среда, оказывается невозможным. Поэтому запишем для потока газа уравнения Навье—Стокса в форме уравнений гидродинамики Эйлера, но к действительно существующей массовой силе X прибавим фиктивную массовую силу Х , которая учитывает эффект вязкого трения и называется фиктивной силой сопротивления Жуковского  [c.407]

    При высоких температурах плазменных струй характерное время многих реакций сравнимо с характерным временем смешения и значительные превращения реагентов могут происходить на участке незавершенного турбулентного смешения реагирующих потоков. В пределе "быстрой" химической реакции [439] процессы химического превращения полностью определяются процессами переноса. При рассмотрении реакторов-смесителей с коаксиальным вводом дозвуковых потоков реагентов и плазмы смешение происходит в ограниченном пространстве реактора, поэтому возможно образование зон рециркуляции [82, 84, 86]. Наличие в потоке таких зон делает необходимым пользоваться системой уравнений Навье—Стокса, а не приближением пограничного слоя. [c.184]

    Это уравнение было получено при условии, что членами уравнения Навье — Стокса, характеризующими силы инерции для жесткой сферы в безграничном потоке, можно пренебречь. Исходя из уравнения (1У.4) коэффициент лобового сопротивления для области вязкого течения может быть представлен в виде [c.200]

    Если систему уравнений Навье — Стокса использовать совместно с уравнением неразрывности потока, то математически движение вязкой жидкости можно описать полностью. Однако только применение теории подобия дает возможность описать такое движение в доступной для решения практических задач форме. [c.36]

    Аналогичны также уравнения Навье — Стокса (1-83) для потока и Кирхгофа — Фурье (1У-158) для конвекции. [c.339]

    Сборник объединяет работы, опубликованные автором в научных журналах в 1957-1998 гг. Предложены вариационные принципы газовой динамики без дополнительных ограничений и магнитной гидродинамики при бесконечной проводимости. Выведены полные системы законов сохранения газовой динамики и электромагнитной динамики совершенного газа. Дано аналитическое решение задач оптимизации формы тел, обтекаемых плоскопараллельным и осесимметричным потоками газа, а также формы сверхзвуковых сопел. Построены точные решения уравнений Навье—Стокса дпя стационарных течений несжимаемой жидкости, воспроизводящие вихревые кольца, пары колец, образования типа разрушения вихря, цепочки таких образований и др. [c.2]


    Иначе дело обстоит с решением вариационных задач газовой динамики и с точными решениями уравнений Навье—Стокса. Эти результаты своеобразно и тесно переплетены с численными и экспериментальными исследованиями. Решение краевых задач при оптимизации формы тел в сверхзвуковом потоке газа первоначально проводилось численно, итерационным путем. Обращение в нуль одной из рассчитываемых функций подсказало путь аналитического решения и открыло путь к исследованию необходимых условий минимума и к получению новых решений. При использовании этих результатов для практики в потоках внутри сопел рассчитывался пограничный слой, а результирующая сила тяги была проверена на специальной опытной установке. Расхождение между расчетной силой тяги и ее экспериментальной величиной не превысило 0,1%. [c.5]

    Произвол в определении функции У( >) позволяет выбрать ее так, что вектор скорости обращается в нуль, например, на двух осесимметричных поверхностях тока. Возникающий поток прилипает к этим поверхностям. Однако подстановка равенств (П2.1) в уравнения Навье— Стокса показывает, что они удовлетворяются только при а = 0. В этом случае гиперболы вырождаются в прямые г = Ь при [c.231]

    Полное описание движения вязкой жидкости в его наиболее общей форме возможно путем решения уравнений Навье—Стокса совместно с уравнением неразрывности потока. Однако уравнения Навье—Стокса не могут быть решены в общем виде. Получены решения этой сложной системы уравнений только для некоторых частных случаев. Так, для установившегося ламинарного движения жидкости решение уравнений Навье— Стокса позволяет вывести уравнение Пуазейля, полученное выше другим способом. [c.54]

    Уравнение того же вида, что и уравнение (П,93), может быть использовано для определения потерь напора на трение также при турбулентном движении жидкости. Однако выражение для коэффициента трения в данном случае ие может быть выведено теоретически из-за сложности структуры турбулентного потока и невозможности решения для него уравнений Навье—Стокса. Поэтому расчетные уравнения для определения Я, при турбулентном движении получают обобщением результатов экспериментов методом теории подобия. [c.86]

    Задача внешнего обтекания тел в условиях перемешивания может быть решена с помощью уравнений Навье—Стокса и неразрывности потока. Точное аналитическое решение указанной задачи весьма сложно и возможно лишь для частных случаев. Поэтому для решения этой задачи используют теорию подобия. [c.248]

    В дифференциальном уравнении конвективной диффузии, помимо концентрации, переменной является скорость потока. Поэтому данное уравнение надо рассматривать совместно с дифференциальными уравнениями гидродинамики уравнениями Навье—Стокса и уравнением неразрывности потока. Однако эта система уравнений не имеет аналитического решения, и для получения расчетных зависимостей по массообмену приходится прибегать к преобразованию дифференциального уравнения конвективной диффузии методами теории подобия. [c.394]

    Движение жидкости плотностью р (кг/м ) со скоростью и (м/с) в промежутках между частицами зернистого слоя подчиняется основным законам гидродинамики— уравнениям Навье— Стокса [1, 2]. При этом жидкость и даже газ можно считать практически несжимаемыми (р = onst), поскольку скорости потоков в аппаратах малы по сравнению со скоростью выравнивания деформаций — скоростью звука. Особенности течения неньютоновских жидкостей в зернистом слое [3] изучены недостаточно и реологические свойства потока будем считать целиком определяющимися вязкостью j,[H/(m- )].  [c.21]

    Основой математического описания КГТС деталей машин (например,, абсолютно гладких цилиндров, показанных на рис. 5.5) служат дифференциальное уравнение движения жидкости Навье —Стокса и условие неразрывности установивши гося потока жидкости, следствием которых является известное уравнение Рейнольдса, относящееся к установившемуся плоскому потоку вязкой жидкости в узком клиновом зазоре между двумя плоскостями [c.235]

    Для исследования массо- и теплообмена в вертикальных дисперсных двухфазных системах необходимо вначале рассмотреть гвдродинамику движения одиночных частиц в потоке вязкой жидкости или газа. В разделе 1.1 приведены точные и приближенные решения уравнения Навье — Стокса в сплошной и дисперсной фазах для малых и промежуточных значений критерия Рейнольдса. [c.5]

    Приближенные решения уравнения Навье-Стокса для промежуточных значений критерия Рейнольдса. Решения Стокса и Адамара получены при значениях критериев Рейнольдса Кс1 и Кег, много меньших единицы Обтекание твердой сферы при малых, но конечных значениях Кез впервые исследовалось Уайтхедом (1889 г.), который применил к решению уравнений Навье - Стокса метод последовательных приближений, разлагая поле потока в ряд по степеням Ясз. Однако построенное Уайтхедом решение противоречило граничным условиям вдали от сферы. Второе приближение для скорости не удовлетворяло условиям равномерного потока на бесконечности, а более высокие приближения на бесконечности расходились. Таким образом, все члены разложения, кроме главного, не удовлетворяли граничным условиям. Этот парадокс, свойственный задачам обтекания тел конечных размеров, был назван парадоксом Уайтхеда. Его объяснение и правильное решение при малых значениях Кег было осуществлено в работе Озеена [1]. Озеен показал, [c.11]

    Вихрь Хи.пла обращает в нуль отдельно конвективные и вязкостные члены уравнений Навье Стокса и, следовательно, является точным решением этих уравнений, не зависящим от критерия Рейнольдса. Таким образом, при малых Кб2 влияние Ке, на поток отсутствует. Расчеты показали, что при Ке ЮО для фиксированных значений р и Кй изменение Ке, в диапазоне 1<СКе,<100 практически не влкяег на характеристики потока, В связи с этим в расчетах принималось Кс I --Кс2 = Ке  [c.20]

    Задача определения силы сопротивления, действующей на частицу в суспензии, сводится к задаче отыскания полей скоростей и давлений вокруг частицы, движущейся в замкнутой оболочке. Течение жидкости в ячейке должно удовлетворять уравнениям Навье-Стокса. Рещение в аналитическом виде удается получить только для двух предельных случаев режима ползущего движения, описываемого уравнениями Стокса, и инерционного режима движения, описываемого уравнениями идеальной несжимаемой жидкости. На поверхности частицы должно удовлетворятся обычное условие отсутствия скольжения, т. е. скорость движения жидкости должна быть равной средней скорости движения частицы. Условия на внещней границе ячейки, отражающие воздействие всего потока на выделенную ячейку, не могут быть определены однозначно, поскольку механизм этого воздействия недостаточно понятен. В основном используются три типа условий 1) предполагается, что возмущение скорости, вызванное наличием частицы в ячейке, исчезает на границе ячейки [105] 2) ставится условие непротекания жидкости через границу ячейки (обращается в нуль нормальная составляющая скорости) и предполагается отсутствие касательных напряжений на границе ячейки (модель свободной поверхности) [106] 3) условие непротекания жидкости сохраняется, но предполагается, что на границе ячейки обращаются в нуль не касательные напряжения, а вихрь [107]. [c.68]

    Начнем рассмотрение процессов массопереноса с простейшего случая однокомпонентной жидкости в тонкой прослойке между незаряженными твердыми поверхностями. Здесь следует учитывать только один эффект, а именно — изменение структуры граничных слоев воды. При течении под действием градиента давления это приводит к необходимости учета послойного распределения вязкости по толщине прослойки г)(х). Если вид этой функции известен, то, решая уравнения Навье — Стокса, легко получить соответствующие выражения для скорости течения и потока в плоской щели или капилляре. В случае гидрофильных пористых тел это приводит к снижению коэффициентов фильтрации, а в случае гидрофобных — к их увеличению. [c.20]

    Для расчета коэффициента массоотдачп, учитывающего влияние концснтрациоппой поляризации на перенос растворенного вещества к поверхности мембраны, предложен ряд уравнений (табл. IV. 1). Эти расчетные уравнения основываются на решениях дифференциальных уравнений Навье—Стокса (для ламинарного [149] и турбулентного [150] потоков в каналах с отсосом ) и конвективной диффузии [144, 151]. [c.175]

    Первый и второй интегралы в правой части уравнения (7.83) характеризуют соответственно прибыль капель объемом V за счет коалесценции более мелких капель и их убыль вследствие коалесценции капель объемом и с другими каплями. Для определения горизонтальной составляющей скорости движения дисперсной фазы будем рассматривать горизонтальное течение двухфазной смеси как квазигомогенное. Такое допущение справедливо, когда частицы имеют малый размер и отношение вязкостей невелико. Тогда для ламинарного горизонтального потока квазигомогенной смеси по де-кантатору можно использовать решение уравнения Навье—Стокса для ламинарного течения жидкости в открытом канале прямоугозн — ного. сечения при свойствах жидкости, вычисленных через свойства фаз. В этом случае профиль горизонтальной составляющей скорости Ых (г) но высоте канала будет определяться ь/2 [c.301]

    Обтекание сферы при малых, но конечных значениях чисел Re исследовалось Уайтхедом [2], который к решению уравнений Навье—Стокса применил метод последовательных приближений, разлагая поле потока в ряд по степеням критерия Рейнольдса. Однако это решение противоречило граничным условиям вдали от сферы. Причину трудности раскрыл Озеен [3] отношение отброшенных инерционных членов к вязким — порядка Re-а (оно мало вблизи тела при малых Re, но становится сколь угодно большим вдали от него). Решение Стокса уже непригодно в тех областях, где Re имеет иорядок единицы. Озеен для решения подобной задачи использовал линеаризованную форму инерционных членов, заменив uVu на vVv. Уравнения Озеена имеют решение, пригодное во всем иоле течения при Re 1 и совпадающее вблизи сферы с решением Стокса. Согласно Озеену, коэффициент сопротивления для твердой сферы может быть вычислен по формуле [c.248]

    Уравнения линейной вязкоупругости для изотропных сред являются естественным обобщением простейшей формы закона Гука и Навье — Стокса / = Ее, где ей/— обобщенные термодинамические сила и поток соответственно (напряжение и скорость [c.308]

    Рассмотрим канал ленточно-поточного типа, образованный пластинами с горизонтальными гофрами с углом при их вершине у = 90° продольное сечение канала представлено на рис. 7.4. Процесс стационарного конвективного теплообмена при ламинарном течении жидкости в таком канале описывается системой дифференциальных уравнений в частных производных, включающих уравнения Навье - Стокса, неразрывности и энергии. Допустим, что физические свойства жидкости не зависят от температуры (и = onst, а = onst, р = onst). Тогда для вынужденного двухмерного движения потока несжимаемой жидкости эта система уравнений имеет вид  [c.352]

    Коэффициенты турбулентной диффузии можно ориентировочно оценить совместным решением второго закона Фика с гидродинамическими уравнениями Навье — Стокса и неразрывности потока [28]. Практически в работающих реакторах всегда происходит перемешивание [32], поэтому наиболее точно суммарный коэффициент диффузии Од или же количество дифундирующего вещества О определяют опытным путем, а перенос опытных данных в моделируемый процесс производят с применением критериальных уравнений.  [c.32]

    Для чисел Рейнольдса Re< 1 применяют приближение Озика для уравнения Навье — Стокса, приведенное Ламбом. Функция потока ф в области ламинарного течения записывается в виде [c.300]

    Если численные значения критерия Рейнольдса одинаковы для двух потоков, то такие потоки подобны. Установлено, что при значении Ке ниже критического Ке, р = 2100 частицы жидкости совершают пост5 пательное движение в направлении оси прямой трубы. Слои жидкости при этом перемещаются один относительно другого. Такое движение жидкости называют вязким, или ламинарным. Если в ламинарный поток, движущийся по стеклянной трубке, ввести тонким капилляром краситель, то струйка красителя будет заметна в виде тонкой нити без поперечного перемешивания. Для такого движения потока действительно уравнение Навье — Стокса. [c.38]

    Автор [8] рассматривает плоскую модель течения в вихревой трубе на основании приближенных решений уравнений Навье — Стокса и предлагает феноменологическую теорию эффекта, которая соответствует основным характеристикам процесса — в приосевой зоне вращение потока близко к квазитвердому, а полная энтальпия меньше начальной. Отмечается также, что большую роль должны играть автоколебательные и акустические явления, сопровождающие работу вихревой трубы. Большое значение придается и трехмерности закрученного потока. [c.25]


Смотреть страницы где упоминается термин Навье Стокса потока: [c.83]    [c.12]    [c.28]    [c.137]    [c.202]    [c.213]    [c.214]   
Научные основы химической технологии (1970) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Навитая

Навье

Навье Стокса

Стокса



© 2025 chem21.info Реклама на сайте