Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитический термоокислительный

    Производство аммиака и карбамида. Как уже указывалось выше, в нефтехимическом комплексе на базе синтез-газа, получаемого при термоокислительном пиролизе метана, будет создано производство аммиака и Мочевины—карбамида. В республике имеются благоприятные условия для наращивания этого производства наличие больших количеств водородсодержащих газов от процессов каталитического риформинга, дегидрирования и пиролиза углеводородного сырья, а также ют производства хлора и каустической соды методом электролиза поваренной соли. [c.377]


    Таким образом, на термоокислительную стабильность синтетических смазочных масел влияют температура, каталитическое действие металлов и строение углеводородов. Значение этих факторов особенно увеличивается в условиях работы современных двигателей. Чтобы повысить верхний предел рабочей температуры синтетических масел и продлить срок их службы в них необходимо вводить антиокислительные присадки и деактиваторы металлов. [c.171]

    В данном разделе рассмотрено каталитическое действие металлической меди на окисление дизельного топлива кислородом и влияние содержания серы на окисляемость дизельного топлива. Исследовано влияние адсорбционной очистки, при которой удаляются смолистые вещества и микропримеси, происхождения и сорта дизельного топлива на его окислительную стабильность. Сделана оценка стабильности дизельного топлива по результатам изучения кинетики поглощения О2 с одновременной регистрацией оптической плотности топлива. Рассмотрена кинетика накопления первичных продуктов окисления дизельного топлива. Сопоставлены показатели термоокислительной стабильности дизельных и реактивных топлив, получаемых с применением гидрогенизационных процессов. На базе кинетической модели окисления проведено прогнозирование допустимых сроков хранения дизельного топлива с пониженным содержанием серы при контакте с металлической поверхностью. [c.123]

    Асфальтеновые концентраты, повышают термоокислительную стабильность эпоксидных композиций [152]. Асфальтиты являются ускорителями при химическом отверждении эпоксидных смол и термическом эпоксидно-новолачных смол. По-видимому, природными каталитическими системами, ускоряющими процесс отверждения, являются металлсодержащие комплексы, так как увеличение содержания металлов от 0,052 до 0,155% приводит к ускорению отверждения в 2 раза. При 15% добавке асфальтитов в фенопласты увеличиваются теплостойкость, ударная вязкость и улучшаются диэлектрические свойства последних. Асфальтены могут быть использованы в производстве цемента для улучшения его свойств [153, 154]. [c.348]

    Что касается способности фосфитов, тиофосфитов и фосфатов повышать термоокислительную стабильность, то, как показал Б. В. Лосиков, эта способность связана с образованием на металле пассивирующей нленки, исключающей возможность каталитического воздействия металла на окисление масла [22].  [c.358]


    Термоокислительная стабильность. Трансмиссионные масла в процессе работы в зубчатых передачах вследствие трения интенсивно разогреваются. Повыщенная температура в сочетании с активным действием кислорода воздуха и каталитическим действием металлических поверхностей приводит к усиленному окислению масла, образованию в нем нерастворимых веществ, выпадающих в осадок. [c.189]

    В результате окисления масла изменяются его физико-химиче-ские и эксплуатационные свойства увеличивается вязкость, возрастает коррозионная агрессивность, ухудшаются противозадирные свойства. Скорость и глубина окисления масла зависят от длительности окисления, температуры масла, каталитического действия металла, концентрации кислорода. Наибольший ускоряющий эффект на окисление масла оказывает его температура. Состав базового масла также оказывает влияние на окисляемость трансмиссионного масла. Так, при уменьшении в основе содержания остаточного компонента наблюдается пропорциональное увеличение термоокислительной стабильности масла. [c.189]

    Топливные фракции, получаемые в термических процессах глубокой переработки нефти, характеризуются, как правило, высоким содержанием серы, олефиновых и ароматических углеводородов, низкой термоокислительной стабильностью, склонностью к образованию смол и осадков. Бензиновые дистилляты имеют к тому же невысокие октановые числа. Дизельные дистилляты как термических процессов, так и каталитического крекинга отличаются низким цетановым числом. Все это требует применения специальных технологий для существенного улуч-щения качества указанных продуктов. Учитывая жесткие требования к экологическим характеристикам как автобензинов, так и дизельных топлив, выдвинутые в последние годы, следует признать освоение таких технологий приоритетной задачей нефтеперерабатывающей промыщленности как за рубежом, так и в России. [c.340]

    Термоокислительные методы обезвреживания сточных вод. В термоокислительных методах обезвреживания органические примеси в сточных водах окисляются кислородом воздуха при повышенной температуре до безвредных продуктов (Н2О, СО2). Это пламенный ( огневой ) метод, жидкофазное окисление и парофазное каталитическое окисление. [c.437]

    Термоокислительные методы обезвреживания сточных вод — парофазное окисление ( огневой метод), жидкофазное окисление ( мокрое сжигание), а также парофазное каталитическое окисление. [c.158]

    При работе двигателя под действием повышенной температуры и каталитического влияния металлов и сплавов в присутствии кислорода воздуха в масле протекают процессы термоокислительной полимеризации некоторых углеводородов с образованием кислых продуктов и асфальто-смолистых веществ. Кроме того, в работающем масле накапливаются неорганические примеси (продукты износа, механические примеси, попавшие извне), а также продукты [c.33]

    Антиокислительные и антикоррозионные присадки. Наз.-начение антиокислительных присадок — замедлять процессы окисления масла, повышать их термоокислительную стабильность. Антиокислители по механизму действия делят на присадки, тормозящие образование активных радикалов в начальной стадии цепного процесса окисления (инициирование автокаталитического процесса), и на вещества, не только тормозящие образование активных радикалов, но и разлагающие уже образовавшиеся перекиси, переводящие их в стабильное к окислению состояние, не давая тем самым распространяться цепной реакции. К антиокислительным присадкам относят также вещества, уменьшающие активность каталитического действия металлов, их окисей и солей на процесс окисления — пассиваторы металлов (являющиеся одновременно и антикоррозионными присадками). Пассиваторы образуют на поверхности металлов стойкие ад- сорбционные или химически связанные пленки и таким образом не допускают каталитического воздействия металлов на процесс окисления. К антиокислителям относят также дезактиваторы — вещества, переводящие в неактивное состояние растворенные соли металлов в масле, которые играют роль гомогенных катализаторов процесса окисления. [c.93]

    Ионы тяжелых металлов (Fe, Со, Ni, u, Zn, d) действуют как катализаторы термоокислительного распада макроцепей и одновременно способствуют образованию значительных количеств нерастворимого полимерного продукта [84]. Наиболее сильным каталитическим действием обладают ионы Zn +, Fe +, Со +. [c.68]

    Термоокислительная стабильность характеризует склонность реактивных топлив к окислению при повышенных температурах с образованием осадков и смолистых отложений. В условиях авиационных полетов имеет место повышение температуры топлива в топливных системах вплоть до 200 °С и выше, например, в сверхзвуковых самолетах. Было установлено, что зависимость осадкообразования в топливах при изменении температуры от 100 до 300 °С носит экстремальный характер. Характерно, что для каждого вида топлива имеется своя температурная область максимального осадкообразования. Так, эта температура для топлив ТС-1 и Т-1 составляет 150 и 160 °С соответственно. Чем тяжелее фракционный состав топлива, тем при более высокой температуре наступает максимум осадкообразования. Окисление топлив при повышенных температурах значительно ускоряется за счет каталитического действия материала деталей топливных систем. Для снижения интенсивности окислительных процессов наиболее эффективно введение в реактивное топливо присадок, пассивирующих каталитическое действие металлов. Оценку термоокислительной стабильности реактивных топлив проводят в специальных приборах в статических и динамических условиях. Статический метод оценки заключается в окислении образца топлива при 150 °С в изолированном объеме с последующим определением массы образовавшегося осадка (в мг/100 мл) в течение 4 или 5 ч. Стабильность в динамических условиях оценивают по величине перепада давления в фильтре при прокачке нагретого до 150-180 С топлива в течение 5 ч или по образованию осадков в нагревателе (в баллах). [c.77]


    Причиной повышения термоокислительной стабильности топлив при оптимальных концентрациях азотсодержащих соединений следует считать присутствие в составе этих концентратов некоторых соединений, способных ингибировать развитие окислительной цепи, понижать каталитическую активность металла, а также оказывать диспергирующее действие на процессы коагуляции твердой фазы. К таким веществам относятся, в первую очередь, производные хинолина, пиридина, аминотиолы, тиазолидины и тиазолы, обнаруженные в составе азотсодержащих соединений. Для проверки этого предположения было синтезировано и испытано значительное количество азотсодержащих соединений. Оказалось, что некоторые производные хинолина, тиазолидина, тиазола, некоторые аминотиолы способны эффективно повышать термоокислительную стабильность топлив [47—60]. [c.173]

    Масса образующегося осадка оказывается пропорциональной каталитической активности металла (табл. 57). Для снижения окисляемости масел и повышения их термоокислительной ста- [c.246]

    Газофазное гетерогенно-каталитическое окисление углеводородов получило большое практическое значение для синтеза ангидридов ди- и тетракарбоновых кислот, обладающих высокой термоокислительной стабильностью (малеинового, фталевого и др.). [c.415]

    Однако в большинстве случаев введение нанолнителей повышает термическую и термоокислительную стабильность наполненных полимеров, которая увеличивается с повышением содержания наполнителя. Причиной этого является снижение кинетической подвижности макромолекул, вызванное их адсорбционным взаимодействием или образованием химических связей с поверхностью наполнителя. Кроме того, причиной повышения термической и термоокислительной стабильности наполненных полимеров может быть распад нестабильных групп атомов полимера под каталитическим влиянием нанолнителя или связывание наполнителем кислорода, растворенного в объеме полимера. Повышение термической и термоокислительной стабильности полимеров может быть связано с обрывом кинетической цепи распада полимера по радикальному механизму на поверхности химического активного наполнителя. Термостабильность наполненного полимера может возрастать за счет диссипации тепловой энергии нанолнителем, обладающим большими теплопроводностью и теплоемкостью, чем полимер. [c.105]

    Каталитическое термоокислительное обезвреживание в парогазовой фазе. Образующиеся при отгонке воды от смолы загрязненные пары предложено [676] направлять на установку парофазного каталитического окисления (см. гл. 7). Паровоздушную смесь, нагретую до 250—300 °С, пропускают через катализатор ГИПХ-105, что позволяет значительно снизить температуру окисления по сравнению с некаталигическим термоокислением. Очищенные пары конденсируются. С увеличением температуры и времени контакта наблюдается возрастание степени очистки воды. [c.431]

    Наиболее благоприятным сырьем для производства метанола является синтез-газ с ацетиленовых установок. Однако этот источник ограничен масштабами производства ацетилена методом термоокислительного пиролиза углеводородов. Кроме того, как показывают проектные расчеты, количество синтез-газа, получаемого на типовой ацетиленовой установке, недостаточно для организации крупного современного производства метанола. Поэтому при использовании синтез-газа установок термоокислительного пиролиза до 30%. СО-водородной смеси получают каталитической конверсией ме/а1 а Вследствие этого себестоимость синтез-газа несколько ц ыйв ся с одновременным улучшением качественных показате ад 1[ т5 йдаение Нй СО, содержание инертных газов). [c.17]

    Механизм защитного действия масел с серусодержащимн присадками Демченко [31, с. 612] объясняет следующим образом. При взаимодействии присадок с металлами образуются кристаллические пленки с достаточно толстым промежуточным слоем, в котором содержание серы снижается по мере удаления от поверхности в глубь пленки. При этом кристаллическая решетка металла постепенно переходит в кристаллическую структуру сульфидов, благодаря чему создается более полное кристаллохимическое соответствие смежных слоев пленки в этих слоях пограничный слой атомов металла может быть общим для кристаллических решеток соседних слоев пленки (или металла) и образовавшейся на нем плёнки. Таким образом, в защитных пленках молекулы серусодержащих присадок связаны непосредственно с промежуточным слоем защитной пленки, который состоит главным образом из сульфидов металла. В промежуточном слоё пленки находятся продукты термоокислительной деструкции присадки молекулы этих продуктов содержат атом серы и небольшие углеводородные радикалы. По мере увеличения толщины промежуточного слоя уменьшается каталитическое влияние металла на процесс деструкции и создаются условия для образования следующего слоя пленки, состоящего из молекул присадки. [c.189]

    В настоящее время накоплен большой экспериментальный материал, показывающий возможность применения полисопряжен-ных полимеров в качестве ингибиторов в процессах термической, термоокислительной, фото- и радиационной деструкции мономеров и полимеров. Известны каталитические и фотосенсибилизирующие свойства таких полимеров [277], их применение в качестве органических полупроводников [278], электронообменников [279] и др, Полисопряженные системы играют большую роль в формировании и эволюции белков и нуклеиновых кислот, а также являются основой структуры коферментов, витаминов, гормонов [280.  [c.284]

    В процессе работы смазка подвергается воздействию повьпценньк температур, скоростей и нагрузок, а также воздействию различных факторов окружающей среды (кислород воздуха, вода, пары коррозионно-активных соединений, радиация и др.). Это сопровождается термическим разложением, термоокислительными процессами и полимеризацией, которые интенсифицируются деформацией сдвига и каталитическим действием ювенильных поверхностей трения. Все это в совокупности приводит к старению смазок и соответственно к ухудшению их эксплуатационных свойств. Расход смазок в процессе работы обусловлен также испарением дисперсионной среды, механической деструкцией дисперсной фазы, вьщелением масла из смазки и вытеканием его из узла трения. [c.357]

    В рабочих условиях масло находится под воздействием рйда факторов, резко ускоряющих процессы окисления повышенной температуры, каталитического влияния различных металлов, контакта с воздухом, автокаталитического воздействия продуктов окисления. Окисление масла происходит либо во всем его объеме (в толстом слое), либо в тонком слое, когда масло прокачивается через цилиндрово-поршневые узлы трения. В последнем случае масло находится в особо тяжелых условиях температуры и контакта с кислородом воздуха и металлом. При этом говорят о термоокислительной стабильности масел. [c.96]

    С целью увеличения ресурсов дизельных топлив предложено наряду с дизельными топливами утяжеленного и расширенного фракционного состава использовать компаундированные топлива, получаемые добавлением в прямогонные дистилляты до 20 % легкого газойля каталитического крекинга (ЛГКК). Однако такие топлива имеют низкую химическую и термоокислительную стабильность, что связано с их повышенной склонностью к окислению, смоло- и осадкообразованию. Стабилизация таких топлив традиционными ингибиторами радикально-цепного окисления (ионол, НГ-2246, ФЧ-16) недостаточно эффективна [10]. [c.44]

    Известный интерес представляют пектины и пектинаты, растворяющиеся в воде с образованием плотных гелей. Полностью метилированная пектовая кислота содержит около 14% метоксилов, но природные продукты содержат и карбоксильные группы. В зависимости от того, метилировано больше или меньше 50% карбоксильных групп, различают Н- и -пектины, отличающиеся коллоиднохимической и желирующей активностью. Щелочные пектины хорошо растворимы, поскольку солеобразующий одновалентный катион связан лишь с одной полимерной цепью остатков /)-галактуроновой кислоты. Пектины разрушаются щелочами и легко подвержены термоокислительной и ферментативной деструкции. Фермент пектин-эстеразы каталитически расщепляет эфирные связи с выделением карбоксильных групп и метанола. Фермент полигалактуроназы гидролизует гликозидные связи. Подобная лабильность пектинов обусловливает их неперспективность как защитных коллоидов. [c.187]

    При использовании термоокислительных методов все органические вещества, загрязняющие сточные воды, полностью окисляются кислородом воздуха при высоких температурах до нетоксичных соединений. К этим методам относят метод жидкофазного окисления, метод парофазного каталитического окисления, и пламенный, или огневой , метод. Выбор метода зависит от объема сточных вод, их состава и теплотворной способности, экономичности процесса и требований, предъявляемых к очищенньпл водам. [c.140]

    ВО 80 ЮО 120 т 1б0(,ч ном, комплексом ВРз — МЭА и метил-ЭТГФА [26]. Из рисунка видно, что полимеры, полученные с помощью диаминодифенилметана и каталитического комплекса, по термостойкости заметно уступают полимеру ангидридного отверждения. Это обусловлено более активным протеканием процесса термоокислительной деструкции в первых двух случаях. [c.52]

    Термодеструкция сополимера при 240—350 °С и происходящие при ней структурные изменения исследовались в работе [28]. Прогрев сополимера эквимольного состава (в токе азота при 290 °С) приводит к отщеплению фтористого водорода и, преимущественно, хлористого водорода (рис. IV. 4, а). Отщепление галогенводородов сопровождается образованием в сополимере ненасыщенных групп —СР=СН— и —СН=СН— (полосы поглощения 1715, 1650 и 1600 см- ). Кислород оказывает резкое каталитическое действие на термодеструкцию сополимера. При прогреве в атмосфере кислорода значительно увеличиваются выделение галогенводородов (рис. IV. 4, б) и потери массы сополимера (рис. IV.5). Кроме галогенводородов летучие продукты термоокислительной деструкции содержат низкокипящие соединения типа спиртов н низкомолекулярные осколки цепей с альдегидными и карбоксильными концевыми группами. Накопление альдегидных и карбоксильных групп наблюдают и в пленке, прогретой в атмосфере кислорода при 270°С (полосы поглощения 1755 и 1780 см- ). Очевидно, термоокислительная деструкция сополимера ТФХЭ — Э протел<ает по механизму, соответствующему известной схеме распада гидроперекисных групп и изомеризации образующегося радикала с разрывом или без разрыва основной цепи. [c.151]

    За рубежом вырабатывается достаточно большой ассортимент стабилизаторов, рекомендуемых для дизельных топлив, содержащих газойли каталитического крекинга или продукты ожижения сланцев и углей. В качестве аналога можно привести присадку Кегороп-5090 ( ВА8Р , Германия). Термоокислительная стабильность дизельного топлива, содержащего 30 % не-гидроочищенного легкого газойля каталитического крекинга и 0,01 масс. % присадок ВЭМС и Кегороп-5090 представлена в табл. 4.59. [c.382]

    Назначение - повышение химической и термоокислительной стабильности топлив, в которых антиоксиданты на основе ингибиторов радикально-цепных реакций недостаточно эффективны. К таким топливам, например, относятся дизельные топлива, содержащие негидроочишенные легкие газойли каталитического крекинга, топлива, получаемые процессами ожижения горючих сланцев, угля и т. д. [c.107]

    С одной стороны, сернистые соединения оказывают негативное влияние на процессы нефтепереработки и нефтехимии, на качество и эксплуатационные показатели нефтепродуктов. Они снижают эффективность каталитических процессов переработки нефтяного сырья [1], гидрооблаго-раживапия нефтепродуктов [2], термоокислительную стабильность горючесмазочных материалов [3], из-за коррозионной активности ускоряют износ технологического оборудования [4]. Оксиды серы, образующиеся в процессе сгорания топлив, загрязняют окружающую среду [5]. [c.72]

    В связи со все увеличивающимся потреблением реактивных топхив гидрогевизационные процессы становятся важными технологическими процессами дяя получения дополнительного количества реактивных топлив за счет вовлечения в переработку более тяжелых нефтяных фракций (вакуумные дистилляты, газойли коксования, каталитического 1фекинга, пиролиза и др.). фоме того, эти процессы позволяют регулировать углеводородный состав реактивных топлив за счет изменения режима и цриме-нения различных катализаторов, улучшая таким образом ряд таких важных эксплуатационных свойств, как высота некоптящего пламени, коррозионная активность, химическая и термоокислительная стабильность и др. [c.1]

    Общим недостатком сложноэфирных иасел является невысокая стабильность к окислению в присутствии металлов. Термоокислительная стабильность может быть повышена введением в сложноэфирные масла ингибиторов, которые образуют на поверхности металлов гфочные адсорбционные пленки, пассивирующие их каталитическое влияние. В качестве ингибиторов используют бисфенольные антиокислители, ал-килфенотиазины и другие серу- и азотсодержащие соединения. [c.41]

    Значитетьное влияние на скорость распада полиорганосилоксанов при повышенных температурах оказывают катализаторы, которые обычно применяются для отверждения. Даже незначительные их количества (О, I о) повышают скорость распада полиметилфенил-силоксана в 4 раза. Эти данные также имеют большое практическое значение и свидетельствуют о необходимости тщательно очищать полимеры от катализаторов поликонденсации и учитывать каталитическое действие некоторых наполнителей и пигментов на скорость распада полимеров. Большое влияние на термоокислительную деструкцию оказывает средняя степень сшитости полимера (рис. 139). [c.279]

    При термообработке стекол выше 800-900 К на их поверхности увеличивается концентрация примесных атомов, в частности бора и алюминия [85], которые обладают электроноакцепторными свойствами при адсорбции пиридина, анилина, и-диметиламииоазобензола и др. Введение в стекло примесных атомов, способных к образованию координационно ненасыщенных центров, приводит к усилению взаимодействия полимеров с поверхностью стекла и ее каталитической активности в реакциях, протекающих на границе раздела, в том числе и в реакциях термической и термоокислительной деструкции наполненных полимеров. [c.85]

    Влияние химической природы наполнителя и методов формирования образцов наполненного ПЭ на процессы термоокислительной деструкции достаточно убедительно показано во многих работах [119, 120, 125, 169, 185, 193-198]. Так, авторами [119, 120, 193-195] установлено, что введение в ПЭ дисперсного железа, талька и кварцевого песка в количестве от 5 до 15% (об.) способами совместного диспергирования или горячего вальцевания приводит к сдвигу температуры начала окислительной деструкции в низкотемпературную область. С повышением концентрации наполнителей до 20% (об.) эта тенденция усиливается. Наиболее отчетливое снижение температуры начала окислительной деструкции зафиксировано на образцах, содержащих дисперсное железо, в случае же талька, кварцевого песка и стеклянного порошка этот эффект выражен в меньшей степени. Снижение термоокислительной стабильности наполненного ПЭ объясняется ростом площади контакта и увеличением содержания кислорода в системе, причем железо проявляет наиболее высокую каталитическую активность в термоокислительной деструкции HOjmMepa. При введении в ПЭ различных количеств [0,5 2 10, 20 30%1 (об.)] дисперсных кварцевого песка, талька и стеклянных микросфер обнаружено [196], что стеклосферы не влияют на температуру начала термоокислительной деструкции полимера, кварцевый песок снижает, а тальк - повышает ее. Различие в действии этих нанолнителей связывают с химической активностью поверхности, т.е. с особенностями их каталитического влияния на термоокислительную деструкцию ПЭ. [c.133]


Смотреть страницы где упоминается термин Каталитический термоокислительный: [c.123]    [c.645]    [c.185]    [c.34]    [c.145]    [c.3]    [c.149]    [c.2]    [c.645]    [c.38]    [c.346]    [c.500]   
Общая химическая технология (1964) -- [ c.514 ]




ПОИСК





Смотрите так же термины и статьи:

Термоокислительная



© 2024 chem21.info Реклама на сайте