Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вода природная аммиачная

    Природные растворимые соли встречаются в виде солевых залежей или естественных растворов (рассолы, рапы) озер, морей и подземных источников. Основные составляющие солевых залежей или рапы соляных озер хлорид натрия, сульфат натрия, хлориды и сульфаты калия, магния и кальция, соли брома, бора, карбонаты (природная сода). Советский Союз обладает мощными месторождениями ряда природных солей. В СССР имеется более половины разведанных мировых запасов калийных солей (60%) и огромные ресурсы природного и коксового газа для получения азотнокислых и аммиачных солей (азотных удобрений). В СССР есть большое количество соляных озер, рапа которых служит источником для получения солей натрия, магния, кальция, а также соединений брома, бора и др. Основными методами эксплуатацни твердых солевых отложений являются горные разработки в копях и подземное выщелачивание. Добычу соли в копях ведут открытым или подземным способом в зависимости от глубины залегания пласта. Таким путем добывают каменную соль, сульфат натрия (тенардит), природные соли калия и магния (сильвинит, карналлит) и т. д. Подземное выщелачивание является способом добычи солей (главным образом поваренной соли) в виде рассола. Этот метод удобен, когда поваренная соль должна применяться в растворенном виде — для производства кальцинированной соды, хлора и едкого натра и т. п. Подземное выщелачивание ведут, размывая пласт водой, накачиваемой в него через буровые скважины. Естественные рассолы образуются в результате растворения пластов соли подпочвенными водами. Добыча естественных рассолов производится откачиванием через буровые скважины при помощи глубинных насосов или сжатого воздуха (эрлифт). Естественные растворы поваренной соли, используемые как сырье для содовых и хлорных заводов, донасыщают каменной солью в резервуарах-сатураторах и подвергают очистке. Иногда естественные рассолы [c.140]


    Для очистки природного газа от СОг и получения водных растворов кислот или щелочей в качестве абсорбента используется вода. Очистка газов от СО2 осуществляется при температуре 287 К и давлении 2,84 МПа в насадочном абсорбере с высотой слоя насадки 17,7 м и скоростью газа в аппарате 0,034 м/с при этом обеспечивается извлечение СОг ДО 94,3 %. Улавливание аммиака водой с получением 10% аммиачной воды позволяет осуществить очистку газов с 40 % до 0,2 % при степени извлечения [c.488]

    Органически связанный азот в природных водах содержится в форме таких компонентов биологического происхождения, как аминокислоты, полипептиды и белки. Повышенное содержание органически связанного азота часто вызывается загрязнением данного источника бытовыми или промышленными сточными водами. При отборе и хранении проб воды для определения органически связанного азота нужно соблюдать те же меры предосторожности, что и при отборе и хранении проб для определения аммиачного азота. [c.99]

    Примером использования избирательной адсорбции может служить концентрирование микроколичеств катионов металлов, содержащихся в воде (водопроводная вода, вода природных водоемов и т. д.), на активированном угле с последующим определением их содержания. Для этого к достаточно большому объему анализируемой воды (-1 л) прибавляют аммиачный буфер до pH 8—9 и 8-оксихинолин (раствор в ацетоне), который образует относительно прочные оксихинолинатные комплексы с катионами металлов, присутствующих в микроколичествах в анализируемой воде (ионы меди, цинка, кадмия, ртути, алюминия, свинца, хрома, марганца, железа, кобальта, никеля и др.). Затем воду пропускают через активированный уголь, находящийся на фильтре. При фильтровании оксихинолинатные комплексы металлов практически количественно адсорбируются на активированном угле (коэффициент концентрирования равен -Ю ), из которого они могут быть десорбированы обработкой небольшим объемом раствора азотной кислоты НМОз (около 10 мл). В полученном азотнокислом концентрате можно определить содержание указанных металлов различными методами (например, оптическими). [c.236]

    Азотная промышленность в ближайшие годы расширит ассортимент удобрений в сторону резкого увеличения производства карбамида, сложных концентрированных удобрений и дешевых жидких удобрений (жидкий аммиак, аммиачная вода, растворы в них аммиачной селитры, мочевины и других солей азота). Огромное увеличение выпуска азотных удобрений базируется на природный газ в качестве сырья азотной промышленности и на комбинировании азотно-тукового производства с нефтехимическими, коксохимическими производствами и заводами органического синтеза. [c.298]


    Природный холод издавна использовался для замораживания грунтовых вод, консервации пищи и закалки стали. Явление замораживания воды при быстром испарении ее в вакууме позволило Д. Лесли (1810 г.) построить первую установку по получению искусственного льда, а в 1875 г. К. Линде создал аммиачную компрессорную холодильную машину, положившую начало современной криогенной технологии, использующей температуры ниже 120 К- Интенсивное развитие холодильной техники сделало холод в настоящее время экономически и технически доступным в больших масштабах, а фундаментальные исследования в области криохимии и криофизики (т. е. химии и физики низких температур) открыли перспективы для создания разнообразных химико-технологических процессов с использованием низкотемпературных воздействий. [c.115]

    Основные показатели, характеризующие продувочные газы цикла синтеза аммиака агрегатов мощностью 1360 т/сутки приведены в табл. IV,20, в табл. IV,21 представлены показатели, характеризующие танковые и продувочные газы после конденсации из них аммиака. После выделения аммиака продувочные и танковые газы в большинстве случаев используют в качестве топлива в горелках трубчатой печи, что позволяет экономить природный газ. Однако при сжигании этих газов часть содержащегося в них аммиака образует оксиды азота, которые выбрасываются с дымовыми газами в атмосферу и загрязняют окружающую среду. В целях более глубокого извлечения аммиака и обеспечения охраны окружающей среды предусматривают выделение аммиака абсорбционным методом. Аммиак из газовой смеси промывают водой. Существуют установки, в которых получают аммиачную воду с концентрацией аммиака 25%, и установки с разгонкой аммиачной воды и получением жидкого аммиака. [c.386]

    Красящие вещества животного происхождения, например, экстракты кошенили, полученные, как правило, экстрагированием подкисленной водой или аммиачным раствором из кошенили кермес - красный красящий экстракт из кермесовых дубовых червецов сепия - коричневый краситель, полученный из чернильной железы каракатицы красящие экстракты получаемые из шеллака, в основном известные как красящий (цветной) лак природный перламутровый (жемчужный) пигмент, получаемый из рыбьей чешуи и состоящий в сущности из гуанина и гипоксантина, в кристаллической форме. [c.278]

    В небольших количествах сода встречается в воде озер, а также в виде природных залежей. Однако в основном ее получают искусственным путем по так называемому аммиачно-хлоридному способу. Суть способа сводится к тому, что через насыщенный аммиаком раствор поваренной соли пропускают углекислый газ. Реакция процесса выражается суммарным уравнением [c.248]

    Разработана также методика определения в природных водах галлия (Ge Ве и некоторых других редких элементов) путем соосаждения с А1(0Н)з, основанная на аналогии свойств их гидроокисей, образующихся в аммиачной среде [350]. В качестве коллектора может быть использована гидроокись железа [383] Осадок растворяют в НС1, Fe восстанавливают до Fe - треххлористым титаном, экстрагируют галлий диизопропиловым эфиром и определяют (колориметрически с родамином В. Определение галлия в природных водах спектральным методом см. также в работах 81, 696, 697, 1219, 1220, 1325]. [c.191]

    Синтетическая кислота отличается от природной отсутствием окраски при растворении в спирте и аммиачных растворах и малым содержанием пригорелых веществ. В кипящей воде такая кислота не сплавляется темп, плавл. ее 121,4°, темп. кип. 249°. [c.148]

    Моносахариды — белые кристаллические вещества, хорошо растворимые в воде, трудно растворимые в спирте и нерастворимые в эфире многие из них обладают сладким вкусом. Все природные моносахариды обладают оптической активностью. Будучи сильными восстановителями, они осаждают серебро из аммиачного раствора азотнокислого серебра и окись меди(1) из фелинговой жидкости. Последним пользуются для количественного определения сахаров. [c.45]

    С развитием сырьевой базы промышленности органического синтеза неразрывно связано развитие азотной промышленности. Современная азотная промышленность основывается на синтезе и последующей переработке аммиака в азотную кислоту, азотсодержащие удобрения (сульфат аммония, аммиачную селитру, карбамид) и другие продукты. Источником водорода, являющегося основным видом сырья в производстве аммиака, служит органическое сырье, твердое топливо (кокс, антрацит), жидкое топливо (мазут, нефть, керосин, бензин), газообразные углеводороды (природный газ, попутные газы нефтедобычи), коксовый газ, вода. [c.68]


    Основными природными источниками ароматических углеводородов являются каменный уголь и нефть. При сухой перегонке каменного угля (нагревание до 1000—1200° С без доступа воздуха) образуются светильный газ, каменноугольный деготь (смола), аммиачная вода, кокс. [c.233]

    Современное аммиачное производство представляет собой энерготехнологический комплекс. Потребность в энергии полностью покрывается за счет сбалансированного использования тепловых отходов в процессах производства. Технический прогресс в производстве синтетического аммиака характеризуется следующими показателями суммарный расход энергии на производство тонны синтетического аммиака в агрегате большой единичной мощности (1360 т/сут) с применением в качестве сырья природного газа в 2,5 раза меньше, чем в старых агрегатах меньшей мощности с применением кокса или каменного угля для получения водорода, и в 3 раза меньше, чем с использованием водорода, получаемого электролизом воды (табл. 4). [c.31]

    Практически титан и его сплавы устойчивы во всех природных средах атмосфере, почве, пресной и морской воде. Титан и особенно некоторые его сплавы имеют также высокую коррозионную стойкость и в ряде окислительных кислых сред, устойчивы в хлоридах, сульфатах, гипохлоридах, азотной кислоте, царской водке, диоксиде хлора, влажном хлоре, во многих органических кислотах и физиологических средах. Отмечена повышенная стойкость титана и его сплавов по отношению к местным видам коррозии — питтингу, межкристаллитной, щелевой коррозии, коррозионной усталости и растрескиванию. Однако титан не стоек во фтористоводородной кислоте и кислых фторидах, а такл е концентрированных горячих щелочах, хотя и устойчив в аммиачных растворах. Он не стоек и в горячих неокислительных кислотах (НС1, H2SO4, Н3РО4, щавелевой, муравьиной, трихлоруксусной), в концентрированном горячем кислом растворе хлористого алюминия (во многих этих средах, как мы увидим дальше, специальные сплавы на основе титана могут иметь высокую стойкость). Титан не стоек в некоторых сильно окислительных средах — дымящей HNO3, сухом хлоре и других безводных галогенах, в жидком или газообразном кислороде, сильно концентрированной перекиси водорода. Реакция титана с этими средами может носить даже взрывной характер. [c.240]

    Системы воздушного кондиционирования, полностью работающие на СНГ, встречаются крайне редко. Они мало чем отличаются от систем, работающих на природном или искусственном газе, и используют один и тот же принцип абсорбционного цикла. Однако если в домашних газовых холодильниках и замораживателях рабочей жидкостью является исключительно водный аммиак, то в больших воздушных кондиционерах, работающих на охлаждение воды до 4,44 °С и выше, к водно-аммиачному контуру может пристраиваться контур, работающий с хладагентом в виде водного раствора бромистого лития. Схема процесса рефрижерации с использованием раствора Ь1Вг—НгО отличается от схемы аммиачной установки тем, что благодаря высокому сродству водяных паров с раствором бромистого лития последний может направляться на повторный цикл сразу же после конденсации. Для того чтобы обеспечить отбор тепла при достаточно низкой температуре в системе, использующей ЫВг и работающей при частичном вакууме, температура раствора в генераторе должна быть приблизительно равной 110°С. В этой системе используется также прин- [c.207]

    Шелк Шардонне, медно-аммиачный шелк и вискозный шелк в химическом отношении представляют собой регенерированную, пере-осажденную целлюлозу, и для них не могут совершенно бесследно пройти те различные химические воздействия, которым целлюлоза подвергается в процессе переработки. Они обладают признаками некоторого неглубокого расщепления слегка повышенной восстановительной способностью, большей гигроскопичностью и увеличенной восприимчивостью к красителям. Некоторые из этих особенностей отчасти объясняются тем, что физическое строение искусственного шелка отличается от строения волокна природной целлюлозы. Мельчайшие частицы целлюлозы, ее мицеллы, или кристаллиты, расположены в нитях искусственного шелка в большей пли меньшей степени беспорядочно, а не ориентированы вдоль оси волокна, как в природной целлю.тозе. На физические свойства волокна оказывает влияние ослабление связей между мицеллами и увеличение активной поверхности. Это приводит к повышению адсорбционной способности искусственного шелка по отношению к воде и красителям, а также к уменьшению химической и механической прочности. Устойчивость искусственных и природных волокон целлюлозы по отношению к действию ферментов тоже не одинакова волокна искусственного шелка при действии целлюлазы , содержащейся в улитках и других беспозвоночных, сравнительно легко и полно превращаются в сахара, тогда как расщепление природной клетчатки (хлопка) происходит значительно медленнее. [c.465]

    В агрохимических лабораториях титриметрические методы используют при определении содержания азота в аммиачных и аммиачно-нитратных удобрениях (в том числе и по методу Кьельдаля), карбонатной и общей жесткости природных вод, слабых органических кислот в растительном материале, карбоната кальция в известковых удобрениях, примесей магния в калийных удобрениях. Титриметрия используется также в анализе гербицидных препаратов для определения содержания 2,4-дихлорфеноксиацетата и трихлорацетата натрия, цинка в цинебе, меди в хлороксиде меди(П) и т.п. [c.229]

    Имеющиеся экономические характеристики процессов получения водорода, так же, как и прогнозные оценки стоимости основных видов горючего, конечно, носят приближенный характер. Однако из всего многообразия оценок можно выделить характерные тенденции, что и сделал в своей обзорной работе Чао [576]. На рис. 11.5 приведены зависимости стоимости производства водорода от стоимости основных видов горючего (уголь, нефть, природный газ, атомная энергия) с 1970 до 2020 г. Этот график составлен на основе ряда литературных источников и передает основную тенденцию, в соответствии с которой водород, получаемый с использованием атомной энергии, после 1990 г. станет более дешевым горючим, чем нефть и газ. А из всех методов получения водорода наиболее экономичным будет термохимический метод разложения воды. Далее указывается, что при капитальных вложениях в ядерные реакторы 60 долл/кВт (терм.) капитальные вложения в установку по производству водорода термохимическим методом составят 80 долл/кВт (терм.) против 40 долл/кВт для установок обычного парового риформинга углеводородов, очень чувствительных к ценам на исходное сырье [883, 884]. Если ВТГР и промышленная установка термохимического разложения воды будут строиться только для нужд аммиачного производства, то для получения 1,5 млн. т/год аммиака потребуется реактор мощностью 800 тыс. кВт(эл.). [c.585]

    Связывание азота воздуха в промышленности. Природные запасы азотсодержв. щих минералов и других источников связанного азота (аммиачная вода в газификации угля, животные и растительные продукты, деготь) невелики, поэтому воздух, несмотря на его химическую инертность, служит главным и почти единственным источником аяота для получения всех его важнейших соединений. Связывание азота из воздуха в промышленности проводится с помощ,ью водорода в синтезе аммиака или с помощью карбида кальция в синтезе цианамида кальция (см. IS.7). Из атмосферы Земли, содержащей 3 10" т азота, ежегодно на промышленные нужды отбирается 1 10 т азота. [c.340]

    Те же основные группы отработанных вод образуются при получении аммиака из природного газа. Незагрязненными являются охлаждающие воды загрязненные воды образуются при компрессии газа, медно-аммиачной и щелочной его очистке и регенерации медно-аммиачного раствора, при моноэтаноламиновой очистке, сжижении аммиака и продувке котлов при сжигании СО-фракцин. [c.226]

    Изоморфная замена Na+ на или NH сильно ограничена. Структура К. островная. Калиевые и аммиачные К. принадлежат к альфа-типу, отличающемуся от натровых гамма-квасцов несколько большим размером октаэдра Me+IHaO) и меньшим расстоянием Ме+ — SO4. Сингония кубическая, вид симметрии дидодекаэдрический. Природным образцам свойственны землистые массы, корки, выцветы, плотные зернистые агрегаты, налеты. Кристаллы, полученные искусственно, имеют вид октаэдров, кубов и комбинаций октаэдра с пептагонододекаэдром. Спайность (см. Спайность минералов) по (111) едва заметна. Плотность К. от 1,6 до 1,8 г см . Твердость 1—3. Растворимость в воде высокая в 100 мл воды — 11,4 г (т-ра 20° С) калиевых, 110 г (т-ра 15° С) безводных натровых и 19,2 г (т-ра 25° С) аммиачных. Вкус сладковатый, вяжущий. Цвет белый, бесцветный (см. Цвет минералов). Блеск (см. Блеск минералов) стеклянный. Излом (см. Излом минералов) раковистый и занозистый. В проходящем свете бесцветны, изотропны, иногда аномально двупре-ломляют (мех. напряжения). Показатели преломления п = 1,456 (калиевых), 1,438 (натровых) и 1,460 (аммиачных). При нагревании К. вначале расплавляются в собственной кристаллизационной воде (т-ра [c.563]

    Присутствие аммиачного азота в водах подземных источников Гобычно бывает результатом природных восстановительных процессов. На некоторых установках по кондиционированию воды аммиак вносится при дезинфекции воды хлорамином. [c.95]

    Сода кальцинированная, сода углекислая, натрий углекислый безводный (прокаленный), Ма2СОз. Белый мелкий кристаллический порошок, легко растворимый в воде. В сыром помещении поглощает влагу и слеживается. Различают два вида соды аммиачную и природную. [c.116]

    Сода кальцинированная аммиачна я— получают по аммиачному способу. Процесс состоит из следующих операций растворение аммиака в природном или искусственном рассоле поваренной соли, обработка полученного аммиачносоляного раствора углекислым газом из известково-обжигательных печей (карбонизация) с выделением в осадок бикарбоната натрия, отделение и промывка осадка—бикарбоната от маточного раствора, кальцинация (прокалка) бикарбоната—разложение на соду кальцинированную и углекислоту, возвращаемую в процесс. Аммиак из маточного раствора, содержащего главным образом хлористый аммоний, регенерируется обработкой раствора известковым молоком и возвращается в процесс. Практически неизбежные потери аммиака компенсируются вводом в процесс соответствующего количества концентрированной аммиачной воды. В качестве отхода получается хлористый кальций. [c.117]

    Естественные и искусственные рассолы. В некоторых районах месторождений каменной соли имеются подземные соляные озера и ключи—результат выщелачивания каменной соли грунтовыми водами например, у нас в районе Березников и Соликамска на Северном Урале, в районе Арте-мовска и т. д. Выпарка природных рассолов дает так называемую выварочную соль. Солевые варницы издавна существовали в районе Соликамска (соли Камские). Иногда, например, для питания аммиачно-содовых заводов, целесообразно передавать соль от месторождения по трубе, в виде концентрированного рассола, получаемого путем нагнета -ния воды в буровые скважины. [c.51]

    Действуя на синие раствэры солей окиси меди сернистою, фосфористою кислотою и тому подобны йи низшими степенями окисления, можно получить бесцветные растворы солей закиси меди. Особенно ясно и легко совершается это при помощи серноватистонатровой соли Na S O , которая при этом окисляется. Закись меди может быть получена не только чрез раскисление окиси меди, но также непосредственно из самой металлической меди, потому что это последняя, окисляясь при накаливании на воздухе, дает сперва заквсь меди. Так ее и приготовляют в большом виде, нагревая медные листы, свернутые в спираль, в отражательной печи. При этом требуется наблюдать,- чтобы воздух не был в большом избытке и чтобы образующийся слой красной закиси меди не начал переходить в черную окись меди. Если, затем, окисленный лист меди разгибать, то хрупкая закись меди отлетает от мягкого металла. Полученная таким образом закись легко плавится. Окись меди, при прокаливании с порошкообразною медью (а такой порошок меди получают многими способами, напр., погружая в раствор медной соли цинк, или прокаливая окись меди в водороде), дает легкоплавкую закись меди Си - СиО = Си О. Природная и искусственная закись меди имеет уд. вес 5,6. Она в воде нерастворима, на воздухе (безводная) не изменяется, при прокаливании же поглощает кислород, образуя СиО. При действии кислот закись образует раствор соли окиси и металлическую медь, напр. Си О - - №SO = u + uSO -f- №0. Однако крепкая соляная кислота, растворяя закись меди, не выделяет металлической меди, что происходит вследствие того, что образующаяся u l растворима в крепкой соляной кислоте. Закись меди растворяется также и в растворе аммиака, и тогда, без доступа воздуха, получается бесцветный раствор, синеющий на воздухе и поглощающий кислород, от превращения закиси в окись. Посиневший [раствор] может быть обратно переведен в бесцветный, от погружения медной пластинки, потому что металлическая медь раскисляет окись, находящуюся в аммиачном растворе, в закись. Закись меди, сплавленная со стеклом и солями, образующими стеклообразные сплавы, окрашивает их в красный цвет, и такое стекло употребляется для украшений. Этим можно пользоваться для открытия меди посредством паяльной трубки нагревая взятое медное соединение с бурою в пламени паяльной трубки, в восстановительном пламени получают красное стекло, а в окислительном пламени — зеленое от перехода закиси в окись. [c.635]

    Авторам [206] не удалось получить описанный Нанджио [207] адсорбционный каталитический пик восстановления водорода в аммиачно-хлоридных растворах Со(II) с диметилглиоксимом. Впоследствии [203] этот пик использовали для определения следов кобальта в природных водах (см. разд. IV, 2.5). На ДИП, регистрируемых прибором А-3100 (модель 3), наблюдалась пропорциональная зависимость между высотой каталитического пика и концентрацией Со(П) в интервале 3,4-10 —1,7-10 М. [c.163]

    При определении цинка в природных водах Абдулла и Ройль [203] проводили предварительное концентрирование на хелатной смоле. В качестве фона служил аммиачно-хлоридный буферный раствор СаСЬ (см. разд. IV.2.5). На этом фоне ДЛц Zn(II) и Ni(II) составляют 0,30 В, а пики Zn(II) и Со(II) сливаются. Однако восстановление Со (II) протекает менее обратимо, чем восстановление Zn (II). Следует также [c.193]

    Пар среднего давления (Р=3,8—4,2 МПа, /=330—335 °С) используют на технологический процесс конверсии природного газа трубчатой печи в конденсационных турбинах для привода центробежных компрессоров природного газа 33, воздуха 31, аммиачного компрессора 30 в конденсационных турбинах для приводов насоса питательной воды 28, насоса полубедного раствора поташа 24 в противодавленческих турбинах для приводов насоса питательной воды 34, циркуляционных насосов питательной воды на котлы высокого давления 8, насоса бедного раствора поташа, насоса подачи питатель-шой воды из установки для ее приготовления в противодавленческих турби- [c.120]

    Эта соль кальция встречается в природе намного реже, чем карбонат, сульфат или фосфаты кальция. Ее получают как побочный продукт в производстве соды аммиачным способом. Природный хлористьиг кальций это обычно кристаллогидрат СаС1г 6Н2О, который при нагревании теряет сначала четыре молекулы воды, а затем и остальные. [c.304]

    EJfflTPA КАЛЬЦИЕВАЯ (нитрат кальция, кальций азотнокислый, селитра известковая, селитра норвежская). a(N0s)2- Азотное удобрение. В 1 л воды при 0° растворяется 1010 г. Получается путем нейтрализации азотной кислоты известняком и частью в качестве побочного продукта при производстве нитрофосфатов на основе азотнокислотпого разложения природных фосфатов. Выпускается в гранулированном виде с небольшой примесью аммиачной селитры. Содержит 15,5—16% азота. Весьма гигроскопична, но при храпении во влагонепроницаемой таре и в сухих складах гр -нулированная С. к. сохраняется сравнительно удовлетворительно и в сухом состоянии хорошо рассевается. Растения избирательно поглощают нитратный ион, большая часть кальция остается в почве и, таким образом, С. к. является физиологически щелочным удобрением. Поэтому применение ее на кислых почвах, особенно под растения, чувствительные к кислой реакции среды (сахарная свекла, яровая пшеница и др.), обычно оказывает лучшее действие, чем применение физиологически кислых азотных удобрений (сульфат аммония, хлористый аммоний, аммиачная селитра). Широко применяется за рубежом. Мировое производство С. к. в пересчете па азот в последние годы достигло 350—380 тыс. т. [c.258]

    Натрий, калий, кальций, магний. Для определения натрия, калия, кальция и магния, являющихся макрокомпонентами природных и большинства сточных вод, нередко используют классическую полярографию [35, 36]. Для определения малых количеств магния в растворах (содержащих большое количество кальция) предложен полярографический метод. Метод основан на использовании второй волны восстановления о,о -диоксиазобензола при нолярографировапии растворов в присутствии магния на фоне аммиачного буферного раствора. [c.158]

    Условимся называть все материалы, поступающие на заводы для химической переработки, независимо от того, как они получены, химическим сырьем. Например, сырьем для производства водорода служит в больщин-стве случаев природный горючий газ, для производства аммиака — водород и азот, азотной кислоты — аммиак, вода и кислород воздуха, аммиачной селитры — аммиак и азотная кислота. [c.27]

    Одним из самых универсальных реагентов для группового извлечения микропримесей является 8-оксихинолин (рис. 13). Он хорошо экстрагирует элементы, образующие характерные гидроксо- и аммиачные комплексы, и ряд других элементов, в том числе и элементы, образующие соединения с халькогенидами 8з-8 Этот реагент успещно применяется при анализе веществ высокой чистоты, так как существуют довольно надежные способы очистки его от примесей металлов. Используют окси-хинолин и для анализа минерального сырья, природных вод и других объектов (табл. 4). [c.53]


Смотреть страницы где упоминается термин Вода природная аммиачная: [c.230]    [c.169]    [c.546]    [c.323]    [c.30]    [c.134]    [c.113]    [c.374]    [c.23]   
Общая химическая технология (1969) -- [ c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиачная вода



© 2025 chem21.info Реклама на сайте