Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метан применение с аммиаком

    Активным катализатором при этом является платина. Реакция не сопровождается образованием побочных продуктов. По литературным данным [81, 82] выход цианистого водорода превышает 80% на введенный аммиак и 91% на метан. Реакция эндотермична. Высокая температура, необходимая для инициирования и дальнейшего протекания реакции, должна поддерживаться при помощи внешнего обогрева. Полузаводская установка с применением обогреваемого газом реактора, содержащего керамические трубы, облицованные платиновым катализатором, эксплуатировалась в ФРГ [6]. Установлено [3, 4], что если наряду с метаном и аммиаком реакционная смесь содержит кислород, то цианистый водород получается с несколько меньшим выходом, но реакция протекает без необходимости дополнительного обогрева вследствие положительного теплового эффекта ее. Эту реакцию синтеза цианистого водорода можно представить уравнением [c.224]


    Вычеркивая из полученного списка газы с молекулярными весами, вплотную приближающиеся к 29, и неон, как газ мало доступный, мы ограничиваем список летных газов всего четырьмя представителями водородом, гелием, метаном и аммиаком. Применение двух первых газов в воздухоплавании известно. Метан фактически использовался в качестве летного газа при наполнении воздушных шаров светильным газом, в состав которого он входит. Аммиак же предлагался в качестве летного газа взамен огнеопасного водорода для наблюдательных аэростатов французской армии. [c.35]

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]

    Процесс получения ацетилена методом неполного сжигания, в котором сырьем являются метан из природного газа и 90—95% ный кислород, эксплуатируется в промышленном масштабе в США, Италии, а также в Германии. В этом процессе на каждую весовую часть ацетилена получают не менее 2 весовых частей газа синтеза (00 + На), поэтому описанный процесс применяют там, где одновременно имеется производство синтетического аммиака или синтетического метанола. Такое применение смеси СО и Иг более выгодно, чем использование ее в качестве энергетического топлива. Метод частичного сожжения углеводородного сырья можно рассматривать как вариант метано-кислородного процесса (гл. 3), в котором часть метана превращается в весьма ценный ацетилен. [c.279]


    С промышленной точки зрения метан является более перспективным исходным материалом для синтеза цианистого водорода, чем ацетилен. Реакции (1) и (2) весьма эндотермичны, и в случае применения обычного трубчатого реактора интенсивный подвод большого количества тепла для поддержания температуры 1500° представляет в промышленных условиях очень значительные трудности. Выше упоминалось о проведении реакции в электрической дуге как об одном из решений этой проблемы. Вторым решением является сожжение части реагирующих газов внутри реактора. Последний способ был применен при осуществлении реакции (2) и используется сейчас при промышленном производстве цианистого водорода из нефтяного сырья. Этот метод разработан в начале тридцатых годов Андрус-совым [6], который пропускал при 1000° над платиновым катализатором смесь аммиака, кислорода и метана, полученного гидрированием угля или из коксовых газов. В смеси должно находиться достаточное количество кислорода, чтобы могла протекать реакция [c.376]

    До сих пор рассматривались молекулы, которые можно было принимать за упругие шары. Такие молекулы встречаются в природе очень редко, и при рассмотрении свойств реальных систем, приходится обращаться к другим моделям. Чаще всего химия руководствуется экспериментальными законами валентности. Они, например, утверждают, что обычные валентности водорода, кислорода, азота и углерода равны соответственно 1,2,3 и 4. Изучение стереохимии и оптической активности показывает, что два атома водорода 15 молекуле воды являются совершенно эквивалентными то же можно ска- )ать о трех атомах водорода в аммиаке и о четырех атомах в метане. Эти молекулы симметричны первая является плоской, вторая — пирамидальной, а третья — тетраэдрической. Точное применение законов механики внутриатомным и внутримолекулярным движениям всегда представляет трудную задачу, и практически такое применение очень редко оказывается возможным. Поэтому приходится довольствоваться рассмотрением молекулярных моделей, законы динамики которых лишь приблизительно соответствуют действительным законам поведения молекул. [c.77]

    Метан составляет сырьевую основу важнейших химических промышленных процессов получения углерода и водорода, ацетилена, кислородсодержащих органических соединений — спиртов, альдегидов, кислот. Получаемый при термическом разложении метана (реакция 1) мелкодисперсный углерод (газовая сажа) используется как наполнитель при производстве резины, типографских красок. Водород используется в различных синтезах, в том числе в синтезе аммиака. При высокотемпературном крекинге метана (реакция 2) получается ацетилен, необходимая высокая температура (1400—1600 С) создается электрической дугой. Одной из важных областей применения метана является получение так называемого синтез-газа — смеси оксида углерода(П) и водорода (реакции 3 и 4), используемого в дальнейшем для получения многих органических соединений. [c.69]

    При возможности использования в качестве дешевого сырья парафиновых углеводородов большего молекулярного веса, чем метан, и при возможности сочетания установки по производству ацетилена с установкой, производящей аммиак и метанол, можно применять процессы пиролиза типа СБА. Объединение установок, производящих и потребляющих ацетилен, с установками для получения аммиака и метанола, ведет при полном использовании промышленных мопщостей к повышению их экономичности. Для создания таких комбинатов требуются очень большие капитальные затраты в течение довольно короткого времени, а также наличие рынков сбыта для всех продуктов. При наличии дешевых парафиновых углеводородов тяжелее метана возможно применение процессов тина процесса Вульфа для производства одного ацетилена (или ацетилена и этилена), не связанного с производством аммиака или другими процессами. Для процесса Вульфа не требуются установки, разделяющие воздух, и, следовательно, отсутствует побочный продукт такого разделения — азот, а выход остаточного газа в результате использования большей его части для обогрева печи и парообразования снижается до минимума. Возможно проведение процесса в таком режиме, когда весь остаточный газ будет расходоваться в самом процессе для обогрева печи, парообразования и для газогенераторного привода компрессоров. Этим обеспечиваются минимальные энергетические затраты и не остается побочных продуктов для использования за пределами установки. Возможно использование установок типа Вульфа или Копперс-Хаше для совместного производства ацетилена и бытового газа. [c.188]

    Применение закалки в случае гетерогенно-гомогенных каталитических процессов, как это следует из данных по окислению метана [7, 8], аммиака и водорода,— весьма действенный рычаг управления ходом реакции. В качестве примера можно привести тот факт, что нами обнаружена целая группа катализаторов, окисляющих метан в формальдегид с высокой избирательностью. Однако эти же катализаторы при испытании их в обычных реакторах, широко используемых ныне для испытания катализаторов, особых каталитических свойств не проявляют, ибо основным продуктом реакции становятся СОг и НгО. [c.68]


    Широкое применение в нефтехимической промышленности находят также водород, метан и ацетилен. Большое количество водорода используется при получении аммиака из метана получают метанол, формальдегид и пластмассы ацетилен служит сырьем для производства акрилонитрила, тетрахлорэтана, моновинилацетилена, соответственно даюш,их бутадиен-акрило-нитрильный каучук, неопрен, раз-ати личные растворители и пр. [3 ]. [c.258]

    Водород может быть выделен из этой смеси и применен для синтеза аммиака и для других производств. При высокой температуре (вольтова дуга) метан разлагается на элементы  [c.38]

    В качестве холодильных агентов обоих циклов могут быть использованы одни и те же вещества так, например, этилен может быть применен как холодильный агент и во внешнем и во внутреннем холодильных циклах. В системе с внешним холодильным циклом этилен циркулирует, не смешиваясь с потоком технологического этилена в системе же с внутренним холодильным циклом подаваемый в систему холодильным компрессором циркуляционный этилен непрерывно смешивается с продуктивным, а затем отделяется от него. В схемах разделения углеводородных газов в качестве холодильных агентов могут быть использованы также пропан, либо пропан-пропиленовая смесь, этан, метан и др. На некоторых заводах как у нас, так и за рубежом в качестве хладагента применяется аммиак. [c.204]

    Углеводородные газы — метан и ацетилен — адсорбируются значительно слабее, чем аммиак, хлористый этил или сероводород, но лучше, чем такие газы, как азот и водород. В ряду парафиновых предельных углеводородов (метан, этан, пропан, бутан, и т.д.) адсорбция увеличивается с увеличением молекулярного веса адсорбента. Пары жидких углеводородов — иентана, гексана, бензола и др. — настолько хорошо поглощаются углем, что на этом явлении основано практическое применение угля как адсорбента для извлечения жидких углеводородов из природных и промышленных газов, а также пз воздуха. Поскольку адсорбция различных газов на каком-либо адсорбенте неодинакова, то это свойство может быть использовано для разделения газовых смесей на отдельные комноненты. [c.22]

    Несомненная экономическая эффективность применения природных газов для производства аммиака обусловила их использование на большинстве азотнотуковых комбинатов СССР. Помимо природного газа, для синтеза аммиака используют другие газы, содержащие метан — попутные, коксовый, газы нефтепереработки. [c.93]

    В целях применения чистого воздуха для контактного окисления аммиака в некоторых случаях целесообразно при строительстве предприятий предусматривать дальний воздухозабор из мест, где отсутствуют обычные заводские загрязнения пыль железа, фосфатов, песка, глинозема, цемента, извести газообразные вещества — ацетилен, сероводород, метан, сернистый газ, окислы азота, хлор, окись углерода и др. Воздухозаборные трубы рекомендуется строить высотой 100—150 м. [c.68]

    Д. С. Циклис и М. Д. Бородина [27] исследовали синтез синильной кислоты из аммиака и метана. Эти авторы опубликовали также результаты, полученные при попытках синтеза ацетилена путем адиабатического сжатия смесей метана с азотом, аргоном, гелием, криптоном и ксеноном [28]. Реакция образования ацетилена из метана не протекала при сжатии чистого метана до 10 кбар. Однако применение смесей метана с указанными выше газами, обладающими меньшей теплоемкостью по сравнению с метаном и обеспечивающими более высокую температуру при адиабатическом сжатии, позволило авторам получить ацетилен при этом содержание ацетилена в газовой смеси достигало 0,5 об. %, что составляло свыше 30% от равновесного выхода ацетилена в этих условиях. [c.148]

    Для анализа сложных газовых смесей применяют хроматографы с несколькими колонками. В работе [64] приведена газовая схема хроматографа с тремя колонками для контроля состава производственной смеси при получении аммиака. В смеси газов на входе в аммиачный конвертор содержатся водород, аргон, азот, аммиак и метан. Содержание этих компонентов измеряют с помощью детектора по теплопроводности. В качестве газа-носителя используют водород, поэтому водород, имеющийся в анализируемой смеси, детектором не фиксируется и его количество должно быть определено с помощью постоянной дозы или газоанализатором на водород. В момент отбора пробы колонки включены последовательно. После того как все подлежащие определению компоненты перейдут во вторую колонку, первая колонка отключается и продувается в обратном направлении для удаления тяжелых примесей. После перехода аргона, азота и метана в третью колонку она отключается от системы, и аммиак из второй колонки поступает непосредственно в детектор, затем третья колонка снова включается в систему и фиксируется ранее задержанный в ней аргон, азот и метан. В работе [64] рассмотрены варианты применения хроматографов в системах автоматического регулирования технологических процессов. [c.233]

    Другим примером комплексной переработки сырья может служить коксование угля. При коксовании углей получают кокс, коксовый газ и каменноугольную смолу. Раньше использовался только кокс (на металлургических заводах), коксовый газ сжигался как топливо, а каменноугольная смола была обременительным для коксового завода отходом, не находящим применения. В настоящее время каменноугольная смола, представляющая собой сложную смесь, включающую свыше 300 различных органических соединений, является ценнейшим сырьем. Из нее получают многие органические соединения, используемые для производства полупродуктов и красителей, всевозможных фармацевтических продуктов, смазочных масел и т. д. Из коксового газа выделяют аммиак, сероводород, бензольные углеводороды, а оставшуюся часть газа, содержащую в основном водород (до 60%) и метан (до 30%), разделяют методом глубокого охлаждения, получая водород и другие ценные продукты. [c.18]

    Для обессеривания сернистого кокса по первому способу применяют различные реагенты пар, воздух, паровоздушную смесь, азот, водород, метан, хлор, аммиак, нефтяные газы (низкотемпературное обессеривание с применением газов). Этот способ, в соответствии с ранее рассмотренным механизмом реакций прокаливания при низкнх температурах, основан либо на быстром отводе H2S из зоны реакции, либо на химическом связывании продуктов первичного распада сернистых соединений. Подача твердых реагентов (А1СЬ, NaOH и др.), которые могут связывать HjS, также должна способствовать глубокому обеосериванию. [c.205]

    По первому способу для обессеривания сернистого кокса применяют различные реагенты пар, воздух, паровоздушную смесь, азот, водород, метан, хлор, аммиак, нефтяные газы (низкотемпературное обессеривание с применением газов). Этот способ, в соответствии с ранее расмотренным механизмом реакций прокаливания при низких тем пературах (см. стр. 200—202), основан либо на химическом связывании продуктов первичного распада сернистых соединений и быстром отводе их из зоны реакции, либо (на более поздних стадиях) на использовании химической активности и кинетической энергии газов для разрушения вторичных комплексов. Подача твердых реагентов (А1С1з, КаОН и др.), которые могут связывать НзЗ, также должна способствовать глубокому обессе-риванню. [c.212]

    По первому методу для обессеривания сернистого кокса применяли различные реагенты пар, воздух, паро-воздушную смесь, азот, водород, метан, хлор, аммиак, нефтяные газы. Применение газов, в соответствии с ранее рассмотренными механизмами реакций, протекающих в процессе прокалки кокса при 600—900 °С, основано либо на химическом связывании выделяющихся сернистых соединений, либо на быстром отводе первичных продуктов из зоны реакции. В некоторых случаях возможно совместное действие химических и физических факторов. Подача водорода сдвигает равновесие реакции (30) вправо и способствует быстрому отводу П З из системы. Подача твердых реагентов (А1С1д, НаОН и др.), которые могут связывать НаЗ, также должна способствовать более глубокому обессериванию. [c.90]

    Особенно заметно влияние поверхностной обработки при применении высокомодульных волокон с модулем упругости более 400 ГПа [9-32]. В этом случае увеличивается активнм площадь поверхности волокна. Механизм и методы активации поверхности аналогичны используемым для саж. Применяются обработка на воздухе при 400-800 С, в озонированном воздухе при 120-150°С, в возбужденных плазмой кислороде или аммиаке, ионной бомбардировкой поверхности волокна кислородом, азотом, водородом, метаном [9-150]. [c.531]

    S ранних работах [2, 3] алкилирование ацетилидов щелочных -металлов проводилось в жидком аммиаке при действии органических галогенидов или сульфатов в качестве алкилирующих агентов. Среди галогенидов бромиды дают наилучшие результаты, однако эта реакция имеет ограничения ввести можно только первичные алкильные группы, не имеющие разветвления у второго атома углерода. Кроме того, при применении алкилгалогенидов этот метод не дает удовлетворительных результатов при синтезе метил- или этил-ацетиленов, а в случае высших алкилгалогенидов необходимо работать под давлением. Если исходить из бромидов от w-пропил-до н-гексилбромида, то выходы колеблются от 40 до 80%. При использовании диметил- или диэтилсульфата в качестве алкилн-рующего агента происходит замещение лишь одной алкильной группы и конверсия достигает от 50 до 100%. Другие сложные эфиры, такие, как метан- и я-толуолсульфонаты, а также, ацетилиды лития и калия тоже использовались, но в ограниченной степени. [c.188]

    Метод оценки коэффициентов фугитивности твердой фазы, разработанный Пэрришем и Праузницем [541], позволяет рассчитывать давления при диссоциации смесей газов, как образующих, так и не образующих гидраты. На рис. 9.24 представлена диаграмма давление — состав в диапазоне образования гидратов для системы пропан + метан + вода. В целях предотвращения образования гидратов в газопроводах широко применяется впрыскивание метанола, гликоля или аммиака. В последнее время было проведено изучение количественной стороны подобных процессов. Ментен, Пэрриш и Слоун (неопубликованная работа, 1982) проанализировали эффект применения ингибиторов путем исследования их воздействия на коэффициент активности воды. Макогоном [84] выполнен обзор современных методов решения проблем, связанных с образованием гидратов газов. [c.471]

    Согласно теории сначала должна разрываться связь N—О, у которой =18,5, затем связь С1—С, потому что у нее Е меньше, =5,8, затем С—N (Е = —26,0), и лишь гаосле того <2—( = —48,8 ктл1моль). Анализ продуктов реакции, проведенной при разных все более высоких температурах, показал, что опыт целиком подтверждает предсказания теории сначала получаются п-хлоранилин и вода, затем анилин и НС1, затем бензол и аммиак и, наконец, метан. Прежде эта реакция не была описана. Новая, более детальная работа 46] с применением газожидкостной хроматографии подтверждает эти результаты. [c.26]

    Чтобы это осуществить, через реакционную камеру пропускают смесь метана, водяного пара к кислорода. Однако же реакция экзотермического окисления может доставить до статочное количестЮ тепла, способ-ное уравновесить эндотермическую реакцию системы метан— водяной пар лишь при применении больших количеств кислорода в общем все же прихо дится применять дополнительное обогревание реакционной камеры извне. Если вместо кислорода пользоваться воздухом, то получающиб ся газы будут содержать азот в этом случае, регулируя соотношение составных частей, можно- по лучить смесь, пригодную для синтеза аммиака. [c.312]

    В качестве промышленного сырья было бы весьма заманчиво использовать некоторые широко распространенные вещества, включая азот, моноксид и диоксид углерода и метан. Однако это относительно инертные соединения, и чтобы они могли участвовать в реакции, необходимы катализаторы. В этой ситуации представляется перспективным применение растворимых металлоорганических соединений. Например, при помощи растворимых соединений молекулярного азота (N2) с оловом и молибденом удается осуществить синтез аммиака в мягких условиях. Связи углерод — водород в соединениях типа метана и этана,нереакционноспособных в обычных условиях, разрываются родий-, рений- и иридийорга-ническими комплексами. Надежда на осуществление синтеза сложных молекул из моноуглеродных (моноксида и диоксида углерода) подкрепляется недавними экспериментами, в которых наблюдалось образование углерод-углеродных связей на металлических центрах в составе растворимых металлоорганических соединений. Большое значение имеет синтез соединений с кратными связями между углеродом и металлом. Такие соединения катализируют взаимное превращение (метатезис) различных этиленов, проводимое с целью получения исходных материалов для производства полимеров. [c.51]

    В качестве холодильных агентов внешних холодильных циклов этиленовых установок чаще всего применяют пропан, этилен, этан, метан некоторое применение нашли также пропан-пропиленовые смеси, свойства которых из-за близости температур кипения и других физпки-термодинамических параметров незначительно отличаются от свойств чистых компонентов. В европейских схемах часто используется аммиак. Фреоны не нашли применения в качестве холодильного агента этиленовых установок. [c.213]

    Литературные данные по применению метода экстракции в основном связаны с решением трех задач. Первая, наиболее важная задача заключается в выделении изопрена из технических фракций С5 пиролиза с помощью полярных растворителей различных классов. В качестве экстрагентов рекомендованы ДМФА [99—104], НМП [105— 107], метилкарбитол [108—111], лактопы [112], система из двух растворителей жидкий метан — полярное вещество [113], легкокипяшре растворители, образующие азеотропные смеси с олефинами, например, ацетальдегид, окись пропилена, метанол, метилформиат [114], а также смеси перечисленных веществ друг с другом и с водой. Вторая задача связана с очисткой изопрена и изоамиленов от нежелательных примесей. Так, для отделения от изонрена ацетиленовых углеводородов рекомендуется водный ДМФА [115]. Для извлечения примесей ЦПД может быть использована смесь жидкого аммиака с модификатором [116], а также НМП [117, 118]. И, наконец, третья, более частная задача состоит в удалении из изопрена некоторых водо-растворимых примесей (сернистые соединения, формальдегид, ацетон, АН, аммиак) путем отмывки водой или водными растворами щелочи, гидроксиламина и т. д. [119—122]. [c.237]

    Водород обезуглероживает сталь по границам зерен. Этот процесс наступает при 400° С и уменьшает прочность и вязкость материала. Углеродистые стали разрушаются, потому что перлит восстанавливается в углеводород (метан) [422]. Применение нелегированного железа возможно до 250—260° С при давлении 300 ат. Карбидообразующие добавки (1,5% Сг и 0,5% Мо) расширяют температурный интервал эксплуатации аппаратуры, применяемой (при повышенных давлениях) при синтезе аммиака до 450° С. Для более высоких температур необходимо повышенное содержание хрома. Установлены следующие градации сохранения стойкости при парциальном давлении водорода 300 ат  [c.144]

    На некоторых заводах свежая азотоводородная смесь содержит повышенное количество инертных газов (метан и аргон), которые, накапливаясь в цикле синтеза, снижают парциальное давление азотоводородной смеси и уменьшают производительность агрегатов синтеза аммиака. Понизить концентрацию инертных газов можно, непрерывно отводя из цикла синтеза часть циркуляционного газа. Однако более экономично применение двух- или трехцикличной схемы (рис. 102). [c.245]

    Английская фирма I I взяла патент на реактор для двухступенчатого окисления аммиака и метана . Первая стадия проводится при 800—1000 °С полученные газы (N0, NOa, Н2О, N2 и О2) сначала охлаждают до 400—600 °С, затем смешивают с метаном и подают на вторую ступень, где создается температура 1200—1400 °С и процесс идет на платиновом или платино-родиевом трегерном катализаторе. Выход синильной кислоты при двухстадийном процессе достигает 65—69% по прореагировавшему аммиаку > Способ оказался недостаточно эффективным, сравнительно сложным по аппаратурному оформлению и экономически неоправданным и поэтому не нашел промышленного применения. [c.121]

    В эти же годы большие усилия ученых и инженеров были направлены на разработку технически совершенных и экономичных методов производства чистых азота и водорода для синтеза аммиака [14—22]. Первые аммиачные заводы работали па азото-водородной смеси, получаемой из полуводяного газа методом конверсии окиси углерода с водяным паром, т. е. фактически сырьем были кокс и каменный уголь. Вскоре после первой мировой войны были разработаны промышленные методы производства водорода из коксового газа глубоким охлаждением его до температуры —200° С. При этом конденсируются все газообразные компоненты коксового газа — этилен, этан, метан, окись углерода, а остающийся нескондепсированным водород промывается жидким азотом для освобождения от следов окиси углерода. Были созданы совершенные электролизеры с униполярными электродами, а также высокопроизводительные электролизеры фильтр-прессного типа с биполярными электродами для электролиза воды, которые нашли широкое применение в Норвегии, Италии и Японии. В небольшом масштабе стал применяться железопаровой способ получения водорода, использовался побочный водород других производств, например производства хлора электролизом раствора поваренной соли. Наконец, был разработан метод производства водорода конверсией метана и углеводородов нефти с водяным паром при атмосферном давлении и под давлением 2—5,1 МПа. Последний метод оказался наиболее экономичным, получил большое распространение после второй мировой войны и начал постепенно вытеснять другие. [c.13]

    В большинстве установок для разделения крекинг-газа применяются посторонние хладоагенты, главным образом аммиак и этилен, а в последнее время американской фирмой А1г Redu tion Оо, New York построены установки без применения внешних хладоагентов. В случае получения компонентов высокой чистоты более целесообразно вести процесс при более низких температурах. Чтобы избежать потери больших количеств этилена с уходящими низко-кипящими компонентами — водородом и метаном, необходимо промывать газ жидким метаном. Эта операция требует, чтойы в определенных частях установки была создана более низкая температура, чем температура кипения метана при давлении рабочего процесса. Эта температура может быть повышена примерно до —90 С при значительном повышении -рабочего давления что связано с добавочным расходом энергии на сжатие газа. [c.353]

    Наиболее широкое применение в технике получили следующие газы и их смеси атмосферный воздух, кислород, азот, водород, аммиак, углекислота, метан, ацетилен, окись углерода, гелий и др. Из паров большее применение илгеют водяной пар, пары аммиака, пары бензина и др. [c.18]

    Углеводородные газы (метан, зтан, пропан, бутан, этилен, ацетилен) находят применение при производстве пластмасс, синтетических каучуков, химических волокон и т.д. Водород, хлористый водород, оксид углерода и другие широко используются при получении продуктов органического синтеза. Аммиак применяется в холодильной технике, при производстве удобрений и т.д. [c.280]

    Наибольший эффект достигается при применении газофазового метода нанесения пироуглерода, карбида кремния, нитрида бора. В качестве источника пироуглерода используются углеводороды (метан, этан, пропан, бензол и др.) для образования карбида кремния применяется смесь хлорсиланов с углеводородами. Источником углерода может служить также углеродное волокно. Газом-носителем служит аргон, азот, водород, гелий. Изменение термических характеристик [27] УВМ зависит от условий термообработки, количества нанесенного пироуглерода или карбида кремния (табл. 4.4). Для покрытия УВМ нитридом бора применяется смесь B I3-I-NH3, в которой аммиак является источником азота [28], а при нанесении алюминия — пары А1(С4Нэ)з [29]. Покрытие пироуглеродом производится в газовой среде при 900—1200°С, а карбидами и боридом — при 1500 — 1800 °С. [c.307]


Смотреть страницы где упоминается термин Метан применение с аммиаком: [c.212]    [c.331]    [c.321]    [c.8]    [c.141]    [c.115]    [c.216]    [c.150]    [c.95]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.321 , c.322 , c.325 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиак применение



© 2025 chem21.info Реклама на сайте