Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изомеры, масс-спектрометрия

    Электромагнитная радиация, проходящая через вещество, поглощается при определенных энергетических уровнях в молекулах [174]. Существует хорошая интерпретация для результатов, полученных с легкими углеводородными газами и парами в вакуумном ультрафиолете (область Шумана). Цас- и тракс-изомеры легко различаются и идентифицируются [175] были получены значения потенциалов ионизации [176—177] и энергий диссоциации [178], которые хорошо совпадали с данными, полученными с помощью масс-спектрометра. [c.188]


    Применение масс-спектрометрии для идентификации очевидно. Чтобы получить воспроизводимый спектр, обычно используют электронный пучок с энергией 40 — 80 эВ, поскольку этот ускоряющий потенциал выше потенциала возникновения большинства фрагментов. Как показывают уравнения (16.6) — (16.16), может происходить много различных процессов фрагментации, приводящих к большому числу пиков в спектрах простых молекул. На рис. 16.3 изображены пики достаточной интенсивности, обнаруженные в масс-спектре этанола. Учитывая очень слабые пики, которые на этом рисунке не показаны, в общей сложности в масс-спектре этанола наблюдается около 30 пиков. Эти пики низкой интенсивности представляют большую ценность для идентификации, но обычно при интерпретации спектра (т. е. при отнесении процессов фрагментации, приводящих к этим пикам) их не рассматривают. Полезная сводка литературных источников по масс-спектрам многих соединений (в основном органических) приведена в списке литературы в конце главы. Интересный пример идентификации продемонстрирован на рис. 16.4, где показаны масс-спектры трех изомеров этилпиридина. Спектры этих трех очень сложных соединений заметно различаются, что представляет ценность для идентификации. Оптические антиподы и рацематы дают идентичные спектры. Проблему при идентификации создают примеси, поскольку основные фрагменты этих примесей приводят к появлению в масс-спектре нескольких пиков низкой интенсивности. Если одно и то же вещество приготовить в двух различных растворителях, то спектры могут достаточно различаться при условии, что весь растворитель не удален из вещества. Загрязнение углеводородной смазкой также может привести ко многим линиям. [c.320]

    Сопоставляя данные табл. 21 и 22 с данными табл. 24—27, можно прийти к выводу о том, что настояш его равновесия среди структурных изомеров пет, а потому всякие расчеты температуры нефтеобразования обречены здесь на неудачу. Столь же далеки от равновесия и нафтеновые цикланы состава Сю. Из-за серьезных методических трудностей состав этих углеводородов в нефтях был детально расшифрован совсем недавно благодаря наличию большого числа эталонных углеводородов методом хромато-масс-спектрометрии [6). Всего в нафтеновых нефтях во фракции Сю (150—175 С) было определено 87 углеводородов, принадлежащих главным образом к шестичленным нафтенам Хроматограмма этой фракции, а также распределение углеводородов по группам приведены на рис. 25 и в табл. 28. [c.81]


    Состав азотистых оснований, содержащихся в узких фракциях, был исследован методом хромато-масс-спектрометрии. На рис. приведена хроматограмма третьего хроматографического пика— оснований дизтоплива. Установление структур соединений производилось на основании сравнения масс-спектров соединений, содержащихся в узких фракциях, с эталонными спектрами [35, 36], а порядок выхода изомеров был взят из литературы [37]. [c.84]

    Наиболее трудным видом измерений при исследовании равновесия жидкость — пар многокомпонентных смесей является анализ равновесных фаз. Влияние ошибок анализа было сведено к минимуму путем исключения изомеров из состава экспериментальных смесей и везде, где это было возможно, путем такого регулирования состава смеси, чтобы в опытах получать равновесные фазы таких составов, при которых можно легко определять концентрации компонентов. Большинство приведенных коэффициентов распределения получено из данных экспериментов, для которых мольные доли компонентов одной или обеих фаз находились в области 0,020—0,200. Для этой области концентраций ошибка анализа (путем низкотемпературного фракционирования) составляет примерно 0,001 мольной доли точность анализа на масс-спектрометре при тщательной работе примерно такая же. Погрешность полученного экспериментального значения К вследствие возможных ошибок анализа может быть оценена, если определить какое влияние на коэффициент распределения оказывает изменение на 0,001 мольной доли компонента в каждой из фаз. [c.119]

    Таким образом,из-за различий в структуре молекул изомеров и вызываемых ими различий в характере и степени внутримолекулярного напряжения при низкой энергии электронного удара в ионном источнике масс-спектрометра фрагментация молекул изомеров идет различными путями. Это можно использовать как для суждения о структуре молекул изомеров, так и для хроматографического разделения их смесей при использовании масс-спектрометра в качестве детектора, особенно при детектировании по отдельным, образующимся при фрагментации ионам. [c.24]

    Куна С сотрудниками [17]. При расчетах молекулярный вес компонентов принимали равным 100, а температуру кипения—около 90°. Другая колонна, имевшая 61 трубку диаметром 0,2 см и полезной высотой 1,5 м, была использована для разделения изотопов и С при этом разность температур кипения составила всего 0,03°. Число теоретических тарелок в этом слзгчае определяют путем анализа продуктов на масс-спектрометре (см. главу 5.14). В трубке диаметром 0,2 см и длиной 2 м удерживается около 0,5 г жидкости [17]. Метод, предложенный Куном, дает хорошие результаты также при разделении таких близкокипящих изомеров, как ксилолы (рис. 253) или изомерные амиловые спирты. Колонну Куна можно с успехом применять при всех процессах разделения, которые требуют более 100 теоретических тарелок, так как эта колонна обладает исключительно малым значением ВЭТТ. [c.372]

    Масс-спектры состоят из линий, обусловленных осколками молекул эти осколки возникают в результате разрыва молекулы под действием электронного удара. Затем ионизированные осколки и ионы молекул ускоряются в магнитном поле в разной степени в зависимости от величины М е М — масса иона в атомных единицах е — заряд иона в единицах заряда электрона) и таким образом могут быть разделены. Ионизация происходит в ионном источнике масс-спектрометра, большей частью путем бомбардировки электронами. Ионные токи, обусловленные каждым видом ионов, усиливаются и регистрируются и являются мерой вероятности, с которой возникает данный осколок. Положение линий на шкале масс и относительные частоты ионов являются одинаково важными характеристиками масс-спектра данного соединения. Частоту наиболее интенсивной линии в спектре считают равной ста и относят частоты всех других ионов к этой линии (относительный спектр). Различные функциональные группы соединений обусловливают, как правило, различные масс-спектры, которые можно предсказать заранее. Относительный спектр при обычных условиях большей частью хорошо воспроизводится и характеризует данное вещество. Часто масс-спектры изомеров различаются между собой по относительной интенсивности линий, и это обстоятельство достаточно для однозначной идентификации изомеров даже в тех случаях, когда они имеют одинаковые массовые числа, как это большей частью бывает. [c.265]

    Качественно можно утверждать, что колебательные спектры многоатомных молекул уникальны. Вследствие чувствительности нормальных колебаний к различиям в массе и структуре молекул каждая молекула имеет свой собственный колебательный спектр ( отпечатки пальцев ). Это особенно важно для анализа смесей изомеров, которые нельзя различить методом масс-спектрометрии, и для многих других задач. [c.187]


    С использованием масс-спектрометра высокого разрешения можно измерить молекулярные массы с точностью до 10 а.е.м. и ниже при помощи внутреннего стандарта известной массы. Однако даже с этой точностью редко получают четкое совпадение с одним элементным составом. Число возможных составов возрастает с увеличением числа элементов, которые, как предполагается, присутствуют в молекуле, и с увеличением молекулярной массы, но число возможных комбинаций в этом списке обычно относительно невелико. Это иллюстрирует пример в табл. 9.4-7 только четыре из пятнадцати возможных комбинаций для массы 126,05 0,05 приводят к разумным структурам. Однако в большинстве случаев возможно наличие изомеров. Для того чтобы различить изомеры, требуется обработать полный масс-спектр и, возможно, использовать другие методы, например спектроскопию ЯМР. [c.289]

    Вполне вероятно, что наиболее важным приложением масс-спектрометрии является идентификация и подтверждение состава продуктов синтеза или компонентов, извлеченных из (природных) продуктов или образцов. Уступая только спектроскопии ядерного магнитного резонанса, масс-спектрометрия играет важнейшую роль в подтверждении или выяснении структуры веществ в лабораториях органического синтеза. Наиболее важное преимущество масс-спектрометрии перед ЯМР заключается в очень малом количестве вещества, подвергаемого анализу, а точнее, нанограммы в масс-спектрометрии по сравнению с микрограммами в ЯМР. Но к сожалению, масс-спектрометрия часто не дает полного и окончательного ответа, и спектроскопия ЯМР все-таки необходима, например, для выяснения вопроса об изомерах. Недостаток масс-спектрометрии заключается в том, что она является деструктивным методом анализа, и используемый образец нельзя восстановить для дальнейшего анализа или синтеза. [c.300]

    Метод МС/МС успешно соперничает с методом хромато-масс-спектрометрии. Он позволяет из множества молекулярных ионов, образующихся при ионизации исследуемой смеси, выделять каждый ион, повергать его индуцированной фрагментации в камере столкновений и для каждого из них регистрировать масс-спектр. Но этот метод практически нельзя использовать для идентификации изомеров. [c.169]

    Качественный молекулярный масс-спектрометрический анализ основан либо на измерении массы недиссоциированного молекулярного иона, либо на характеристичности распределения интенсивности между линиями в спектре каждого индивидуального вещества. Степень характеристичности таков , что она позволяет различать практически любые химические соединения и во многих случаях изомеры. Распределения интенсивностей в масс-спектрах индивидуальных веществ, снятые с помощью разных масс-спектрометров при стандартных условиях (температура ионного источника, энергия электронов, условия развертки спектра) приводятся в научной литературе, каталогах, компьютерных базах данных. [c.138]

    Уже давно масс-спектрометр рассматривается как отличный детектор для газовой хроматографии. Полученные с его помощью спектры, подобно ИКД, дают такую информацию о качественном составе пробы, какую не могут дать иные газохроматографические детекторы. Различие между МСД и ИКД состоит в том, что первый обладает большей чувствительностью по сравнению с ИКД, кроме того, он разрушает пробу, дает информацию о массе, а не о функциональных группах и различает скорее гомологи, чем изомеры. [c.91]

    По сравнению с ГХ—МС—ЭУ хромато масс спектрометрия с ПИ позволяет идентифицировать большее число изомеров и легче проводить количественный анализ [c.169]

    Так как изомерные парафины с разветвленными цепями имеют более низкие температуры плавления дпя определенной области температур кипения и молекулярных весов и большую растворимость в растворителях, соотношение парафиновых углеводородов с разветвленными цепями и нормальных углеводородов, первоначально присутствующих в парафиновых фракциях, может быть значительно больше, чем в очищенном товарном парафине или в перекристаллизованных узких фракциях. Количественное определение процентного содержания нормальных парафиновых углеводородов и изомеров с разветвленными цснямп в последнее время проводилось при помощи масс-спектрометра [26]. В товарном парафине этим методом было найдено 90,6% нормальных парафиновых углеводородов, 8,2% парафиновых углеводородов с разветвленными цепями и 1,2% цикло- [c.43]

    Среди современных методов исследования углеводородов необходимо еще отметить масс-спектрометрию. Под влиянием интенсивной бомбардировки ионами, например положительными, молекула исследуемого вещества разбивается на частицы, заря-жегпше противоположными зарядами. Если эти частицы пропускать через магнитное поле, то они отклоняются от прямого пути, и при одинаковом заряде их скорость пропорциональна их массам. Пр51 помощи масс-спектрометра (рис. 19) ионы группируютсл в серии спектров одинаковой массы число частиц и скорость движения этих спектров регист])ируют прибором. Количества каждой массы рассчитывают по спектрограммам (см. рис. 19). Масс-спектры неодинаковы но только у молекул различного молекулярного веса, но и у изомеров. Метод применяется преимущественно для исследования газов и паров легкокипящих веществ, но был использован также и для изучения более высокомолекулярных углеводородов [2, т. I]. [c.96]

    С позиций эколого-аналитического мониторинга актуальной является проблема организации экспресс-контроля суперэкотоксикантов Применение традиционных методов (обычно хромато-масс-спектрометрии) требует длительного времени и больших затрат. Надежды на разработку тест-систем на основе иммуноферментных методов пока не оправдались из-за низкой селективности определений. Если для обычных з 1фязните-лей эта проблема не так актуальна, то для диоксинов, коэффициенты токсичности которых в зависимости от числа атомов хлора и их расположения в молекуле изменяются от нуля до единицы, важно знать, какие конкретные изомеры находятся в данном объекте. [c.30]

    Аналогичные выводы следуют и из работы Наталис [121] который показал, что при электронной бомбардировке этиле новых углеводородов типа К—СН = СН—К, где К и К — ме тильный, этильный, втор-пропильпый и трег-бутильный ради калы, отношение интенсивностей пиков молекулярнь(х ионов транс- и цыс-изомеров по мере увеличения радикала возрастает. Наблюдаемый эо[)фект связан с освобождением при ионизации цис-изомера с большим алкильным радикалом избыточной энергии, что способствует более быстрому распаду образующегося иона. Авторами на масс-спектрометре МХ-1304 было проведено исследование масс-спектров цис- и гранс-изомеров пентена-2. Оказалось, что при энергии электронов 70 эв кривые распределения обоих изомеров практически идентичны, но при 20 эв количество ионов, содержащих 5 атомов углерода для транс-пентена-2 примерно на 20% больше, чем для цис-пентена-2, что позволяет идентифицировать эти изомеры. [c.60]

    ЮВЫХ углеводородов было пока 5ано, что интенсивность пиков молекулярных понов для изомеров нормального и разветвленного строения существенно различна. Наиболее отчетливо это различие проявляется в величине отношения суммарной интенсивности характеристических ионов (243) к величине пика молекулярного иона Р [281, 282]. В табл. 18 приведены отношения интенсивностей характеристических ионов к молекулярному, рассчитанные по масс-спектрам нормальных метановых углеводородов, снятым на модифицированном [183] отечественном масс-спектрометре МС-1, масс-спектрометре МХ-1303 и опубликованным в каталоге [76]. [c.152]

    Масс-спектры состоят из линий, соответствующих осколкам молекул с определенным отношением их массы к заряду. Эти осколки образуются в ионизационной камере масс-спектрометра в результате действия электронного удара. Затем ионизированные осколки и ионы ускоряются в. магнитном поле, причем угол отклонения пучка ионов зависит от отношения массы осколка или иона М к его заряду е. Ионные токи, обусловленные каждым пучком ионов, пос- ле усиления регистрируются самописцем. Положение линий на шкале масс и их относительная интенсивность являются важными характеристиками масс-спектра данного соединения. Масс-спектры изомеров различаются по относительной интенсивности линий. Относительный спектр масс хорошо воспроизводится. Все это обуслов- ливает успешное применение масс-спектров для однозначной идентификации соединений, в том числе и изомеров. [c.196]

    Таким образом убеждаемся в том, что, во-первых, происхождение важнейших пиков в масс-спектре объясняется без противоречий, и, во-вторых, был получен спектр действительно этого соединения. Однако м- и о-хлоранилины дают очень близкие спектры, поэтому различить эти изомеры методом масс-спектрометрии практически невозможно. Более того, сходные масс-спектры можно ожидать также и для производных пиридина с такой же брутто-формулой. Этот пример иллюстрирует возможности масс-спектромет-рического структурного анализа, но одновременно свидетельствует и о том, что подобные задачи следует решать, только сочетая масс-спектрометрию с другими спектроскопическими методами — особенно с ЯМР-спектроскопией. [c.296]

    Небольшой выступ (За) у пика 3 не дает возможности определить соответствующий компонент методом ИК-спектроскопии. Метод масс-спектрометрии указывает на его молекулярный вес, М = ПО. от компонент, вероятно, представляет собой изомер этилциклогексена. Пик 4 указывает на наличие винилциклогексеиа-1. [c.424]

    Разработка эффективных методов генерирования МГ приобретает особое значение в связи с проблемами компьютерного синтеза и молекулярного дизайна [19—25], автоматизации обработки данных спектральных исследований молекул, идентификации химических соединений ио набору спектральных данных, полученных методами ПК-, ЯМР-, ЯКР-спектросконии и масс-спектрометрии [26— 29]. Во всех этих направлениях возникает проблема описания изомеров с данной брутто-формулой или нахождения всех возмоншых продуктов реакций, удовлетворяющих определенным критериям отбора. Наиболее общие способы генерации химических структур ориентированы на современные ЭВМ, с помощью которых ио определенным алгоритмам можно находить структурные формулы всех возможных изомеров с заданной брутто-формулой. Эти методы основаны на онисаиип структуры молекулы в виде топологической матрицы. [c.22]

    И. э. II рода обусловлены различиями ядерных спинов, энергией 7-квантов, испускаемых после захвата ядром нейтрона, наличием у нек-рых ядер изомеров и т. п. Проявляются, напр., в неодинаковом распределении изотопов и ядерных изомеров между разл. формами в-ва, в к-рых содержатся ядра, образовавшиеся в результате захвата исходными ядрами нейтронов. с, С. Беодонжов. ИЗОТОПНЫЙ АНАЛИЗ, определение относит, содержания изотопов данного элемента в исследуемом в-ве. Примен. при изучении природы и механизма изотопных эффектов, при анализе проб с использ. изотопных индикаторов, для контроля за разделением изотопов, а также в геохимии и биохимии для исследования закономерностей естеств. вариации изотопного состава элементов. Наиб, точный и достаточно чувствит. метод И. а.— масс-спектрометрия. [c.214]

    К. X. применяют в осн. для разделения многокомпонепт-иых смесей или смесей соед. с близкими св-вами, в т. ч. геом. и оптич. изомеров, изотопов, молекул с разным изотопным составом (напр., СоНб и СаВ В — дейтерий). Часто К. X. использ. в сочетании с масс-спектрометрией (см. Хромато-масс-спектрометрия). [c.241]

    Для исследования структуры X, а. используют спектральные методы. По значению максимумов поглощения в ИК и УФ спектрах и характеру их смещения в зависимости от pH среды различают не только группы X. а., но и иногда положения заместителей. Масс-спектрометрия позволяет установить принадлежность алкаловда к определенной группе и различать такие близкие изомеры, как V и VII УШ и IX, По положению и интефальной интенсивности полосы поглощения в области 1610-1665 см" ИК спектра можно различить [c.269]

    Существуют серьезные доводы в пользу работы масс-спектрометра и ФПИК-спектрометра в качестве параллельных детекторов для ГХ. Как отмечалось вьшхе, информация от них в определенной мере дополняет друг друга. Оба детектора молекулярно-специфичные. МС позволяет различать гомологи, в то время как дифференциация изомеров невозможна. ИК-спектрометр обеспечивает изомер-специфичное детектирование, но различие гомологов является проблемой. Существуют различные варианты соединения детекторов, параллельно или последовательно [14.2-11]. Если используется параллельное соединение, то обычно поток делится таким образом, чтобы 90-99% его направлялось в ИК-спектрометр. Это соответствует различным селективностям и различным требованиям к скорости потока инфракрасного и масс- [c.613]

    Совместное использование ИК- и МС-детектирования в сочетании с каииллярной газовой хроматографией выявляет и усиливает зшикальные преимзтцества обоих спектральных методов. В такой системе можно, проведя однократный ввод пробы, осуществить разделение смеси в каииллярной колонке и получить ИК-и МС-данные о каждом нике, элюируемом из колонки. Сочетание гибридных методов обеспечивает более достоверную идентификацию анализируемого вещества, а также облегчает проведение библиотечного поиска. В качестве примера иснользования такого метода можно, привести определение основных и нейтральных комионентов в объектах окружающей среды (рис. 5-21 и 5-22) [26]. Следует отметить сходство хроматограммы общего сигнала, полученной при ИК-детектировании, и хроматограммы общего ионного тока (МС-детектирование) (рис. 5-21). Иа рис. 5-22 приведены для сравнения совершенно идентичные масс-спектры изомеров дихлорбензола и ИК-сиектры соответствующих соединений. Более подробные сведения о ГХ-ИКС с преобразованием Фурье, сочетании этого метода с масс-спектрометрией, а также примеры иснользования этого гибридного метода приведены в работах, перечисленных в списке дополнительной литературы к этой главе. [c.91]

    Возможность миграции двойной связи в М+ моноолефи-нов приводит к качественной и иногда количественной близости масс-спектров позиционных изомеров. Лишь в случае олефинов с тетразамещенной двойной связью последняя не мигрирует под действием ЭУ, и при их распаде осуществляются разрывы типа А-3, приводящие к характеристическим ионам [28]. Однако, несмотря на это, в общем случае масс-спектрометрия ЭУ является малоинформативным методом при установлении структуры ненасыщенных углеводородов. [c.30]

    Соединения с молекулярной массой менее 500 были выделены из полихлоридных смол, употребляемых для упаковки пи щевых продуктов, путем экстракции эфиром с последующим фракционированием на сефадексе Предварительный анализ производился с помощью ГХ набивные колонки НФ с 3 % 0V 1 и 3 % Дексил 300, температура соответственно 130—300 и 150—400°С (8°С/мин) Идентификация проводилась с по мощью ГХ—МС, при этом газовый хроматограф Карло Эрба 4160 (колонка 20 м X 0,3 мм с 0V 101, температура 75 °С в течение 2 мин и нагревание до 240 °С со скоростью 5 °С/мин) непосредственно соединялся с масс спектрометром VG 70 70, работающим при температуре источника 200 °С, разрешении 1000, энергии электронов 70 эВ, скорости сканирования масс-спектров от 500 до 25 а е м 0,7 с/декада Измерение точных масс ионов производили с помощью внутреннего стандарта 2I4 при разрешении 2000 и скорости сканирования 1,5 с/де када Результаты анализа экстрактов до и после гидрогенизации показали присутствие олигомеров винилхлорида от тримера до гексамера (возможно, до октамера) Каждый олигомер представлен рядом структурных изомеров, содержащих циклы или двойные связи Другие индентифицированные компоненты вклю чают смесь фталатов, алканов нонилфенолов, а также ундека ноат (образуется из инициатора лаурилпероксида [325]) [c.138]

    При синтезе новых органических соединений возникает необходимость получения информации о видах и способах связывания структурных элементов в этих соединениях, в том числе об изомерии соединений. Все это является задачей структурного анализа. Дпя установления структуры органических соединений чаще всего применяют ИК- и спектроскопию. Далее следует масс-спектрометрия, электронная, ЭПР и раман-спектроскопия. Дпя соединений с центрами асимметрии применяют методы кругового дихроизма или дисперсии оптического вращения. В случае сложных молекул необходимо применять комбинацию различных методов анализа. Например, комбинирование таких методов, как УФ- и ИК-спектроскопия, ПМР и массчюектрометрия, позволяет получить достаточно полную информацию о строении молекул (рис. 17.4). [c.477]


Смотреть страницы где упоминается термин Изомеры, масс-спектрометрия: [c.93]    [c.254]    [c.265]    [c.23]    [c.562]    [c.225]    [c.749]    [c.50]    [c.108]    [c.562]    [c.96]    [c.149]    [c.885]    [c.108]    [c.113]   
Установление структуры органических соединений физическими и химическими методами том 1 (1967) -- [ c.323 , c.324 ]

Установление структуры органических соединений физическими и химическими методами Книга1 (1967) -- [ c.323 , c.324 ]




ПОИСК





Смотрите так же термины и статьи:

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры



© 2024 chem21.info Реклама на сайте