Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры поглощения видимые

Рис. 20-22. Спектр поглощения хлорофилла а. Это вещество поглощает видимый свет во всех диапазонах, кроме Рис. 20-22. <a href="/info/105368">Спектр поглощения хлорофилла</a> а. Это <a href="/info/1155727">вещество поглощает</a> <a href="/info/190955">видимый свет</a> во всех диапазонах, кроме

    Вел ичину параметра расщепления обычно определяют по спектрам поглощения соединений. Кванты света, возбуждающие переход электронов с нижних -орбиталей на верхние, соответствуют видимой области спектра, и значения А лежат в пределах 1 эВ< А< [c.509]

    В регистрирующих спектрофотометрах СФ-10, СФ-14 автоматически записываются спектры поглощения на специальном бланке. Эти приборы имеют двойной монохроматор, поэтому монохроматизация излучений здесь достаточно высокая. Однако рабочий диапазон этих приборов охватывает только видимую часть спектра от 400 до 700 нм, и, следовательно, возможности применения этого прибора меньше, чем, например, нерегистрирующего кварцевого спектрофотометра СФ-4. [c.474]

Рис. 3.18. При связывании кислорода изменяются спектры поглощения миоглобина и гемоглобина в области видимого света. Миоглобин и гемоглобин имеют очень сходные спектры поглощения видимого света. Рис. 3.18. При <a href="/info/149935">связывании кислорода</a> изменяются <a href="/info/2753">спектры поглощения</a> миоглобина и гемоглобина в <a href="/info/5193">области видимого</a> света. Миоглобин и гемоглобин имеют очень сходные <a href="/info/104606">спектры поглощения видимого</a> света.
    Молекулы имеют электронные энергетические уровни, колебательные энергетические уровни и вращательные энергетические уровни. Переходы между вращательными уровнями попадают в микроволновую область спектра переходы между колебательными уровнями-в инфракрасную область, а переходы между электронными уровнями-в видимую и ультрафиолетовую области спектра. Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния используются для наблюдения внутримолекулярных колебательных переходов. Поглощение света молекулами в видимой и ультрафиолетовой частях спектра обусловлено электронными переходами. График зависимости интенсивности этого поглощения от длины волны света называется спектром поглощения. [c.596]

    УФ-спектры, а также спектры поглощения видимого света, характерные для окрашенных веществ, трактуются иначе. Содержащиеся в них полосы связаны с наличием в молекуле определенных систем сопряженных связей. [c.155]

    Действительно, если спектр поглощения видимого или ультрафиолетового света, состоящий из- одной широкой полосы, записать, заморозив раствор вещества жидким азотом или, наоборот, превратив это вещество в пар, то эта самая полоса может внезапно расщепиться на несколько более узких. Расстояния между ними, выраженные в единицах энергии, дают числа, близкие к расчетным для квантов колебательной энергии. Значит, молекула поглощает не только те кванты, которые просто возбуждают электрон — так делает атом — но и те кванты, которые заодно с этим раскачивают какую-нибудь связь или группу связей. Вследствие же наложения при обычных условиях полос, соответствующих всем этим переходам, и образуется одна широкая. Значит, никакого противоречия с квантовой теорией нет помимо основных электронных энергетических уровней у молекулы есть еще подуровни энергии, связанные с колебательными процессами. [c.168]


    Спектры поглощения растворов актинидов. Характерным свойством лантанидов, связанным с наличием в их атомах /-электронов, является наличие резких полос в спектрах поглощения видимого света. [c.154]

    Поскольку приборы СФ-4, СФ-4Д, СФД-2 имеют кварцевую оптику, возможность изучать спектры поглощения веществ в видимой, ультрафиолетовой и ближней инфракрасной областях спектра в интервале длин волн от 220 до 1100 нм. Для обеспечения заботы в широком интервале длин волн в приборах имеются два источника освещения водородная лампа для измерений в области 220—350 нм и лампа накаливания для измерений в области 320— 1100 нм. [c.474]

    Так как значительное большинство жидких и твердых углеводородов, которые анализируются по спектрам поглощения, сильно поглощают в ультрафиолетовой области их нужно растворять в прозрачном растворителе. Растворителями, удовлетворяющими этим требованиям, являются 2,2,4-триметилпентан (изооктан), н-гексан, циклогексан, этиловый спирт и др. Другие вещества, как, например, вода, прозрачны (от 220 до 400 т м), но не растворяют углеводородов. Упомянутые растворители даже высокой степени чистоты перед съемкой должны подвергаться обработке для удаления следов поглощающих соединений, например ароматических. Наилучшей обработкой углеводородов, по-видимому, является применение адсорбции на силикагеле (см. АЗТМ — метод В 1017-51). [c.281]

    Как было указано выше, электронные переходы соответствуют поглощению больших порций энергии, чем при поглощении, обусловленном колебательными или вращательными переходами. Электронные переходы обычно связаны с поглощением видимого и ультрафиолетового света. Подобно тому как колебательные полосы поглощения уширены в результате наложения многих колебательно-вращательных переходов, спектры поглощения в видимой и ультрафиолетовой областях также содержат широкие полосы, а не острые пики вследствие наложения многих электронно-колебательных переходов (рис. 13-37). Полосы электронного спектра поглощения характеризуются длиной волны максимума каждой из них, [c.592]

    Отсутствуют сколько-нибудь заметные изменения в спектрах поглощения ароматических соединений 2. Быстрое образование и разложение при —80° 3. Отсутствует заметная электропроводность 4. Нет заметного обмена с хлористым дейтерием при 25 1. Интенсивное окрашивание в видимой области 2. Медленное образование и разложение при — 80° 3. Высокая электропроводность 4. Быстрый обмен с хлористым дейтерием при 25° [c.400]

    Многие насыщенные углеводороды и неконъюгированные олефины поглощают в вакуумном ультрафиолете, но прозрачны в обыкновенной ультрафиолетовой области. Конъюгированные олефины и ароматические соединения поглощают в области с большей длиной волны. По мере того как увеличивается количество конъюгированных двойных связей, спектры поглощения смещаются к видимой области спектра. Хотя у нефтяных фракций [c.188]

    Композиционная неоднородность, помимо применения различных способов фракционирования в системах, чувствительных к изменению состава [16], может быть исследована с помощью ряда физических методов. Так, для сополимеров, компоненты которых различаются по своим физическим характеристикам (показателю преломления, плотности, спектрам поглощения) были предложены следующие методы измерения интенсивности рассеянного света в растворителях с различным показателем преломления [3] скоростной седиментации с одновременной регистрацией в ультрафиолетовой и видимой областях спектра [31] плотности [27]. [c.29]

    Изучение реакции образования комплекса по электронным спектрам поглощения в видимом [c.72]

    Природные пигменты по приведенному выше определению поглощают свет в видимом диапазоне спектра электромагнитного излучения, т. е. между длинами волн 380 и 750 нм. Поэтому их спектр поглощения видимого света имеет по крайней мере один максимум поглощения при длине волны (>.тах), характерной для хромофора молекулы пигмента. Это свойство, а также общая картина спектра дают полную информацию о молекулярной структуре и обычно используются при первых попытках идентифицировать пигмент. Положение Хтзх сильно зависит от используемого растворителя, а у некоторых групп пигментов и от величины pH. На спектры поглощения пигментов in vivo часто влияет ближайшее микроокружение молекулы. [c.25]

    Устойчивые ионы карбония были идентифицированы по их спектрам поглощения в УФ- и видимой областях при хемосорбции исходных углеводородов на кислотных катализаторах. [c.56]

    Как было указано ранее, спектр поглощения в видимой и ультрафиолетовой областях обусловлен переходами электронов с одних энергетических уровней иа другие. Вещество поглощает те кванты света, энергия которых равна энергии соответствующих электронных переходов. Спектр поглощения (а следовательно, и окраска) большинства комплексов -элементов обусловлен электронными переходами с низшей -орбитали на -орбиталь с более высокой энергией. Так, например, комплекс [Т1(Н20)б] + имеет максимум поглощения при волновом числе V = 20 300 см . Это обусловливает фиолетовую окраску данного комплекса. Ион Т1 + имеет только один -электрон в октаэдрическом комплексе этот электрон может переходить с /гв-орбитали и е -орбиталь. Энергия квантов, отвечающая =20 300 см (238 кДж/моль), равна в соответствии с изложенным выше энергии перехода электрона с орбитали I2g на орбиталь eg, т. е. величине А. [c.124]


    Электронные спектры — это спектры поглощения, испускания и флюоресценции. Спектр поглощения возникает при переходе обычно одного электрона с занятой МО на свободную вплоть до отрыва (спектр ионизации). Кванты, вызывающие электронный переход, велики, и частоты переходов в спектрах лежат в видимой и ультрафиолетовой областях. Для молекулы возможен ряд возбужденных состояний, каждое из которых описывается своей потенциальной кривой. Возбужденному состоянию отвечает обычно меньшая энергия диссоциации и большее межъядерное расстояние. При переходе в возбужденное отталкивательное состояние молекула диссоциирует. [c.166]

    Анализ основан на индивидуальном характере спектров поглощения различных газов и паров в ближней ультрафиолетовой области (от 200 до 400 ммк) и в видимом свете (от 400 до 700 ммк). Мерой концентрации определяемого компонента смеси является светопоглощение в соответствующих областях спектра. При этом может использоваться либо интегральное поглощение (при отсутствии в смеси газов и паров неопределяемых компонентов, спектры которых существенно перекрывают спектр контролируемого компонента), либо частичное поглощение, избирательно выделенное с помощью светофильтров или диспергирующих оптических устройств (при наличии в смеси мешающих неопределяемых компонентов). [c.608]

    СПЕКТРЫ ПОГЛОЩЕНИЯ НЕОРГАНИЧЕСКИХ ИОНОВ И КОМПЛЕКСНЫХ СОЕДИНЕНИЙ В УЛЬТРАФИОЛЕТОВОЙ И ВИДИМОЙ ОБЛАСТИ [c.738]

    При записи спектров поглощения обычно используют две кюветы кювету сравнения, заполненную растворителем, и кювету образца, заполненную исследуемым раствором в данном растворителе. Применение двух кювет позволяет компенсировать поглощение растворителя и материала кювет, а также потери излучения при отражении его на границах различных оптических сред. В абсорбционной спектрофотометрии применяются кюветы разных размеров длина оптического пути в кювете изменяется от долей миллиметра до нескольких сантиметров, объем — от долей миллилитра до нескольких десятков миллилитров. Для работы в УФ-области кюветы изготовляются из кварца, в видимой области можно пользоваться стеклянными кюветами. [c.17]

    Этот спектр колебания ядер можно найти 1) непосредственно из инфракрасного спектра поглощения, 2) путем расшифровки спектра поглощения видимой и главным образом ультрафиолетовой части (ср. гл. X, стр. 105), 3) экспериментально значительно более простым методом, пользуясь эффектом в рассеянном свете, предсказанным Смекалем (А. Smekal, 1923) и экспериментально найденным Раманом (1928). 1 Последний состоит (гл. IX, стр. 90) главным образом из классического излучения Релея с частотой, такой же, как и частота падающего света. Электроны большинства молекул, которые не поглощают падающий свет частоты Vq, производят лишь вынужденные колебания с той же частотой и снова отдают кванты энергии hvg в виде рассеянного света, так что их энергетическое состсяние Е остается в конце концов неизмененным. Только небольшая часть молекул, вследствие столкновения со световыми квантами возбуждающего света [c.117]

    Э Лменты переменной валентности входят обычно неотъемлемой частью в состав дозиметрических стекол. В стеклах, содержащих катионы переменной валентности, под влиянием радиации изменяется степень окисления одного или более ионов, а вместе с гем изменяются и спектры поглощения видимого света. О дозе облучения можно судить по изменению оптической плотности стекол для характерных длин волн. В ряде случаев оптическая плотность возрастает или иногда уменьшается линейно в зависимости от дозы облучения, что облегчает градуировку стеклянных дозиметров. [c.210]

    Спектры поглощения растворов. Характерным свойством как А., так и лантанидов, обусловленным наличием /-электронов в их атомах, является присутствие резких полос в спектрах поглощения видимого света. Эти ри полосы появляются из-за того, В1 0 , СГ2О7 что иод действием света опре- [c.50]

    Другим доказательством существования реакций горячих радикалов, могут служить данные о фотолизе метилподида. Алкилиодиды имеют непрерывный спектр поглощения в области около 2500—2600 А с максимумом вблизи 2600 А. В этой области первичными процессами, сопровождающими поглощение света, являются процессы образования атомов иода и алкильного радикала. В случае метилиодида энергия связи С—I примерно равна 55 ккал. Если атом I находится в основном состоянии Рз/ , то избыток энергии ( 57 ккал) распределяется между I и СН3. Еслп атом I возбужден ( А/з), то избыток равен 35 ккал. Вследствие различия масс по крахгаей мере /в этого избытка энергии должно быть отдано радикалам СНд. Следовательно, если нет какой-нибудь быстрой реакции, включающей горячие метильные радикалы , то, по-видимому, они должны находиться в этой системе. [c.345]

    Расщепление Д может быть определено также экспериментально по спектрам поглощения комплексных соединений. Спектр поглощения в видимой и ультрафиолетовой областях связан с переходами электронов с одних энергетических уровней на другие. Вещество поглощает те кванты света, энергия которых равна энергии соответствующих электронных переходов. Спектр поглощения (а следовательно, и окраска) большинства комплексов -элементов обусловлен электронными переходами с одной -орбитали на другую с более высокой энергией. Так, например, аква-комплекс [Т1(Н20)аР+ имеет максимум поглощения при волновом числе 20000 см что обусловливает фиалетовую окраску данного комплекса. Ион Т1 + имеет толь- [c.47]

    Спектры тиофана и его производных, представленные в литературе [107, 160, 163, 164, 191, 215], ограничены областью 2—15 р,. О деформационных колебаниях, которые могли бы быть характеристическими для этих структур и должны проявляться в области низких частот (600 см ), литературных данных не имеется. Экспериментальные данные, полученные нами при исследовании инфракрасных спектров поглощения а-замещенных тиофапов, указывают на частоту 565—568 см , по-видимому, характеристическую для структур этого ряда .  [c.119]

    V максимумов поглощения, соответствующих переходам молекул с уровня с квантовым числом у = О на уровень и = 1 и с уровня и = О на уровень у = 2 при неизменном электронном состоянии 2) в каком участке спектра — инфракрасном, видимом или ультрафиолетовом — расположены полосы поглощения, соответствующие указанным переходам 3) максимальное значение колебательного квантового числа Утах 4) энергию колвбатвльного движения на нулевом и на максимальном колебательных квантовых уровнях (Дж) 5) энергию химической связи в молекуле А (Дж/моль) 6) энергию колебательного движения на 2—3 колебательных квантовых уровнях в интервале от уровня с у=0 ДО Ута 7) долю молекул, находящихся на нулевом и на первом колебательных квантовых уровнях при 300 и 1000 К 8) постройте график зависимости энергии колебательного движения от колебательного [c.41]

    Инфракрасные спектры поглощения сернистых концентратов, выделенных из ароматических фракций топлив ДА и ТС-1, представлены на рис. 47. В сернистом концентрате, выделенном ИЯ ароматической фракции топлива ДА, обнаружено значительное количество ароматических структур, по-видимому, бициклических (двойная интенсивная полоса 6,25 ц, интенсивные полосы 12,34 и 13,36 л) и пебольтое количество кислородных соединений (полоса 5,87 ц — С = 0 и слабая3,0 fj,—ОН). Присутствие сернистых соединений выражается лса-лоинтепсивпым иоглон о-нием при 7,7 х (СНз — S ) и 14,7 j, (С—S). Сульфо-ксиды, вероятно, присутствуют в небольшом количество (9,0—9,5 х), суль-фоны — отсутствуют. Интенсивная полоса поглощения 9,9 х (1001 ж ), необычная для углеводо- [c.125]

    Юнгом, Дювалем и Райтом [52] было обнаружено, что эти полосы являются строго характеристпчнымя для числа и положения заместителей в бензольном кольце и практически не зависят от природы заместителя. Этот спектр поглощения, по-видимому, дополняется частотами обертонов и комбинационными частотами. Обычно с уменьшением числа водородных атомов в кольце вид спектра упрощается. Общий характер поглощения в этой области имеет белее важное значение, чем простое указание положения спектральных полос и приближенные значения интенсивностей. Рис. 7, воспроизводимый из работы Юнга и других [52], дает наглядную картину полос поглощения в области 5—6 л для бензолов с различным типом замещения. [c.327]

    Радиоволны, инфракрасный, видимый и ультрафиолетовый свет, рентгеновские лучи и гамма-излучение представляют собой электромагнитные волны с различной длиной волны. Скорость света, с = 2,9979-10 ° см с , связана с его длиной волны X и частотой V соотношением с = Ху. Волновое число у-это величина, обратная длине волны, V = 1/Х. Все нагретые тела излучают энергию (излучатель с идеальными свойствами дает излучение абсолютно черного тела). Планк выдвинул предположение, что энергия электромагнитного излучения квантована. Энергия кванта электромагнитного излучения пропорциональна его частоте, Е = км, где / -постоянная Планка, равная 6,6262 10 Дж с. Выбивание электронов с поверхности металла под действием света называется фотоэлектрическим эффектом. Квант света называется фотоном. Энергия фотона равна /IV, где V-частота электромагнитной волны. Зависимость поглошения света атомом или молекулой от длины волны, частоты или волнового числа представляет собой спектр поглощения. Соответствуюшая зависимость испускания света атомом или молекулой является спектром испускания. Спектр испускания атомарного водорода состоит из нескольких серий линий. Положения всех этих линий точно определяются одним общим соотношением-уравнением Ридберга [c.375]

    Методы получевия атомов F, G1, Вг и J в основном те же, что и в случае атомов Н и О, т. е. тлеющий электрический разряд и фотодиссоциация. Особенно удобен последний метод, так как молекулы Xj обладают спектрами поглощения, лежащими в легкодоступной, видимой п близкой УФ-области спектра. [c.33]

    В зависи.мости от того какие лучи электромагнитного спектра пропускать через вещество, могут возбуждаться либо вращательные, либо колебательные движения, либо электронные переходы, либо все виды движений одновременно. Возбуждение того или иного движения в молекуле происходит тогда, когда его частота совладает с частотой электромагнитного колебания (резонанс). Наибольшей энергией обладают рентгеновские лучи (Я = 0,01 — 10А), еатем ультрафиолетовые лучи (10ч-4000.4), затем видимый свет (4000.А.8000А), затем инфракрасные лучи (0,8—300 р), затем микроволны 0,03—100 см и далее радиоволны. Энергия радиоволн слишком мала, чтобы возбуждать колебания молекул органических веществ. Микроволны и длинные инфракрасные волны могут возбуждать только вращательные движения в молекулах. Если частоты колебания этих волн совпадают с собственной частотой вращения отдельных частей молекулы, то происходит резонансное поглощение энергии инфракрасного облучения этой частоты, что отразится в спектре поглощения. Такого рода спектры применяются для тонкого структурного анализа органических веществ. Инфракрасные спектры органических соединений обычно изучают в пределах длтш волн 1 25 х, при этом линии поглощения Б спектре появляются за счет вращательного п колебательного движения в молекулах исследуемого вещества. Каждой функциональной группе и группе атомов в молекуле исследуемого соединения в спектре соответствует одна или несколько линий с опре-денной длиной волны. С помощью инфракрасных спектров можнс проводить идентификацию чистых углеводородов, анализировать качественно и количественно смеси нескольких компонентов вплотг-до обнаружения таких близких структур как цис- и транс-изомеры. На рис. 16 приведен г /с-спектр толуола. [c.32]

    Лучше это можно проследить на соединениях, содержащих ароматические радикалы, так как их спектры лежат в области доступной обычным спектральным приборам, и они лучше изучены. Пока атом серы отделен от ароматического хромофора несколькими насыщенными углеводородными звеньями, спектр почти количественно является суммой спектров поглощения алкилсульфида и алкиларила. При непосредственной связи атома серы с ароматическим радикалом тонкая структура спектра, характерная для последнего, исчезает, интегральная интенсивность поглощения резко возрастает. В большинстве случаев изменяется не только форма и интенсивность полос поглощения, но и их положение относительно соответствующих параметров монофункциональных соединений (насыщенных соединений серы и ароматических или непредельных углеводородов). Отсутствие аддитивности в ультрафиолетовых спектрах непредельных (в.том числе ароматических) органических соединений двухвалентной серы свидетельствует о наличии более или менее значительного взаимодействия 1г-связей с неподеленными Зр-электронами атома серы, осложненного, вероятно, влиянием Зй-орбиталей серы. Фрагмент структуры, состоящий из ненасыщенного элемента с присоединенной к нему серой становится новым хромофором, с характерным для него спектром, а присоединенные к нему углеводородные насыщенные радикалы действуют на спектр поглощения как ауксохромы. Вопрос же о характере взаимодействия электронной оболочки атома серы с тг-электронами ненасыщенных хромофоров в настоящее время еще не решен, теория явления стала предметом оживленной дискуссии, по-видимому, еще далекой от завершения. [c.162]

    Спектры поглощения тианафтенов, конденсированных с ароматическими радикалами, соединений очень сложных и разнообразных, изучены очень мало. Рассматривая спектры таких соединений, можно заметить, что, по-видимому, конденсация бензольного кольца бензотиофена с бензольным кольцом и 2-фенилза-мещение не изменяют существенно спектра поглощения бёнзотио-фена (вызывают только батохромное смещение). Если же бензо-тиофен со стороны бензольного кольца конденсирован нафталинов [c.184]


Смотреть страницы где упоминается термин Спектры поглощения видимые: [c.128]    [c.7]    [c.7]    [c.425]    [c.48]    [c.473]    [c.517]    [c.23]    [c.43]    [c.145]    [c.147]    [c.151]    [c.50]    [c.734]   
Органическая химия (1964) -- [ c.619 ]

Органическая химия (1964) -- [ c.619 ]




ПОИСК





Смотрите так же термины и статьи:

Видимость



© 2025 chem21.info Реклама на сайте