Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время релаксации форма

    Особенности строения макроцепей и многообразие форм молекулярной подвижности в полимерах приводят к множеству релаксационных процессов, каждый из которых связан с движением кинетических единиц определенного вида и может быть описан спектром времен релаксации. Времена релаксации, связанные с подвижностью крупных отрезков цепи, могут быть довольно большими. Соответствующие им релаксационные процессы протекают медленно. Мелкомасштабные движения макроцепей, обеспечивающие образование дырок , ускоряют релаксационные процессы. Приближенный расчет времени релаксации таких быстрых процессов при объемной деформации некоторых полимеров (сополимеров), выполненный в работах [16—18], показывает, что при проникновении низкомолекулярного компонента в полимер проницаемость последнего контролируется перемещением структурных элементов макроцепей только в начальный период процесса набухания (время релаксации 10 — 10 с). [c.297]


    Таким образом, в зависимости от размеров, состояния и природы структур, температуры и других факторов времена релаксации различаются существенно. Для структур с малой вязкостью дисперсионной среды времена релаксации незначительны (10 —10 о с). С повышением молекулярной массы соединений, переходом из жидкого в вязко-текучее, эластичное и твердое состояния времена релаксации увеличиваются. Большое влияние релаксационные явления оказывают иа процессы стеклования и кристаллизации нефтепродуктов. Релаксационные явления оказывают влияние ие только на упорядоченность, но и па форму ССЕ. Например, формы пор в вязкой среде принимают причудливые очертания. [c.92]

    Важной реологической характеристикой вязкоупругой среды является время релаксации упругих деформаций (время восстановления формы) =т]/0. В отсутствие внешних сил упругая деформация такого материала уменьшается во времени I под влиянием внутренних напряжений по закону [c.153]

    Релаксационным методом или по форме линии излучения измеряется время релаксации разницы населенностей рабочих уровней и осциллирующей магнитной поляризации при столкновениях атомов водорода с исследуемыми молекулами в газовой фазе. Соответствующие константы скорости процессов изменения сверхтонкого состояния атома водорода при его взаимодействии с молекулой М и потери атомом когерентности при этом взаимодействии Л, связаны с характеристическими временами релаксации [c.303]

    Из рис. 92 и 93 теперь очевидно, что форма возмущенной функции распределения чувствительна к характеру возмущения. Следовательно, эффективность данного механизма релаксации, стремящегося превратить эти два распределения в равновесные, также может быть различной. При низких температурах времена релаксации % и действительно сильно отличаются друг от друга (см. ниже). [c.224]

    Непрямое поглощение. Форма края непрямого поглощения также чувствительна к магнитному полю, хотя его изменения и не столь эффектны, как для прямых переходов. Причина этого в том, что благодаря дополнительному взаимодействию с фононами нет правил отбора, ограничивающих величину Ап, и возможны все значения Ап, совместимые с энергией фонона. Следовательно, спектр поглощения теперь не представляет собой ряд достаточно резких линий, имеющих хвост с высокочастотной стороны (соответствующий постепенному уменьшению плотности состояний с ростом энергии), а состоит из последовательности ступенек, причем каждая новая ступенька отвечает переходу либо на новый, либо с нового уровня Ландау. Конечное время релаксации опять размывает эту зависимость, и ступеньки (рис. 178) имеют конечный наклон [8, 9]. [c.430]


    Далее, тензор градиентов скорости (в размерной форме) можно представить р виде суммы симметричного и антисимметричного тензоров, причем последний характеризует вращение жидкости как твердого тела с угловой скоростью, равной половине вектора вихря. Свободно взвешенная в жидкости сферическая частица будет стремиться прийти во вращение с такой же угловой скоростью. Благодаря инерции частицы скорость ее вращения будет подстраиваться к скорости вращения жидкости с временем релаксации, равным произведению отношения плотностей частицы и среды на характерное время Однако, как было отмечено выше, при малых числах Рейнольдса, рассчитанных по радиусу частицы и скорости ее относительного движения, величина aVv мала по сравнению с временным масштабом мелких вихрей, а для взвесей частиц в капельных жидкостях отношение плотностей частиц и среды будет порядка единицы.Отсюда следует,, что время релаксации много меньше временного масштаба мелких вихрей, т. е. скорость вращения частицы можно считать всегда совпадающей с локальной скоростью вращения жидкости. [c.105]

    Для анализа временной зависимости намагниченности мы, кроме того, должны рассмотреть релаксационные эффекты. Эти эффекты были введены Блохом феноменологически в уравнения (XI. 15). Время релаксации Ti характеризует поперечную намагниченность в плоскости х, у, в то время как изменение продольной намагниченности вдоль оси z определяется временем Ti. Таким образом, в окончательной форме уравнения Блоха принимают вид [c.428]

    В переменном поле происходит колебательное движение ионов. При низких частотах ионные атмосферы обладают асимметрией, обусловленной действием внешнего поля. Если же частота настолько велика, что период колебания центрального иона представляет собой величину того же порядка, что и время релаксации атмосферы, то нарушение симметрии ионной атмосферы становится менее вероятным. В результате по мере возрастания частоты ионная атмосфера по своей форме все менее и менее отличается от атмосферы, находящейся в невозмущенном состоянии и обладающей сферической симметрией, и электропроводность раствора соответственно увеличивается. [c.97]

    Нз уравнения (П. 1) следует, что сравнимое с заданным временем наблюдения (или скоростью деформации) критическое время релаксации т р, при котором развивается высокоэластическая деформация, может быть достигнуто повышением либо температуры до температуры стеклования 7 ., либо напряжения до вв. Отсюда следует, что значения Т . и должны зависеть от времени наблюдения или скорости деформации. Ниже Т высокоэластическая деформация после разгрузки остается замороженной неограниченно долгое время, но выше полностью исчезает, и образец восстанавливает прежнюю форму. [c.71]

    Существенно было исследовать также влияние концентрации наполнителя на среднее время релаксации полимерной матрицы в наполненном материале. Для этой цели была построена обобщенная зависимость тангенса угла механических потерь от частоты (рис. 111.38). С ростом концентрации наполнителя максимум механических потерь сдвигается в сторону более низких частот так как время релаксации т = 1/(0т (где сот — частота, отвечающая максимуму потерь), то можно вычислить зависимость 1 т = /(Ф) (рис. 111.39). Эта зависимость близка к линейной, что указывает на экспоненциальную зависимость времен релаксации от концентрации наполнителя. Это позволяет прийти к заключению о существовании в наполненных полимерах суперпозиции концентрация наполнителя — время. Действительно, характерная форма и положение кривых 1 С = /(1дю) при разных Ф (рис. 1.11.40) позволяют считать, что к этим системам применим метод ВЛФ. Сделав приведение к наинизшей концентрации наполнителя и вводя кон- [c.145]

    Анизотропия механических свойств. Вязкость и межфазное натяжение в эмульсиях определяют форму частиц диспергированной жидкости. Если вязкость среды очень велика, влияние поверхностного натяжения на форму частиц несущественно, ибо система практически не может перейти в равновесное состояние. При смешении полимеров в расплаве (в особенности термопластов) вязкость достаточно низка и за время охлаждения может произойти релаксация формы частицы диспергированного полимера и приближение формы к сферической при значительной величине межфазного натяжения. [c.41]

    По форме ЭТО уравнение аналогично уравнению долговечности, но имеет другой физический смысл. Долговечность т — величина макроскопическая, тогда как время релаксации г — величина, характеризующая микропроцесс. [c.207]

    Для установления точного соответствия форм полученных выше выражений и зависимости (2,46) необходимо выразить времена релаксации через константы а и операторного уравнения, ограничив также произвол выбора этих констант требованием определенного порядка в распределении времен релаксации 0р. [c.174]


    С заданным распределением (1 - (подробнее см. [40]). Определяются функция распределения времен релаксации 1(т) = /-(1пт), наивероятнейшее время релаксации, форма и эффективная ширина распределений (т) для цепочек с различной кинетической и термодинамической гибкостью. [c.279]

    Однако это уравнение отражает рассматриваемую зависимость лишь в суммарной форме. В действительности эти с оотношения являются более сложными. Релаксация в той илн другой степени относится ко всем формам перемещения частиц в материале, но скорость релаксации их в данном полимере при одинаковых вйешних условиях может различаться в сильной степени. Перемещения электронов практически не задерживаются, перемещения же атомов и атомных групп и изменения их колебательного движения задерживаются в различной степени в зависимости от их массы и характера связи, а также степени связанности их с другими частицами. Это существенно влияет на диэлектрические свойства полимеров. То же относится и к перемещениям или изменениям конформации отдельных звеньев цепей и макромолекулы в целом, причем последние сильно зависят от степени полимеризации и от строения цепей. При повышении степени полимеризации скорость релаксации уменьшается. Еще больше усложняются эти соотнощения в полимерах, содержащих структурные единицы, различные по составу и строению, т. е. в сополимерах, привитых полимерах и пр. В общем существует некоторый комплекс времен релаксации, характеризующий различную скорость релаксации разных форм перемещения частиц в данном полимере. Кроме того, из внешних условий на скорость релаксации существенно влияет давление. При повышении давления увеличивается напряжение и соответственно уменьшается время релаксации. Это широко используется на практике при формовании изделий из полимерных материалов. Время релаксации зависит также от присутствия в полимере других веществ. Так, на введении в полимер специальных пластификаторов основан один из методов увеличения скорости релаксационных процессов. [c.581]

    Формулы (IX.26) и (IX.27) описывают спектры, площадь кото-рых нормирована j I [Н)ст = . Время релаксации Гз простыми соотношениями связано с величиной (рис. 81). Для Лоренцевой формы линии 1/7 2 = АЯ1у2 у, для Гауссовой ЦТ2 = = Д//1/2Т1—Таким образом, формулы (IX,26) и (1Х.27) могут быть записаны в следующем виде  [c.237]

    В отличие от твердых тел, для которых характерна полная обратимость ттругих деформаций, вязкоупругие жидкости проявляют способность к рела сацш (от лат. relaxatio - ослабление, уменьшение) внутренних напряжений (или, как принято еще говорить, вязкоупругое тело постепенно забывает о своей прежней форме). Количественной характеристикой релаксации служит время релаксации - время, за которое происходит полное самопроизвольное [c.12]

    Как следствие,- выбранное время релаксации может неограниченно возрастать, т. е. весь спектр может сильно сместиться в сторону больших т, потому что, учитывая возрастание ITat с Я и записывая это возрастание в форме аг = S + уР. .., где [c.171]

    Особенности строения полимероз и существование различных форм их молекулярной подвижности приводят к появлению различных релаксационных процессов, каждый из которых связан с тепловым движением тех или иных структурных элементов. Поведение последних в целом может быть описано спектром времен релаксации, в котором за быстрые релаксационные процессы ответственны мелкомасштабные движения макромолекул, а времена релаксации, связанные с подвижностью более крупных участков самих макромолекул (сегментов и субцепей) и с подвижностью различных элементов надмолекулярных структур и частиц активного наполнителя, могут быть довольно большими и распределяться в большом диапазоне временной шкалы. Соответствующие им релаксационные процессы протекают относительно медленно. [c.125]

    Релаксация в той или другой степени относится ко всем формам перемещения частиц в материале, но скорости релаксации разных частиц в данном полимере при одинаковых внешних условиях могут сильно различаться. Скорость перемещения электронов практически не изменяется, перемещения же атомов и атомных групп и изменения их колебательного движения задерживаются в различной степени п зависимости от их массы и характера связи, а также степени связанности их с другими частицами. Это существенно влияет на диэлектрические свойства полимеров. То же относится и к перемещениям или изменениям расположения отдельных звеньев цепей и в особенности макромолекулы в целом. Скорость перемещения макромолекул сильно зависит от степени полимеризации и от строения цепей. При повышении степени полимеризации скорость релаксации уменьшаётся. Ещё больше усложняются эти соотношения в полимерах, содержащих струк- УрШе единицы различные по составу и строению, т. е. в сополимер ахТ привитых полимерах и пр. Для различных форм движения частиц в данном полимере время релаксации может сильно различаться, [c.219]

    В случае, когда частота внешнего поля со 2> 1/0 (0 —время релаксации ионного облака), распределение ионов в облаке уже не успевает за изменениями поля, и форма облака приблилсается к сферически симметричной. Внешне этот эффект проявляется в увеличении электропроводности растворов и называется явлением дисперсии электропроводности. [c.114]

    Если молекулы диэлектрика не являются идеальными сферами, а оказываются вытянутыми, т. е. имеют эллипсоидальную форму, то уравнение (У.7) не применимо, и для каждой из трех осей эллипсоида имеется свое время релаксации Тг или набор времен релаксации. Аналогичное явление происходит в случае многокомпонентного раствора, состоящего из молекул различного вида. Когда эти времена релаксации различаются значительно, то на дисперсионных кривых хорошо видны три области аномальной дисперсии. Если отдельные времена релаксации близки, что наблюдается наиболее часто, то дисперсионная облает оказывается размытой. Аналогичное явление наблюдается и для сферических молекул с жесткими диполями появляются межмолекуляриые электрические взаимодействия, или междипольные связи. [c.251]

    Если тест ыа форму линии выполнен с помощью усреднения нескольких Гфохождений, то очень интересно сравнить времена релаксации основной линии хлороформа и ее С-сателлитов (объяснение см. в гл. 4). Сателлиты имеют время релаксации, в 2 раза меньшее, чем у основной линии (обычно 15 и 30 с), поэтому основная линия случайно может оказаты я насьш1ениой. В результате интенсивность сателлитов окажется завьпиенной. Это приведет к слишком хорошим показателям формы линии. Поэтому сначала следует проверить интенсивность сателлитов, которая должна составить 0,55% от интенсивности основной линии. [c.66]

    Микрореология полимеров основана на мол.-кине-тич. моделях, представляющих полимер набором последовательно соединенных друг с другом максвелловских тел, диспергированных в вязкой или вязкоупругой среде (модели Каргина-Слонимского-Рауза и др.). Эти модели позволили объяснить и предсказать форму релаксац. спектра полимера, оценить влияние длины цепи и содержания полимера в р-ре на времена релаксации. Согласно т. наз. скейлинговой концепции, в первом приближении все длинноцепочечные полимеры проявляют подобные св-ва при надлежащем выборе масштаба сравнения, а определяющую роль в проявлениц реологич. св-в полимерных систем играет только длина цепи, но не ее хим. строение. Этот подход позволил получить выражения, описывающие с точностью до численных коэффициентов реологич. св-ва полимерных материалов с помощью степенных ф-ций, подобных вышеприведенной зависимости т] от М. [c.249]

    При использовании спектроскопии ЭПР в трехсантиметровом диапазоне длин волн можно определять времена релаксации от 5-10 до 10 с. Этот интервал подразделяют на области быстрых (5-10 — 3 -10 с) и медленных (10 - 10 с) вращений. Формы спектров и способы их обработки в разных областях различны. Для расчета X (в с) в области быстрых вращений обычно используют соотношение  [c.400]

    Поглощенную энергию система перераспределяет внугри себя (т. наз. спин-спиновая, или поперечная релаксация характеристич. время Т ) и отдает в окружающую среду (спин-рещеточная релаксация, время релаксации Ti). Времена Ti и Т2 несут информацию о межъядерных расстояниях и временах корреляции разл. мол. движений. Измерения зависимости Г, и Гг от т-ры и частоты дают информацию о характере теплового движения, хнм. равновесиях, фазовых переходах и др. В твердых телах с жесткой решеткой Гг = 10 мкс, slTi> 10 с, т.к. регулярный механизм спин-решеточной релаксации отсутствует и релаксация обусловлена парамагн. примесями. Из-за малости Гг естественная ширина линии ЯМР весьма велика (десятки кГц), их регистрация -область ЯМР широких линий. В жидкостях малой вязкости Г1 я Гг и измеряется секундами. Соотв. линии ЯМР имеют ширину порядка 10" ГЦ (ЯМР высокого разрешения). Для неискаженного воспроизведения формы линии надо проходить через линию шириной 0,1 Гц в течение 100 с. Эго накладывает существенные ограничения на чувствительность спектрометров ЯМР. [c.517]

    Насыщение снимается, когда электроны спонтанно переходят с верхнего уровня на нижний, поддерживая таким образом избыточную населенность нижнего уровня. Этот процесс индуцируется взаимодействием электрона с окружением (решеткой) и называется спин-решеточной релаксацией, х актеризуемой временем релаксации Т2. Радикалы с короткими временами релаксации насыщаются при больших мощностях высокочастотного поля радикалы с длинными временами релаксации насыщаются легко, при малых мощностях поля. Изучая зависимость спектров ЭПР от мощности высокочастотного поля, т.е. насыщая последовательно радикалы с разными временами релаксации, можно разделить спектры ЭПР разных радикалов такой прием называется дифференциальным насыщением. Например, ал-лильные радикалы имеют длинные времена релаксации и легко насыщаются уже при уровнях мощности выдокочастотного поля 0,2 мВт. Напротив, пероксцдные радикалы имеют короткое время релаксации и не насыщаются вплоть до 100 мВт. В тех случаях когда в насыщении нет необходимости, работают в таком диапазоне мощностей Р, чтобы интенсивность сигнала ЭПР бьша пропорциональна Р при этом форма сигнала не искажается насыщением. [c.284]

    При применении метода ЯМР удобнее пользоваться спектрами высокого разрешения, так как соответствующие приборы обычно более доступны. Следует, однако, отметить Два серьезных ограничения этого метода. Во-первых, если разные области одной цепи имеют различные конформации, то должен существовать быстро релаксирующий компонент. Точное интегрирование сигналов спектров можно осуществить путем использования внешних стандартов, форма сигналов которых максимально (насколько это возможно) приводится к форме сигнала измеряемого вещества [27] однако подобные косвенные доказательства всегда неудовлетворительны. Во-вторых, действительное время релаксации для быстро релакси-рующего компонента замерить невозможно, так как ширину ненаблюдаемого сигнала измерить нельзя следовательно, этот ценный параметр, характеризующий степень жесткости молекулы, в данном случае недоступен. Обе эти проблемы в принципе можно обойти прямыми измерениями времени спада намагничивания, однако это до сих пор трудно осуществить и вследствие усреднения этого параметра по химически неэквивалентным ядрам могут быть получены низкие значения Гг. Следовательно, лучше всего приме-нять указанные выше методы совместно и рассматривать их как дополняющие друг друга- [c.293]

    Дополнительные исследовапЕя, в том числе определение диэлектрических свойств системы цеолит — адсорбированный метанол, показывают, что процесс релаксации III связан с ионами натрия в б-членных кольцах, а процесс релаксации II — с взаимодействием ионов с молекулами воды. Изучение диэлектрических свойств магниевой формы цеолита А позволило установить, что время релаксации молекул воды в MgA бо.льше, чем в NaA [25]. [c.403]

    Движение катиона, нли скачкообразное его перемещение, с которым связывают процесс релаксации, интерпретируется как прыжок катиона из мест (на 6-членных кольцах в больших полостях) в места око.ло 8-членпых окон. Аналогичная картина наблюдается и при поглощении NH,, SOj и СОз цеолитом СаА [22]. Времена релаксации (22 °С) полностью гидратированных различных катионных форм цеолита типа А приведены в табл. 5.2. [c.406]

    В растворе электролита часть силы внутреннего трения обусловлена деформацией ионной атмосферы. В невозмухценном растворе каждый ион окружен атмосферой из ионов противоположного знака, находящихся в среднем на расстоянии 1/х как было показано (гл. П), это распределение обладает сферической симметрией. Под влиянием градиента скорости в растворе эти атмосферы деформируются, превращаясь из сферических в эллипсоидные. Электростатические силы и тепловое движение стремятся восстановить сферическую форму ионных атмосфер. В результате влиянм этих двух противоположных тенденций, а также вследствие того, что время релаксации т является конечной величиной, установится некоторая стационарная деформация. Если считать относительную скорость деформации равной д х1ду, тогда стационарная деформация будет дЬх Ьу. Так как, согласно уравнению (12), z = [>i/ж kT, то деформация ионных атмосфер [c.78]

    При изучении сорбции воды цеолитами были измерены времена релаксации протонов [69, 99, 106]. Грехем и сотр. [66] приводят результаты исследования методом ЯМР низкого разрешения межслоевой воды в гидратированных силикатах, например в вермикулите, монтмориллоните и гекторите, как в кристаллических участках, так и при осмотическом набухании. В кристаллических участках подвижность протонов зависит от содержания воды. Суюнова и сотр. [192] получили спектры протонного резонанса для К-, Ма-, Мп- и Си-форм монтмориллонита. Эти авторы измеряли ширину линий и вторые моменты для этих линий в процессе гидратации. Овчаренко и сотр. [133] регистрировали спектры ЯМР широких линий для поликристаллических образцов Ы-, Са-, Mg-, 2п-, Си +- и Со +-форм вермикулита. В спектрах имеется одна широкая линия, характерная, вероятно, для полностью гидратированной структуры, которая сохраняется вплоть до определенного уровня содержания воды. [c.486]

    Процессы перехода к состоянию термодинамического равновесия в полимерах осуществляются за счет самых различных видов молекулярного движения. Каждому виду молекулярного двил екия соответствует определенный релаксационный процесс, который характеризуется своим временем релаксации. Для того чтобы наблюдать и исследовать какой-либо релаксационный процесс в полимерах и соответствующий ему тип молекулярного двил<еиия, необходимо, чтобы время воздействия на полимер (или время наблюдения) было соизмеримо со временем релаксации. Следовательно, для изучения релаксационных процессов акустическими методами (а это один из наиболее распространенных методов их изучения) необходимо, чтобы период звуковых колебаний был того же порядка, что и время релаксации полимера. Рассмотрим линейный аморфный полимер, находящийся в высокоэластическом состоянии. В этом случае число возможных конформаций, которые мол ет принимать каждая макромолекула, достаточно велико, и в полимере реализуются весьма разнообразные виды молеку-лг рного движения. Пусть в таком полимере распространяются звуковые колебания, частоту которых можно изменять в широких пределах. Если частота звуковых колебаний очень мала, т. е. период звуковых колебаний очень велик по сравнению с временем релаксации са- . ых больших кинетических элементов макромолекул, то энергия звуковых колебаний, которую получат за период элементарный объем полимера, будет быстро перераспределяться по всему объему полимера вследствие сегментальной подвижности микроброуновского типа (диффузии сегментов макромолекул). В этом случае процесс рассеяния энергии носит квазиравновес-ный характер, механические потери невелики, и полимер быстро восстанавливает свои размеры и форму пос.п -снятия приложенного внешнего напрял ения. Естественно, что и динамический модуль упругости полимера (а также скорость звука в нем) будет очень малым, т. е. такого л<е порядка, как и жидкости. [c.254]

    Тем не менее слишком высокие значения энергии активации и сильная зависимость ее от темлературы указывают на то, что уравнение Аррениуса в его простейшей форме, по-видимому, неприменимо вблизи Тд. В связи с этилг Фокс и Флори предположили, что молекулярная цодвижность (а следовательно, и время релаксации) вблизи Тд в основном зависит от свободного объема При этом предполагается, что вероятность перескока [c.263]

    До последнего времени попытки установить связь между формой кривой течения, т. е. зависимостью т) у) и функцией ММР, / М)у основывались на использовании теоретически рассчитываемой зависимости iq (7) для монодисперсных полимеров, например по теории Бики (см. раздел 6.4 настоящей главы), в которой время релаксации выражается через молекулярную массу. Затем полагается, что зависимость т] (y) для полидисперсного полимера определяется jnuMHpo-ванием вклада всех фракций, каждая из которых влияет пропорционально / M)dM. Этот подход был использован, например,, С. Мидлманом , который получил следующую формулу  [c.199]

    Иснользование универсальных спектров, описывающих вязкоупругие свойства пшрокого круга полимерных систем, важно для прикладных целей, особенно если отсутствует иная информация о поведении конкретного материала. Разумеется, существуют полимерные системы с различными по характеру релаксационными спектрами. Но представляется важным, что полимерные системы по форме распределения времен релаксации можно объединить в довольно ншрокие группы, включающие многие материалы. Для них положение спектра определяется характерной величиной времени релаксации 0 , ибо остальные времена релаксации <в спектре выражаются через вт, и роль температуры, концентрации и других факторов в проявлении вязкоупругих свойств материала выражартся посредством их влияния на 0, . [c.270]


Смотреть страницы где упоминается термин Время релаксации форма : [c.99]    [c.179]    [c.488]    [c.84]    [c.251]    [c.59]    [c.210]    [c.448]    [c.171]    [c.186]    [c.147]    [c.251]    [c.449]   
Энциклопедия полимеров том 1 (1972) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Релаксация время

время релаксации Сжу время релаксации при



© 2025 chem21.info Реклама на сайте