Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рост кристаллов поверхности

    На величину окклюзии влияет также скорость приливания осадителя. Известно, что при медленном приливании осадителя получаются обычно более чистые осадки. Это может зависеть, отчасти, от того, что при медленном осаждении образуется более крупнозернистый, с меньшей поверхностью осадок. Но поскольку при образовании кристаллических осадков явления адсорбции играют сравнительно малую роль, более вероятно допущение, что медленный рост кристаллов способствует уменьшению окклюзии, так как при этом легче протекает процесс замены адсорбированных на поверхности кристаллов ионов примесей собственными ионами осадка. [c.115]


    Для примера рассмотрим поперечные срезы растущего кристалла (рис. IX-15). Многоугольники, показанные на рисунке, выражают различные стадии роста кристалла. Поверхности, обозначенные буквой Л, являются медленно растущими гранями (низкие скорости переноса), а поверхности, обозначенные буквой В, — быстро растущими гранями (высокие скорости переноса). Быстро растущие поверхности В стремятся исчезнуть, так как они перекрываются медленно растущими поверхностями А. [c.589]

    При неизменном потенциале катода должна сохраняться неизменной и плотность тока. Так как при росте кристалла поверхность граней его, вообще говоря, увеличивается, то должна увеличиваться со временем и сила тока. Наблюдения за ростом кристалла серебра подтверждают это. Однако закономерный вначале рост силы тока может замедлиться со временем (сила тока может даже уменьшиться). Это объясняется тем, что величина поверхности кристалла не обязательно постоянно увеличивается с ростом его объема. Поверхность зависит от характера огранки кристалла. Возможно, что развитие кристалла приведет в некоторый момент к уменьшению поверхности за счет исчезновения некоторых граней (например вытянутый кристалл неправильной формы превратится в куб). [c.507]

    И механической прочности, а также обеспечить устойчивость против роста кристаллов и спекания и оптимальную ориентацию молекул поверхности. [c.304]

    Горячий водный раствор вещества X непрерывно поступает в реактор смешения, снабженный холодильником. Интенсивность перемешивания достаточна, для того чтобы получающиеся в результате кристаллы были невелики и концентрация их была одинаковой во всем объеме реакционной смеси и на выходе из аппарата. В аппарате поддерживают стационарное пересыщение и постоянную температуру. Кристаллы зарождаются спонтанно, и скорость кристаллообразования зависит только от степени пересыщения и от температуры. Скорость роста кристаллов, которые с некоторым приближением можно рассматривать как сферические, также зависит только от степени пересыщения и температуры. В частности, линейная скорость роста кристаллов в направлении, перпендикулярном к их поверхности, не зависит от размера кристаллов. [c.132]

    Таким образом, смолы с повышением концентрации их в растворе, с одной стороны, замедляют рост кристаллов, а с другой,— способствуют деформации поверхности кристаллов и возникновению на них новых центров кристаллизации, причем степень проявления той или другой тенденции зависит от природы смол и обусловливает форму и размер кристаллов. При кристаллизации твердых углеводородов в присутствии смол происходит округление усеченных острых углов ромбических кристаллов, которое увеличивается с увеличением содержания смол в растворе (рис. 42). Смолы, не растворимые в феноле, добавленные после кристаллизации парафинов, остаются в растворе и не влияют на форму и размер кристаллов. Смолы, растворимые в феноле и добавленные после кристаллизации парафина, способствуют агломерации предварительно выделившихся кристаллов. [c.135]


    Кривые для суммарных смол, выделенных из остаточного рафината, имеют больший тангенс угла наклона, чем для суммарных смол из депарафинированного масла и петролатума. Следовательно, при наличии в растворе полярных молекул ПАВ (присадок и смол) следует учитывать увеличение адсорбционной активности вследствие дополнительных электростатических сил взаимодействия ПАВ между собой и с поверхностью кристалла (адсорбента). При охлаждении такой системы с момента образования зародышей твердой фазы начинается процесс адсорбции смол и присадки на поверхности кристаллов. Наиболее вероятен в данном случае усложненный механизм построения адсорбционного слоя поверхностно-активных веществ на неоднородной поверхности твердой фазы. Насыщенный адсорбционный слой ПАВ для неоднородной в энергетическом отношении поверхности кристаллов, какой следует считать большинство реально существующих поверхностей твердых сорбентов в природе, может быть различной толщины на разных участках поверхности. При добавлении малых количеств присадки происходит адсорбция их молекул на наиболее активных участках гидрофобной поверхности кристаллов твердых углеводородов, при этом дифильные молекулы ПАВ ориентируются полярной частью в раствор, а углеводородным радикалом — на поверхности частиц твердых углеводородов. Это приводит к совместной кристаллизации молекул присадки и твердых углеводородов, которая способствует образованию крупных агрегированных структур, что, в свою очередь, увеличивает скорость фильтрования суспензии остаточного рафината. С увеличением содержания ПАВ в растворе одновременно с адсорбцией молекул на менее активных участках поверхности кристаллов происходит образование второго слоя молекул с обратной их ориентацией, т. е. полярной частью на поверхность твердой фазы. При этом присадка и смолы адсорбируются по всей поверхности кристаллов, не внося существенных изменений в их форму, но препятствуя росту кристаллов, а это снижает скорость фильтрования суспензии. [c.173]

    Полагаем, что рост кристалла лимитируется диффузией вещества к его поверхности. [c.149]

    Существенный вклад в изменение поверхности раздела фаз вносят различия в динамическом напоре турбулентных вихрей в отдельных точках межфазной поверхности. Деформации могут быть настолько велики, что граница раздела разрывается и частица может раздробиться (ДРа — дробление кристаллов) на более мелкие частицы (дуга 23). Изменение поверхности по границе раздела фаз связано также непосредственно с переносом массы (дуга 20), так как рост кристалла сопровождается увеличением поверхности. [c.9]

    Первые слагаемые в правых частях уравнений (1.480), (1.485) характеризуют приток тепла в соответствующую фазу через поверхность выделенного объема dS, через дисперсные частицы, граничащие с поверхностью dS, и за счет пульсационного переноса тепла по потоку вторые характеризуют обмен тепла между целой дисперсной частицей и несущей фазой третьи — перенос тепла за счет фазового перехода четвертые характеризуют работу внутренних сил по изменению объема фазы пятые — изменение внутренней энергии за счет пульсаций скорости роста кристалла и распределения частиц по размерам. [c.126]

    Здесь 5 — плотность распределения кристаллов на поверхности, полагается, что /а постоянна по поверхности т] — линейная скорость роста кристаллов. [c.136]

    Если рост кристаллов не зависит от диффузионного сопротивления и определяется только интенсивностью собственно процесса отложения вещества на поверхности растущих кристаллов, то размер частиц затравки к моменту т после начала кристаллизации определяется уравнением [c.175]

    Когда сопротивление подводу кристаллизующегося вещества из раствора к поверхности растущей грани велико, а собственно кристаллизация происходит быстро, то пересыщение раствора у поверхности может быть близким к нулю (ДСа=0) [27]. В этом слу чае движущая разность концентраций диффузионного переноса равна пересыщению основной массы раствора, а скорость линейного роста кристалла сферической формы находится следующим образом  [c.175]

    Рассмотрим массообмен между частицей и сплошной средой, когда сопротивление переносу сосредоточено в самой частице. В этом случае изменением концентрации во внешнем потоке можно пренебречь. Такие задачи будем называть внутренними. Так, если к внешним задачам относили определение коэффициентов массоотдачи, то к внутренним — нахождение кинетических коэффициентов роста и зародышеобразования кристаллов. Вид кинетических коэффициентов определяется из теорий роста, экспериментальных данных. Все существующие теории роста кристаллов можно разделить на три категории [33] 1) теории, описывающие рост кристаллов с чисто термодинамической точки зрения, имеющие дело с идеальными кристаллами (без дефектов решетки) 2) дислокационные теории, учитывающие, что источником ступеней при росте плоскостей кристалла являются дислокации 3) теории, описывающие рост кристалла, как кристаллохимические реакции на поверхности. [c.262]


    В условиях химического анализа осадок не вносится в раствор в готовом виде, а образуется в нем по мере прибавления осадителя. При этом возникают сначала мельчайшие зародышевые кристаллы, которые постепенно растут, причем поверхность их иепре-рыг.но обновляется за счет отложения все новых и новых слоев соогветствующего вещества. В то же время эта постоянно обнов-лякрщаяся поверхность кристалла непрерывно адсорбирует различные примеси из раствора. В процессе роста кристалла эти примеси постепенно вытесняются ионами, входящими в состав кристаллической решетки осадка. Однако такое вытеснение обычно происходит недостаточно полно. В зависимости от условий осаждения большая или меньшая часть примесей, первоначально находившихся на поверхности частиц, в результате адсорбции оказывается отделенной от раствора вновь отложившимися слоями осаждаемого вещества. [c.113]

    Рассмотрим термодинамические теории роста кристаллов. Теория граничных поверхностей. В разд. 1.1 была получена движущая сила роста кристалла, имеющая вид (пренебрегаем тепловой неравновесностью кристалла и поверхностью раздела фаз, скоростной неравновесностью фаз) [c.262]

    Процесс роста кристалла разделяется на следующие этапы 1) диффузия частиц из объема несущей фазы к поверхности 2) поверхностная диффузия частиц из данной точки на поверхности по направлению к ступени и 3) присоединение частицы к ступени. [c.266]

    При выводе уравнения (3.131) использовались представления об обратимости кристаллохимической реакции на поверхности раздела фаз и не было принято никаких допущений о направлении реакции. Следовательно, это уравнение можно использовать при различных соотношениях между с и с,. При с>с. уравнение описывает кристаллохимическую стадию процесса роста кристалла, в противном случае — растворения. [c.277]

    Пренебрегая тепловой неравновесностью кристалла и поверхности раздела фаз, скоростной неравновесностью между кристаллом и несущей фазой, запишем уравнение изменения скорости роста кристалла (массовой) для случая, когда рост происходит под влиянием внешней диффузии [c.287]

    В самом деле, когда мы рассматриваем какое-нибудь свойство газа или жидкости, у нас обычно не возникает необходимости определить, в каком направлении было или должно быть измерено это свойство. Теплопроводность или показатель преломления воды одинаковы во всех направлениях. Но в кристаллах многие свойства оказываются различными при измерении их в разных направлениях. К таким свойствам относятся, в частности, показатель преломления, теплопроводность, электропроводность, механическая прочность, скорость роста кристаллов, скорость растворения их и др. Известно, что слюда, например, легко разделяется на пластинки по плоскостям, параллельным ее основной поверхности, но разделение ее на части в направлениях, перпендикулярных или наклонных к этой поверхности, требует затраты значительно больших усилий. [c.123]

    Как показывают опытные данные, при кристаллизации из чистой жидкости скорость роста кристаллов при температуре равновесия между фазами равна нулю и увеличивается по мере понижения температуры до некоторого предела. При значительной теплоте отвердевания и при малой теплопроводности вещества выделяющаяся теплота способствует установлению на поверхности раздела температуры равновесия, и только отвод теплоты от системы приводит к одностороннему течению процесса. Чем больше скорость этого отвода теплоты, тем больше, до известного предела, и скорость кристаллизации. Если теплопроводность материала невелика, то процесс может тормозиться недостаточной скоростью передачи теплоты от поверхности соприкосновения фаз к источнику охлаждения. В таких системах перемешивание жидкости, [c.487]

    Изменения пористой структуры и поверхности обусловливаются двумя процессами кристаллизацией и спеканием. При кристаллизации катализаторов имеет место рост кристаллов и упорядочение всей структуры с устранением дефектов и других искажений в решетке кристаллов. В результате исчезают наиболее мелкие частицы, увеличивается размер пор, сокращается удельная поверхность. Однако общий объем пор при этом изменяется незначительно. В процессе кристаллизации формируется относительно стабильная и более однородная структура. [c.53]

    О механизме роста частиц металла на поверхности носителя при термической обработке высказывают два мнения [133, 137]. Согласно первому, рост частиц происходит через двумерный пар, т. е. имеет место направленное движение атомов металла с частиц малых размеров, обладающих большим давлением насыщенных паров, к частицам большего размера и меньшим давлением. Однако, как показано авторами работы [133], для частиц платины процесс спекания через двумерный пар должен длиться около 100 лет. Поэтому авторы предполагают, что рост частиц платины на поверхности носителя обусловлен преимущественно броуновским движением частиц, их столкновениями и слиянием. В соответствии с расчетами скорость перемещения частиц платины диаметром 5 нм по поверхности носителя вполне достаточна для обеспечения необходимой скорости роста кристаллов, вырастающих за несколько часов. [c.61]

    Активаторы могут не только селективно ускорять процесс, но действуют и защитно, подавляя рост кристаллов и скорость побочных реакций, приводящих к уменьшению поверхности катализатора и связанному с этим уменьшению активности [24, 25]. Характерным примером такого защитного действия является влияние добавок 5102 на спекание у-А Оз (табл. 2). [c.62]

    Характер осадка и условия его формирования во времени ири постоянной силе тока (или ири заданном потенциале) зависят не только от природы металла, но и от состава раствора и присутствующих в нем примесей. Примеси поверхностно-активных веществ, а также различных окислителей (например, растворенного кислорода) влияют на кинетику электровыделения металлов. В зависи-мостн от степени чистоты раствора и 1 рнроды примесей могут меняться характер роста кристаллов, число центров кристаллизации, возникаюнщх за единицу времени на единице поверхности катода, значение поляризации ири данно] г илотности тока, характер ее [c.455]

    Накапливающиеся в оборотной воде соли образуют на теплообменной поверхности так называемые карбонатные отложения, более чем на 50% состоящие из карбоната кальция. Основные методы борьбы с ними — обработка охлаждающей воды кислотой (обычно серной) для снижения общей щелочности воды фосфатированис путем введения в воду раствора гексаметафосфата натрия, тормозящего процессы кристаллизации и осаждения карбоната натрия на стенках аппаратуры обработка воды магнитным полем, воздействие которого вызывает быстрый рост кристаллов карбонатных и других отложений, которые сорбируют на своей поверхности ионы карбонатов кальция и магния, растут и выпадают в виде шлама, легко уносимого потоком. [c.85]

    Во многих случаях удельная активность, в зависимости от температуры предварительного прокаливания катализатора, имеет максимум. На рис. XIII, 4 показан пример подобной зависимости для серебряных катализаторов разложения муравьиной кислоты. В то время как общая поверхность катализатора в результате термического роста кристаллов закономерно уменьшается с увеличением температуры двухчасового предварительного прогрева, удельная активность имеет отчетливый максимум примерно при 600° С. [c.338]

    Это значит, что с ростом температуры число активных центров на единицу поверхности сначала растет и, только начиная с определенной температуры, убывает. Подобные кривые невозможно объяснить, исходя из представления о спекании как о поверхностном плавлении активных центров или исходя из эффекта, связанного с уменьшением общей повмхности с повышением температуры. Это явление с позиций термодинамики было рассмотрено О. П. Пол-торакои, который исходил из следующей модели активные центры являются атомной фазой , адсорбированной на поверхности кристалла. При этом оказалось, что для мелкодисперсных кристаллов количество атомной фазы иа единицу поверхности уменьшается с ростом кристаллов. Таким образом, с изменением температуры протекают два конкурирующих процесса сначала при повыщении температуры обработки катализаторов увеличивается число дефектов, а следовательно, и их поверхностная концентрация ири дальнейшем повышении температуры увеличение числа дефектов и их подвижности приводит к росту кристаллов, а следовательно, к уменьшению поверхностной концентрации дефектов. [c.338]

    Структурные модификаторы стабилизируют желаемую, обычно пористую, структуру катализатора, которая без модификаторов мой<ет быть нарушена вследствие спекания. Наиболее хорошо такой механизм действия изучен для добавки окиси алюминия к железному катализатору синтеза аммиака. В этом случае добавка 1% А12О3 приводит к увеличению поверхности восстановленного железного катализатора от 0,5 до 10 и, Кроме того, предотвращает рост кристаллов а-Ре при отжиге. Адсорбционными измерениями удалось показать, что при содержании 0,42% А12О3 в катализаторе она покрывает 35% его свободной поверхности и образует на кристаллах железа тончайший слой, пренятствующи их спеканию [17 ]. [c.45]

    Процесс кристаллизации начинается с выделения из пересыщенного раствора мельчайших частиц кристаллизующегося вещества — зародышей кристаллов. Они способны расти, причем рост кристаллов происходит наиболее легко на острых углах первоначальных зародышей. На микрофотографиях при большом увеличении наблюдается спиральная структура поверхности кристаллов ларафиновых углеводородов. Механизм роста кристаллов индивидуальных парафинов нормального строения и их смесей объясня- ет дислокационная теория 1[4, 5]. [c.118]

    Кристаллизатор DTB состоит из закрытой емкости с вертикальной циркуляциоиной трубой, внутри которой находится пропеллерная мешалка. Последняя обеспечивает циркуляцию кристаллизата из нижней в верхнюю часть аппарата, отличающуюся наибольшим пересыщением, способствуя росту кристаллов и устраняя образование нежелательных центров кристаллизации. Кристаллизатор DTB можно заменить моделью каскада аппаратов с образованием центров кристаллизации в первом аппарате по следующим причинам [118] 1) кристаллизатор имеет развитую поверхность затравочных кристаллов 2) пропеллерная мешалка сводит к минимуму образование новых центров кристаллизации и создает благоприятные условия роста существующим кристаллам 3) образование центров кристаллизации осуществляется преимущественно вблизи свободной поверхности, а рост кристаллов — ниже этой поверхности. Весовое распределение продукта, выходящего из к-то аппарата, выражается с помощью уравнения (1.538). [c.142]

    Наиболее вероятные положения для размещения новой частицы в начале роста поверхности — положение полукристалла (позиция/, см. рис. 3.6) и посередине поверхности (позиция 4), наименее вероятное—в углу. Здесь наблюдается ситуация, противоцоложная случаю ионных кристаллов. Построение одной начатой плоскости происходит быстро, с энергетической точки зрения труднее начать следующую поверхность. Рост кристалла имеет, следовательно, периодический характер [33]. [c.265]

    Эта теория й качественных Ёывбдах До аточно хорошо подтверждается экспериментальными данными [46]. Она аглядно объясняет стремление кристаллов покрываться плоскими, а не кривыми поверхностями. Кроме того, задолго до этой теории опытным путем было обнаружено [47, 48], что кристалл в пересыщенном растворе растет не плавно, а скачками, т. е. после некоторой (иногда продолжительной) остановки аблюдается быстрое отложение вещества на грани в виде прирастающего слоя со строго параллельным расположением частиц, который сразу покрывает всю грань или большую часть ее. Некоторые исследователи [49, 50] смогли наблюдать слоистый рост кристаллов, причем для гетеро-полярных веществ зарождение каждого слоя начиналось из углов грани. [c.266]

    Рассмотрим теорию, описывающую рост кристаллов, как кристаллохимическую реакцию на поверхности [68]. Рассмотрим кристаллохимическую, стадию роста из раствора кристаллов вещества МпВЬ, где N — катионный комплекс. В—-анионный комплекс. В этом случае в растворе присутствуют ионы Н, В (возможно, гидратированные) и твердая фаза. [c.275]

    Частный случай фазового перенапряжения — перенапряжение кристаллизации — отвечает процессу электрокристаллизацйи при катодном осаждении металлов. Образовавшиеся при разряде катионов атомы металла первоначально находятся в адсорбированном состоянии на поверхности катода (они называются ад-атомами). Перенапряжение кристаллизации вызывается торможением в стадии вхождения ад-атома в кристаллическую решетку. Согласно Фольмеру, процесс электрокристаллизации идёт в две стадии возникновение центров кристаллизации (кристаллических зародышей) и их рост. Центр кристаллизации — уплотнение атомов, вокруг которого начинается рост кристалла. Различают двухмерные (толщиной в один атом) и трехмерные (толщиной более одного атома) зародыши. [c.509]

    Кристаллизаторы депарафинизационных установок предназначены для проведения процесса кристаллизации компонентов масляных фракций из охлажденных растворов (рафинатов и гачей) в избирательных полярных и неполярных растворителях при прохождении через них с различными скоростями. Для получения и роста кристаллов необходимо обеспечить перемешивание раствора и оптимальный тепловой и гидродинамический режим. Перемешивание и охлаждение раствора улучшает диффузию кристаллизующегося вещества к поверхности кристалла и ускоряет его рост. Одновременно с этим происходит выравнивание температуры раствора в объеме и на поверхностях охлаждения. Ввиду более низкой температуры поверхностей охлаждения на них усиленно идет зародышеобразование и рост кристаллов, которые снижают эффективность теплообмена. Образующиеся отложения кристаллов на внутренних поверхностях трубчатых теплопередающих устройств снимают скребковыми устройствами, вращающимися внутри труб с небольшой частотой. [c.379]

    Кристаллизаторы типа труба в трубе и кожухотрубчатого типа со скребковыми устройствами, предназначенные для получения и роста кристаллов при очистке масляных рафинатов, классифицируются по следующим признакам способу подвода теплоносителя или хладагента и их движению, составу применяемых хладагентов и конструктивному исполнению. В аппаратах типа труба в трубе по внутренним трубам движется охлаждаемый раствор рафината или масляная суспензия (гача) с растворителем, из которых выкристаллизовывается парафин (или церезин), а по внешней поверхности — охлаждающая среда — фильтрат или депарафинизованное масло. В кожухотрубчатых кристаллизаторах внутренний поток подготавливаемого продукта охлаждается с наружной поверхности испаряющимися хладагентами — аммиаком, пропаном, этаном и др., а также их смесями. Скреб- [c.379]

    Морфология образующихся частиц зависит от целого ряда факторов, но наиболее важным является соотношение скоростей их зарожд ения и роста, которые в свою очередь в значительной степени зависят от пересыщения системы. Окончательный размер частиц определяется числом центров кристаллизации и скоростью осаждения вещества. Умеренно растворимые вещества, например карбонаты, обычно осаждаются в виде очень мелких частиц. При медленном, регулируемом росте умеренно растворимых солей можно получать монодисиерсные осадки. При высоких степенях пересыщения первичный критический центр кристаллизации может быть меньше размера элементарной ячейки решетки и начинает расти, не имея упорядоченной кристаллической структуры. Таким путем можно получать аморфные или частично кристаллизованные осадки [И]. При низких степенях пересыщения образуется хорошо сформированный кристаллический осадок, причем форма частиц зависит от структуры кристалла и от процессов, преобладающих на поверхности раздела фаз в ходе роста. На морфологию осадка сильно влияет скорость роста кристаллов. При низких скоростях образуются компактные кристаллы, форма которых соответствует кристаллической структуре. Ионы в растворе вблизи поверхности раздела кристалл — жидкость играют важную роль в модификации формы кристалла. При высоких степенях пересыщения нередко образуются объемистые осадки с дендритными частицами. При еще больших уровнях пересыщения получаются очень мелкие частицы, способные к агломерации или образованию золей. [c.19]

    Рекристаллизация твердых тел как с изменением химического состава кристаллов, так и с сохранением его заключается в образовании одних зерен тела за счет других и протекает особенно интенсивно в пластически деформированных телах (например, катализаторы, получаемые смешением Компонентов с введением связующих добавок). Внешне рекристаллизация проявляется в изменении размеров и количества кристаллов. Движущей силой этого процесса считают уменьшение термодинамического потенциала катализатора в результате снижения суммарной поверхности границ кежду зернами или снятие искажений и напряжений в кристаллической решетке [5, 6]. Кинетика рекристаллизации характеризуется скоростью зарождения центров и линейной скоростью роста новых кристаллов. Значения этих величин зависят в первую очередь от чистоты твердого тела, степени его деформации и размера зерен [7—14]. Установлено, что чистые вещества рекристаллизуются особенно интейсивно. Малые количества примесей (иногда < 0,01 %) могут уменьшать скорость рекристаллизации на несколько порядков [5, 7—10]. Влияние температуры на скорость зарождения и роста кристаллов при определенной степени деформации катализатора приближенно выражается уравнением Аррениуса. [c.59]

    Действие АЬОз в качестве активатора заключается в следующем. Ввиду того, что АЬОз — трудновосстанавливаемое соединение, оно отделяет кристаллы Fe друг от друга тонкой пленкой и тем самым препятствует их срастанию и уменьшению числа активных центров катализатора. А 2О3 имеет такую же кристаллическую структуру как и Рез04, но поскольку она йе восстанавливается до металла, то не принимает участия в росте кристаллов. Вместе с тем АЬОз обладает и нежелательным свойством — способна удерживать на своих поверхностных кислых центрах аммиак, что снижает эффективность катализатора. Для устранения отрицательного действия АЬОз к катализатору добавляют К2О, которая нейтрализует кислотные центры, снижает работу выхода электрона железа и повышает удельную каталитическую активность. Количество вводимой К2О должно быть пропорционально содержанию АЬОа. Нужно учитывать, что ввиду сильного минерализирующего действия, добавка К2О значительно снижает удельную поверхность катализатора. Введение ЗЮг понижает активность катализатора при одновременном же добавлении ЗЮ2 и СаО (MgO) активность немного возрастает [177, 182]. [c.162]


Смотреть страницы где упоминается термин Рост кристаллов поверхности: [c.375]    [c.454]    [c.340]    [c.44]    [c.50]    [c.79]    [c.169]    [c.169]    [c.162]   
Физика и химия твердого состояния органических соединений (1967) -- [ c.384 ]




ПОИСК





Смотрите так же термины и статьи:

Рост кристаллитов

Рост кристаллов



© 2025 chem21.info Реклама на сайте