Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородная связь межмолекулярна спектроскопия

    Вследствие используемого метода наблюдения, обычно химические сдвиги являются единственными параметрами, которые можно извлечь из спектра ЯМР С. Часто в спектре содержится просто единственный сигнал для каждого неэквивалентного атома углерода или группы в молекуле. В качестве примера рассмотрим спектр этилацетата (см. рис. 9.3-9). Четырем ядрам углерода соответствуют четыре сигнала. Наша задача —правильно отнести каждый сигнал к соответствующему типу ядер. Таким образом, знание общих правил, связывающих химические сдвиги с молекулярной структурой, даже более важно в спектроскопии ЯМР С, чем в ПМР. В обсуждении химических сдвигов протонов в предыдущей главе мы рассмотрели некоторые специальные явления, такие, как эффект кольцевых токов и магнитной анизотропии соседней группы, для того, чтобы понять экспериментальные результаты. Мы также упоминали межмолекулярные эффекты, такие, как влияние растворителя и температуры, в частности в связи с химическими сдвигами протонов групп ОН, 8Н, и NH (обмен протонов и водородные связи). В спектроскопии ЯМР на ядрах С все эти эффекты, вьфаженные в м.д., близки по величине к эффектам в ПМР. Следовательно, при рассмотрении суммарных сдвигов в диапазоне около 220 М.Д. они будут менее значимы. С другой стороны, эффекты заместителей, играющие важную роль в спектроскопии ПМР, остаются важными и в случае химических сдвигов ядер С. [c.232]


    Спектры растворов, жидкостей и кристаллов могут служить важным источником сведений о межмолекулярном взаимодействии, о его тонких деталях. Сравнивая величину низкочастотного сдвига при растворении вещества в серии растворителей, можно определить, как изменяется энергия межмолекулярного взаимодействия веществ с растворителем, электронно-донорные свойства растворителей и др. Особое значение при изучении межмолекулярного взаимодействия приобрела спектроскопия водородной связи. [c.178]

    При адсорбции макромолекул на гидроксилированной и химически модифицированной прививкой полярных функциональных групп поверхности кремнеземов, помимо проявления универсальных дисперсионных межмолекулярных взаимодействий, возможно проявление и специфических межмолекулярных взаимодействий полярных групп макромолекул с адсорбентом. В случае адсорбции на гидроксилированной поверхности кремнеземов специфические межмолекулярные взаимодействия возможны у тех звеньев макромолекул, которые могут образовывать с силанольными группами поверхности водородные связи. Действительно, методом инфракрасной спектроскопии обнаружено образование водородных свя- [c.334]

    Однако в ряде вопросов, например, при изучении межмолекулярных взаимодействий, процессов комплексообразова-ния, водородной связи, ассоциаций и самоассоциаций, достижения спектроскопии ЯМР не так велики, как в ПМР-спектроскопии. [c.137]

    Методы количественной инфракрасной спектроскопии часто используют для нахождения равновесных данных, особенно при изучении процессов ассоциации за счет образования межмолекулярных водородных связей. [c.245]

    При практическом использовании метода ИК-спектроскопии для доказательства образования внутримолекулярных водородных связей съемки ИК-спектров должны проводиться при разных концентрациях, в том числе при больших разбавлениях, так как только независимость положения и интенсивности полосы поглощения связанной гидроксильной группы от концентрации может служить доказательством образования внутримолекулярной водородной связи. Если же при разбавлении происходят существенные изменения, это свиде тельствует о межмолекулярной ассоциации с помощью водородных связей. [c.352]

    Межмолекулярные взаимодействия играют важную роль в осуществлении многих химических и биологических процессов. Образование водородной связи, перенос заряда, возникающие в результате слабых межмолекулярных взаимодействий, меняют не только химические свойства самих молекул, участвующих в них, но и физико-химические свойства среды, в которой осуществляются такие взаимодействия. Для описания состояния, в котором находятся молекулы, используют термин молекулярный комплекс , время жизии которого чрезвычайно мало — порядка Ю —10 с. Образование мо-лекулярны х комплексов регистрируют спектральными методами, так как физические свойства комплексов отличаются от свойств чистых компонентов. Одним из спектральных методов, позволяющих получить информацию о величинах констант равновесий, термодинамических и спектральных характеристик молекулярных комплексов, является спектроскопия ЯМР. [c.98]


    Внутри- и межмолекулярные водородные связи легко различить с помощью спектроскопии ЯМР, поскольку только при образовании межмолекулярных водородных связей резонансные частоты гидроксильного протона или протонов аминогруппы сильно зависят от концентрации. В качестве иллюстрации на рис. IV. 19 сравниваются спектры салицилового альдегида и этанола при различных концентрациях. [c.106]

    Со значительно большим успехом инфракрасная спектроскопия используется в последнее время для общей характеристики полисахарида, наличия в нем тех или иных групп, их пространственного, расположения, конформации молекул, а также надмолекулярной структуры. В последнем случае удается наблюдать за характером межмолекулярных взаимодействий, например таких, как водородные связи, а также степенью ориентации макромолекул между собой. [c.153]

    Другим способом определения энергии межмолекулярной водородной связи, гораздо более точным, очевидным по своей природе, но зато и значительно более трудоемким, является способ, основанный на измерении температурного смещения равновесия между комплексом и свободными молекулами. Поскольку в данной задаче спектроскопия играет роль простого датчика концентраций, то очевидно, что контроль за числом молекул и ассоциатов может производиться по их любым полосам поглощения, которые наиболее удобны для измерения интенсивностей. Единственным требованием для выбора этих полос является то, чтобы одна из них была обусловлена колебаниями только свободной, другая — только связанной молекулы. Обычно при изучении энергии ОН...0-мостика пользуются полосами валентных колебаний, которые достаточно интенсивны и лежат в хорошо изученной и легко доступной спектральной области их интенсивности могут быть измерены наиболее просто. При этом приходится сделать на первый взгляд вполне естественное допущение о том, что интегральные интенсивности полос voн — Л и voн° — [c.167]

    Изучение межмолекулярных взаимодействий и процессов комплексообразования проводится аналогично описанному выше исследованию кинетики химических реакций, а также изучению комплексообразования методом УФ-спектроскопии. Особенно часто метод используется для исследования образования водородных связей в полимерах, например в полиуретанах [23, 24]. [c.224]

    Конформации глюкопиранозных звеньев целлюлозы, а также конформации ее цепей изучают с помощью рентгеноструктурного анализа, ИК- и ЯМР-спектроскопии и теоретического конформационного анализа. Экспериментальные данные и результаты расчетов показывают, что в цепи целлюлозы угол, образованный валентными связями атома кислорода гликозидной связи (угол С(1)-0-С(4)), превышает нормальный валентный угол атома кислорода. Следовательно, цепь целлюлозы находится не в предельно вытянутом состоянии, а в несколько изогнутой форме. При этом создаются необходимые расстояния для образования внутримолекулярных водородных связей. В результате возникновения прочных регулярных межмолекулярных Н-связей жесткие вытянутые цепи целлюлозы образуют высокоупорядоченную надмолекулярную структуру - кристаллическую решетку (см. 9.4). [c.233]

    ИК-спектроскопия в органической химии используется для идентификации и установления строения соединений, изучения внутри- и межмолекулярных взаимодействий (водородные связи), кинетического контроля реакций н пр. [c.505]

    В опубликованной ранее работе [300 ] также было показано отсутствие изменений в рентгенограмме найлона-6,6, облучавшегося высокими дозами в реакторе. По-видимому, рентгенографический метод недостаточно чувствителен для определения образования поперечных связей и деструкции полимеров этого типа. Уменьшение степени кристалличности, вызывающее заметное снижение разрывной прочности полимера, не фиксируется этим методом. Методом инфракрасной спектроскопии установлено уменьшение количества межмолекулярных водородных связей (в кристаллитах -формы) и увеличение числа внутримолекулярных водородных связей (в кристаллитах а-формы) [319]. Этим фактом может быть в основном объяснено снижение прочности полиамида. Наблюдающееся умень- [c.194]

    В сборнике отражено современное состояние теории строения комплексов с водородными связями, рассмотрены динамика и инфракрасная спектроскопия несимметричных и симметричных водородных связе , процессы межмолекулярного перехода протона, роль водородных связе в химических реакциях. Статьи написаны специалистами, активно работающими в соответствующих областях. [c.2]

    Сборник составлен из работ по спектроскопическому изучению межмолекулярных взаимодействий в газообразной и жидкой фазе. Ряд статей посвящен исследованию водородной связи — ее теории, влиянию растворителя на полосы комплексов с водородной связью, изменению функции днпольного момента при образовании комплекса, изучению перехода протона методом водородного обмена. В нескольких работах рассматривается влияние вращательного движения молекул в жидкостях на контур полос поглощения, проводится вычисление днпольного момента, индуцируемого при столкновениях. Включены описа- ния длинноволнового и скоростного инфракрасного спектрометров, а также работа, посвященная применению инфракрасной спектроскопии к анализу сжиженных газов. [c.2]


    Флаванон (287) имеет полосу v =0 вблизи 1680 сж (в нуйоле) [386, 413]. Межмолекулярные водородные связи, возникающие при введении оксигруппы в положение 3 или 4, понижают частоту v = 0 до - -1665 см , а внутримолекулярная водородная связь, образующаяся при наличии гидроксила в положении 3,— до 1655 см К Вследствие сопряжения с оксигруппами в положениях 5 и 7 v —О понижается до 1620 см в противоположность этому ацетоксигруппы влияют слабо [386]. ИК-спектроскопия использовалась в конформационном анализе соединений данного ряда [431]. [c.556]

    Существование стабильных и метастабильных изомеров, образующихся в результате медленного вращения связи, часто делает ЯМР-спектры амидов очень сложными. Другое осложняющее обстоятельство в структурных исследованиях амидов в конденсированной фазе, возникающее в силу их биполярного характера, связано с тенденцией амидов к ассоциации как между собой, так и с растворителем. Поэтому значения наблюдаемых физических параметров, таких как химические сдвиги при ЯМР-спектроскопии, частоты поглощения при ИК-спектроскопии или дипольные моменты, будут зависеть от концентрации амида в растворе и природы растворителя. В литературе хорошо описаны три типа межмолекулярных ассоциатов амидов димеры и полимеры, образованные за счет водородной связи (65) и (66), а также диполь-диполь-ные димеры (67) [149]. Первые два типа относятся, конечно, только к первичным и вторичным амидам и образуются вследствие их кислотно-основных свойств (см. разд. 9.9.2.3). Возникновение третьего типа ассоциатов, вероятно, ограничено третичными амидами, для которых образование водородных связей невозможно. Амиды образуют также ассоциаты с молекулами растворителя особенно легко образуются комплексы с ароматическими растворителями. Эти эффекты ассоциации рассматриваются в разд. 9.9.2.2 и 9.9.2.3. [c.430]

    Строение пероксикислот тщательно изучалось некоторые из них получены в кристаллической форме [1, 2]. Твердые кислоты связаны прочной внутримолекулярной водородной связью меледу двумя смежными молекулами существует также межмолекулярная водородная связь, как показано в (4). Внутримолекулярная водородная связь сохраняется и при растворении пероксикислоты (установлено ИК-спектроскопией) [3], и, как полагают, соединение (5) представляет собой активный исходный агент для генерирования электрофильного кислорода при реакциях пероксикислот (по крайней мере в растворителях, не содержащих гидроксильной группы). Расчеты с помощью метода молекулярных орбиталей (методы [c.580]

    ЯМР С в повседневной деятельности химика-органика. На этом следует остановиться более подробно, поскольку хотелось бы предупредить читателя о некоторых подводных камнях, которые могут возникнуть на пути использования спектроскопии ЯМР С. Постепенно стало очевидным, что спектроскопия ЯМР не может быть палочкой-выручалочкой во всех случаях. В ряде вопросов, например при исследовании межмолекулярных взаимодействий, процессов комплексообразования, водородной связи, ассоциаций и самоассоциаций, успехи ЯМР по сравнению с ПМР оказались более чем скромными. Это связано с тем, что спектроскопия ПМР, безусловно, является более эффективным методом исследования слабоконцентрированных растворов. Сравнительно малый прогресс имел пока место при применении спектров С для изучения структуры полимеров и стабильных радикалов. [c.7]

    В функциональном анализе значительное место занимают физические и физико-химические методы [52, с. 450]. Из этих методов опять-таки стандартным методом является ИК-спектроскопия. Многие атомные группировки (функциональные группы) обладают полосами поглощения в определенной достаточно узкой части ИК-спектра. Это так называемые характеристические частоты , которым в ЯМР-спектре соответствуют химические сдвиги , а в масс-спектре пики, отвечающие определенным ионам. Кроме такой, прямой идентификации функциональных групп, спектроскопические методы дают возможность судить также о присутствии водородных связей, хотя и косвенным способом. Внутри- и межмолекулярные водородные связи можно различать с помощью ИК-спектроскопии, так как разбавление раствора не сказывается на внутримолекулярных водородных связях и, наоборот, приводит к уменьшению числа межмолекулярных связей. [c.313]

    Межмолекулярные водородные связи, связывающие. между собой люлекулы метилового спирта (ранее изученные методом инфракрасной спектроскопии), а также водородные связи воды были исследованы методом комбинационного рассеяния света Г. С. Ландсбергом и его сотрудника.ми [4]. Эти исследования установили большую чувствительность гидроксильной группы к водородной связи, проявляющуюся в резко.м смещении характеристической частоты ОН в область низких частот и в размытии ее в полосу. Так, если частота ОН у неассоциированных. молекул парообразной воды составляет 3646 см а у неассоциированных молекул парообразного спирта 3670 слг , то в жидком состоянии у этих веществ, благодаря образованию межмолекулярной водородной связи (ассоциация), вместо линий появляется полоса, максимум интенсивности которой находится около 3440 см . [c.515]

    Образование локальных межмолекулярных связей доказано методом инфракрасной спектроскопии . Были изучены ИК-спектры поглощения поливинилового спирта, желатина, некоторых полиамидов в диапазоне температур от О до 150 °С. В спектре поливинилового спирта обнаружены максимумы 1,60 и 1,49 мк, положение которых не меняется при нагревании до 50—60 °С. При дальнейшем нагревании интенсивность полосы 1,60 мк постепенно уменьшается, а полосы 1,49 мк возрастает. При 130—150°С на кривой поглощения возникает довольно резкий максимум, соответствующий частоте 1,42 мк. Частота 1,60 мк характерна для гидроксильных групп, образующих водородные связи, а частота 1,42 мк характерна для свободных гидроксильных групп. [c.175]

    Изложены результаты количественного определения термического эффекта в образцах ориентированного и неориентированного полимера и изучена его природа методами дифференциального термического анализа, рентгенографии и ИК-спектроскопии. Физическая картина фазового перехода поливинилового спирта при нагревании представляется в виде процесса двумерного плавления полимера с разрывом и преобразованием межмолекулярных (поперечных) водородных связей. Показано, что теплота фазового превращения ориентированного полимера больше, чем неориентированного. Дана приблизительная оценка доли разорванных водородных связей при фазовом превращении. [c.305]

    Частота и интенсивность полос поглощения группы ОН чувствительны к изменениям концентрации, температуры и структуры молекулы. Это определяется способностью гидроксильной группы образовывать межмолекулярные и внутримолекулярные водородные связи. Отсюда ИК спектроскопия представляет собой непосредственный путь исследования и обнаружения водородной связи. [c.197]

    Для предсказания возможности образования водородной связи в циклических гликолях и ее относительной прочности е-обходимо учитывать взаимное пространственное расположение гидроксильных групп в различных конформациях. Внутримолекулярную водородную связь в гликолях удобно изучать с помощью ИК-спектроскопии. Обычно используются очень разбавленные растворы в четыреххлористом углероде, чтобы избежать образования межмолекулярных водородных связей. Гликоли, образующие [c.45]

    Применение электронной спектроскопии может дать ценную информацию о водородной связи, образованной молекулами, находящимися как в основном, так и в возбужденном электронных состояниях. Для получения такой информации необходимо отделить спектроскопические эффекты, связанные с наличием водородной связи, от эффектов, обусловленных другими видами межмолекулярных взаимодействий. [c.219]

    В реальных конденсированных системах любые специфические межмолекулярные взаимодействия, и в том числе водородная связь, проявляются одновременно с универсальными взаимодействиями, как бы на фоне последних. Поэтому при количественном рассмотрении эффектов, вызванных специфическими взаимодействиями, нельзя забывать о возможном вкладе универсальных взаимодействий в наблюдаемый на опыте суммарный эффект. Такой подход широко используется не только в спектроскопии межмолекулярных взаимодействий, но и в теоретической органической химии [45]. [c.231]

    I цитируемой работе, опрделяется изменением температуры сшивания и уменьшением концентрации групп, способных к образованию водородных вязей. Изменение концентрации этих групп достигали использованием со-юлимера метилметакрилата и стирола. С помощью ИК-спектроскопии с Ьурье-преобразованием показано, что для сохранения совместимости в дан-1ЫХ смесях необходимо поддерживать величину межмолекулярного взаилю-хействия, обусловленного водородными связями, не ниже определенной критической величины. [c.477]

    Инфракрасная спектроскопия ноэволяет легко в надежно обнаружить водородный мостик в благоприятных случаях при соответствующих допущениях возможна полуколичественная оценка относительного содержания водородных связей в молекуле. При последовательном разбавлении устраняется возможность межмолекулярной ассоциации и поэтому удается исследование только внутрикомплексных связей. [c.118]

    Разработан метод двумерной ИК-спектроскопии [12], в котором спектр идентифицируется в результате корреляционного анализа динамических сигналов. Метод позволяет судить о взаимодействии между функциональными группами, об образовании водородных связей и о других, типах межмолекулярных взаимодействий. Примером служит двухмерный гетероспектр, получаемый отложением на оси ординат волнового числа ИК-лучей, а на оси абсцисс - угла рассеивания рентгеновских лучей. Предложены приборы для реализации метода ИК-спектрометрической эллипсометрии [13], позволяющего проводить измерения толщины тонких пленок и оценивать характеристики материалов. [c.221]

    Обобщив имеющийся в литературе материал и использовав известные закономерности физики и химии полимеров, Эриньш предложил модель лигнин-гемицеллюлозной матрицы как полимерной композиции типа взаимопроникающих сеток. Лигнин-гемицеллюлозная матрица образуется взаимоналожением трех сетчатых структур сетчатой структуры самого лигнина сетки, образованной ковалентными связями лигнина с гемицеллюлозами сетки, образованной межмолекулярными водородными связями и силами физического взаимодействия в лигнине, в гемицеллюлозах и между ними. Матрица микрогетерогенна и состоит из областей разного состава с различной плотностью сетки. Лигнин в ней находится в виде глобулярных микроблоков со сравнительно плотной сеткой поперечных связей, которые, в свою очередь, включены в менее плотную сетчатую структуру. Считают, что ковалентные связи лигнина с гемицеллюлозами образуются в ходе его биосинтеза (см. 12.5.2). Изучение типов ковалентных связей лигнина с гемицеллюлозами проводят по двум направлениям исследование образования связей лигнина с углеводами в ходе биосинтеза исследование состава и строения ЛУК, выделенных из древесины, с привлечением методов деструкции, химического анализа, ЯМР-спектроскопии и др. [c.408]

    Инфракрасная спектроскопия менее информативна для изучения конформаций полипептидов в растворе по сравнению с более пригодными для этой цели другими спектроскопическими методами, однако оказалось возможным идентифицировать межмолекулярную водородную связь в пептидных моделях, основываясь на валентных колебаниях N—И. Характеристические частоты 3340 см- (N—Н, включенная в водородную связь) и 3420 см- (N—Н, не участвующая в водородной связи) относятся соответственно к конформациям с внутримолекулярной водородной связью, а частоты 3440 и 3460 СМ- — к растянутой конформации К-метиламидов N-ацетиламинокислот [30]. Наличие всех четырех указанных пиков позволяет оценить количество каждого конформера для этих соединений. Для этих пиков, однако, имеются различные отнесения [31]. [c.435]

    ИК-спектроскопией установлено, что ОН-группы связаны между собой водородной связью, что в значительной степени обусловливает ассоциацию асфальтенов даже в очень разбавленных растворах. В результате метилирования, силилирования и ацетилирования молекулярная масса уменьшается от 5920 до 3720, 3680 и 4200 соответственно, что свидетельствует о частичном межмолекулярном характере водородной связи в аефальтенах. [c.99]

    Таким образом, низкотемпературная спектроскопия растворов в сжиженных газах открывает качественно новые возможности для изучения межмолекулярных взаимодействий промежуточного характера, которые в обычных условиях проявляются как типичные ван-дер-ваальсовые взаимодействия. Анализ результатов для всего изученного ряда комплексов галоидоводородав с N2, СО, H3F, С2Н2, 0(СНд)2 в жидком аргоне и криптоне показывает, что возмущение спектральных характеристик значительно для всех типов взаимодействия и не дает возможности однозначно отличить водородную связь от более слабых взаимодействий [c.172]

    Влияние универсальных межмолекулярных взаимодействий и межмолекулярной водородной связи на сдвиг п-+я -электронных полос некоторых кетонов и диазинов. Мейстер Т. Г., Зеликина Г. Я. Молекулярная спектроскопия. Изд. ЛГУ, 1973 г., вып. 2, 55—65, табл. 3, рис. 2. [c.130]

    Попытка применить УФ- ИК- и КР-спектроскопию для решения поставленной задачи не увенчалась успехом. В ИК-спектрах изучаемых гидразидов использование полос поглош ения, отвечающих группам КН и ОН (область 3100—3400 оказалось непригодным в связи с их сильным смещением благодаря интенсивному внутри- и межмолекулярному взаимодействию с образованием водородных связей. Не могло дать ответа на поставленный вопрос и рассмотрение полос поглощения в области валентных колебаний групп С=К для иминольной формы (область 1620—1650 см ), так как эта область может перекрываться полосами поглощепия деформационных колебаний КНа-групп. [c.97]

    Вклад, связанный с силами Ван-дер-Ваальса, можно выделить, если сравнивать химические сдвиги веществ в газообразном состоянии со сдвигами их в растворах в инертных неполярных растворителях [77]. Однако, ввиду трудности работы с газообразными веществами, в практике ЯМР-спектроскопии исходными данными для составления таблиц и параметров химических сдвигов обычно служат именно химические сдвиги веществ, экстранолированные к бесконечному разбавлению в инертных растворителях. Поэтому рассмотренные ранее параметры экранирования Од и как правило, уже включают вклад, обусловленный Ван-дер-Ваальсовым взаимодействием. Далее, величину удобнее рассматривать вместе с вкладом от межмолекулярного взаимодействия так как последний также включает сходные элементы. С другой стороны, среди молекулярных взаимодействий важное место занимает водородная связь, особенно в спектрах протонного магнитного резонанса. Поэтому мы будем рассматривать несколько иной набор величин, определяющих составляющую магнитного экранирования о (см. уравнение П-4) [c.82]

    В третьей части изложены вопросы применения электронной спектроскопии для решения ряда специальных проблем органической химии. Здесь показаны возможности абсорбционной спектроскопии в качественном и количественном анализе, а также при изучении химического равновесия и кинетики реакций. Особое внимание уделено новому перспективному методу спектрохимии — скоростной спектроскопии, до сих пор не описанному в монографиях по электронной спектроскопии. Соответствующий параграф 7.2 написан ст. научн. сотрудником О. Д. Дмитриевским. Глава 8, написанная доцентом Т. Г. Мейстер, посвящена проявлению в электронных спектрах водородной связи. Изменения в спектрах, вызываемые этим наиболее распространенным квазихимическим межмолекулярным взаимодействием, позволяют лучше понять и предсказать влияние на спектры изменений в строении молекул. [c.4]


Смотреть страницы где упоминается термин Водородная связь межмолекулярна спектроскопия: [c.99]    [c.596]    [c.463]    [c.501]    [c.12]    [c.103]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.180 ]




ПОИСК





Смотрите так же термины и статьи:

Водородная связь межмолекулярная

Водородные связи

Межмолекулярные

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте