Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физические свойства и строение молекул

    Второй уровень информации относится непосредственно к установлению химического строения основного ядра молекул или отдельных его фрагментов, а также атомных группировок обрамления. В настоящее время проведена детальная оценка основных составляющих элементов, на основании которой некоторые авторы берут на себя смелость предлагать среднестатистические, или гипотетические , модели структуры молекулы асфальтенов [45]. В целом эти представления суммируют большое количество эмпирических данных и параметров, полученных на основе новейших достижений аппаратурного анализа. Однако сейчас пока трудно оценить достаточную и объективную аргументированность той или иной модели с точки зрения учета всей совокупности реальных физико-химических свойств асфальтенов из-за отсутствия встречного синтеза предлагаемых структур и отсутствия оценки физических свойств гипотетических структур на основе расчетных [c.238]


    Молекулы, которыми занимается биофизика, характеризуются многими особенностями, отличающими их от молекул неживой природы. Белки — самые сложные из известных нам молекул. Будучи макромолекулами, белки и нуклеиновые кислоты не являются статистическими системами, в отличие от макромолекул синтетических полимеров. Это — динамические системы, своего рода машины, поведение которых определяется положением и функциональностью каждого элемента, образующего молекулу. Основная задача молекулярной биофизики состоит в исследовании специфических особенностей, определяющих строение и свойства биологических молекул. Физическая теория, с которой приходится иметь дело в молекулярной биофизике, есть теория строения и физических свойств этих молекул и одновременно теория методов исследования, применяемых в эксперименте. [c.9]

    Полиолефины, как и другие синтетические материалы, получили широкое применение благодаря своим особым физическим и физикохимическим свойствам. Эти свойства связаны с составом и строением молекул полимеров и определяются силами, действующими между [c.336]

    Такой же вывод можно сделать и в теХ( случаях, когда при работе двигателя на двух топливах, близких по физическим, но различающихся по химическим свойствам, наблюдается существенное различие параметров рабочего процесса. Например, н-гептан и изооктан (2,2,4-триметилпентан) характеризуются близкими физическими свойствами температура кипения 371,4 и 372,3 К, теплота испарения 31,7 и 31,0 кДж/моль, давление насыщенных паров при 373 К равно 1,06-10 и 1,04-10 Па соответственно. В то же время они различаются по октановому числу, зависящему от химического строения молекулы у н-гептана октановое число принято равным нулю, а у изооктана — 100. С точки зрения физической модели при работе карбюраторного двигателя на обоих топливах параметры рабочего процесса должны быть идентичными. Однако хорошо известно, что прн степени сжатия, превышающей 2,8 (у современных двигателей она равна 7—9), двигатель на н-гептане работает с детонацией , которая может привести к его разрушению. [c.145]

    Общий принцип природы состоит в том, что свойства вещества определяются его составом и строением. Из многих известных видов элементарных частиц, образующих материю, химия, объектами изучения которой являются атомы, молекулы, их ионы и радикалы, в основном оперирует ядрами и электронами. Таким образом, самые различные химические проявления вещества — его реакционная способность, пространственное строение молекул, наиболее важные физические свойства атомов, молекул и их ансамблей — опр деля-ются движением ядер и электронов и физическими законами, описывающими взаимодействие ядер и электронов между собой. [c.7]


    При стандартном методе исследования фиксируют температуру начала кипения (НК), объемы выкипания (в %) десятиградусных фракций, температуру конца кипения (КК), остаток и потери. Известно, что температуры кипения разветвленных углеводородов ниже температур кипения соответствующих им изомеров с прямой цепью. При этом чем компактнее строение молекулы, тем ниже температура кипения. Это означает, что в любой фракции могут содержаться углеводороды с разным числом атомов углерода и существенно различающимися физическими и химическими свойствами. [c.22]

    В настоящее время общепризнанной основой квантовомеханического описания свойств органических соединений стал метод молекулярных орбиталей (МО). Он не только является наиболее распространенным расчетным методом квантовой химии, но именно в его терминах обсуждаются результаты экспериментальных исследований физических свойств, строения и реакционной способности молекул [120—122]. [c.90]

    Выше мы рассмотрели-основные понятия, постулаты и уравнения классической теории строения молекул и квантовой механики. Были установлены некоторые аналогии между основными понятиями классической теории и рассмотренными выше величинами, характеризующими физическую картину строения молекулы согласно квантовой механике. Были рассмотрены уравнения классической теории и уравнения квантовой механики, устанавливающие связь между свойствами и строением молекулы. [c.127]

    Причинами различного характера изотерм являются природа адсорбционных сил, величина удельной поверхности адсорбента, химический характер и строение поверхности, пористая структура адсорбента (объем пор, их распределение по размерам, характер связи пор друг с другом), химические и физические свойства адсорбируемых молекул. [c.7]

    Пос кольку строение молекул СО и N 2 аналогично, сходны и их физические свойства очень низкие температуры плавления (для СО [c.405]

    Можно объяснить изложенные выше экспериментальные данные, исходя из современных представлений о зависимости между физическими свойствами и химическим строением органических соединений, а также из данных о прочности связей углерода с углеродом, водородом, кислородом и азотом (86, 146, 149, 208, 212]. Каждому температурному пределу соответствует определенное количество разложившихся сернистых соединений в коксе, которое (находится в определенной зависимости от энергетических состояний внутри его молекул. [c.156]

    Ни одно физическое свойство не дает более точной информации о химическом строении углеводородов, чем спектр поглощения в инфракрасной области, особенно для простых алифатических соединений. Большинство полос поглощения возникает при резонансных вибрациях валентных связей и поэтому зависит от действительной инерции атомов и атомных групп в молекуле и сил между ними. В этой же области наблюдаются вращательные и вращательно-колебательные спектры, но они имеют меньшее значение [185]. Полосы, появляющиеся вследствие алифатических С—Н связей, особенно интересны, так как их частоты зависят от атомных весов атомов, с которыми связаны три другие валентности углерода [186—190]. [c.189]

    Сходство в электронном строении молекул N2 и СО, указываемое методом молекулярных орбиталей, объясняет уже отмечавшуюся близость физических свойств этих соединений. В молекуле СО избыток связывающих электронов равен 6, поэтому связь в данной молекуле можно считать тройной, таким образом, другим путем мы пришли к выводу, который был сделан ранее. [c.106]

    Первый уровень иерархии эффектов ФХС характеризуется физико-химическими взаимодействиями между атомами, свободными радикалами, молекулами, ионами, ионами-радикалами, комплексами различного состава и строения. Система считается химически однородной, т. е. идеально перемешанной на уровне индивидуальных атомов и молекул, а характер развития и протекания химических, физико-химических и биохимических процессов определяется исключительно физическими свойствами перечисленных частиц [2—9]. [c.24]

    Вопрос об истинных значениях массы молекул асфальтенов, или об их молекулярном весе, имеет принципиальное научное значение для понимания важнейших физических свойств самых сложных по химическому составу и наиболее высокомолекуляр-ных по размерам молекул неуглеводородных составляющих нефти. Не менее важное значение имеет и знание истинных величин их молекулярных весов для решения вопроса о химической структуре и физическом строении этих твердых аморфных компонентов нефти. Неудивительно поэтому, что разработкой методов определения молекулярных весов асфальтенов и установлением связи между размерами их молекул и рядом фундаментальных физических их свойств, прежде всего реологическими свойствами и растворимостью, с образованием как истинных, так и коллоидных растворов, занимались многие исследователи на протяжении более 50 лет. Накоплен большой экспериментальный материал по изучению молекулярных весов смол и асфальтенов, выделенных из сырых нефтей, из тяжелых остатков продуктов переработки, из природных асфальтов. Если для нефтяных смол нет существенного расхождения в значениях молекулярных весов, полученных разными исследователями (обычно значения молекулярных весов лежат в пределах 400—1200), то для асфальтенов уже можно наблюдать большие расхождения. Данные, полученные различными методами, лежат в весьма широких пределах от 2000—3000 до 240 000—300000. Совершенно ясно, что самые низкие значения должны быть отнесены к собственно молекулам асфальтенов, т. е. истинным молекулярным их величинам. Значения же молекулярных весов в пределах от 10000 до 300 ООО соответствуют надмолекулярным частицам асфальтенов, т. е. ассоциатам молекул асфальтенов различной степени сложности. Значения молекулярных весов этих ассоциатов, или мицелл, зависят от многих факторов, но прежде всего от растворяющей способности и избирательности применяемых растворителей и концентрации асфальтенов в растворах. Весьма существенно на значениях найденных молекулярных весов частиц сказываются чистота и степень разделения по размерам молекул [c.69]


    Смолистые вещества присутствуют в топливах в малых количествах (сотые и десятые доли процента), возрастающих с моле-кулЯ рной массой топлива. Тем не менее они оказывают значительное влияние на эксплуатационные свойства топлив и надежность работы двигателей, поскольку по химической природе и физическим свойствам резко отличаются от углеводородов топлива. Под смолами в топливах понимают окрашенные в темно-коричневый цвет полярные вешества сложного строения,, в молекулы которых входят кроме углерода и водорода гетероатомы — кислород, азот, сера — порознь или совместно (в циклы или в мости-ковые связи). [c.166]

    Как по своим физическим свойствам и по числу входящих в их состав соединений, так и особенно по разнообразию атомного состава и химическому строению этих молекул тяжелые нефтяные остатки представляют собою крайне сложную многокомпонентную [c.25]

    Все эти газообразные, жидкие и твердые углеводороды в зависимости от строения молекул подразделяются на три основных класса — парафиновые, нафтеновые и ароматические. Значительную часть нефти составляют углеводороды смешанного строения, содержащие структурные элементы всех трех упомянутых классов. Строение молекул углеводородов определяет их химические и физические свойства. [c.233]

    Сложная многокомпонентная смесь неуглеводородных компонентов нефти была разделена на несколько фракций более или менее однородных но составу и свойствам веществ. Это несколько упрощало изучение их строения. К середине нашего столетия были разработаны и испытаны новые физические методы, позволяющие решать ряд структурно-молекулярных вопросов, касающихся сложных органических веществ. Удачно подобранный комплекс таких методов позволил приступить непосредственно к изучению строения молекул нефтяных асфальтенов. Корреляция полученных данных с прямыми химическими исследованиями делает особенно достоверными сведения о химическом строении молекул нефтяных [c.91]

    Ретроспективная оценка роли физических методов в определении структуры асфальтенов показывает, что каждый из них рано или поздно апробировался на столь сложном физическом объекте п сыграл при этом определенную роль. Однако необходимо отметить, что, несмотря на увеличение информативной способности современных физических методов анализа, нельзя назвать из их числа такой метод, который бы позволил составить достаточно полное представление о структуре асфальтенов. В то же время комплексное их использование нозволяет отражать различные стороны такой многогранной научно-практической проблемы, как раскрытие химического строения молекул асфальтенов и многообразия их физико-химических свойств. [c.205]

    В этом ряду с изменением молекулярного веса меняются физические свойства, но общий принцип построения молекулы остается одним и тем 5ке. Если существует глубокая аналогия в строении молекулы, то можно предположить, что и механизм образования всех членов этого ряда имеет ме>г ду собой много общего. [c.70]

    В непосредственной взаимосвязи с локальной симметрией находится трансляционная симметрия, которая указывает на пространственную природу симметрии структурного образования. Аналогично перемещению составляющих молекулы на микроуровне можно представить операции симметрии, связанные с перемещением элементов структуры структурного образования. Важнейшими из указанных операций симметрии являются простая трансляция, винтовая ось, плоскость скольжения. Еще раз отметим необходимость четкого представления особенностей симметрии кристаллов чистых веществ, заключающейся в закономерностях атомного строения, внешней формы и физических свойств кристаллов. Симметрия свойств кристалла обусловлена симметрией его строения. Кристалл может быть совмещен с самим собой путем поворотов, отражений, трансляций — параллельных переносов и других преобразований симметрии, а также комбинаций этих преобразований. [c.184]

    В исследовании углеводородов высококипящей нефти отчетливо прослеживается различие и многообразие химического строения молекул, которое значительно усиливается при переходе к гетеро-органическим соединениям. Дистилляты, выкипающие при температуре выще 300°С, отличаются как химической, так и физической неоднородностью для них характерно усреднение и сближение элементного состава и свойств составляющих компонентов. Значение природы и распределение основных функциональных групп этих соединений приобретает в настоящее время все больший научный и практический интерес. Это связано с бурным развитием вторичных процессов в нефтепереработке и использованием составляющих нефти в качестве химического сырья, а также с возрастающей потребностью в высококипящих топливах и маслах. Одновременно возрастает роль физических и физико-химических методов, которые, не вызывая существенных изменений в структу- [c.55]

    Как видно из табл. 4, основные физические свойства некоторых представителей ряда метановых углеводородов нормального строения зависят от состава и строения их молекул. Увеличение молекулярной массы приводит к повышению температур кипения и плавления, а также к росту их плотности. [c.49]

    Строение и физические свойства. Строение молекул ультрамарина еще ие выяснено. Все ультрамарины, независимо от цвета и химического состава, дают одинаковые рентгенограммы, свидетельствующие об идентичности их структуры, однако расположение атомов натрия и серы еще не установлено. Неизвестно также прсисхождение цвета ультрамарина полагают, что он определяется расположением атомов серы и натрия в структуре молекулы. [c.188]

    Химическое строение — порядок соединения атомов в молекуле, устанагливаемый на основе сравнительного изучения физических свойств органических молекул и химических превращений, характерных для них. [c.177]

    Физические свойства. Строение. Простейшие циклобутаны являются бесцветными газами или жидкостями, нерастворимыми в воде. Молекула циклобутана подобна квадрату с весьма длинной связью С—С (0,157 нм). Самой большой особенностью циклобутанов является то, что четыре углеродных атома не находятся в одной плоскости. Эта непланарность вызвана внутримолекулярным отталкиванием водородных атомов или заместителей и сильно зависит от строения. Один углеродный атом может быть смещен из плоскости остальных трех атомов даже до 25.. . 30 . Это означает, что монозамещенные циклобутаны могут существовать в двух конформациях  [c.165]

    Для химии характерен метод сравнения. Химик всегда представляет себе свойства одних молекул в сравнении со свойствами других молекул более или менее близкого химического строения. Этот сравнительный метод особенно ярко проявляется при рассмотрении молекул с сопряженными связями. Даже самый термин сопряженные связи уже предполагает существование несопряженных связей. Хорошо известно, что для молекул с несопряженными связями характерно существование определенных типических реакций на отдельные атомы, группы или связи. Для таких молекул можно установить характеристические константы отдельных связей. Многие физические свойства этих молекул подчиняются правхетам аддитивности. Например, известна аддитивность молекулярных рефракций, теплот образований, интенсивности полос комбинационного рассеяния света и т. д. [c.381]

    Дйлее Дебус писал, будто в противовес Дальтону, который в первую очередь определял атомные веса и по ним уже, исходя из химических соображений, определял молекулярные веса Авогадро поступил наоборот, он начал с молекул и хочет определить их вес, исходя из чисто физического свойства. Строение (состав.— М. Ф.) молекул, которому Дальтон посвящает специальные исследования, ему (Авогадро.— М.Ф.) безразлично первое и последнее для него молекулы... [71, стр. 72]. [c.116]

    Историю физической химии в XX веке нет возможности изложить в кратком очерке. Поэтому будет дана лишь обш,ая характеристика развития физической химии в XX веке. Если для XIX века было характерно изучение свойств веш,еств без учета структуры и свойств молекул, а также использование термодинамики, как основного теоретического метода, то в XX веке на первый план выступили исследования строения молекул и кристаллов и применение новых теоретических методов. Основываясь на крупнейших успехах физики в области строения атома и используя теоретические методы квантовой механики и статистической механики, а также новые экспериментальные методы (рентгеновский анализ, спектроскопия, масс-спектрометрия, магнитные методы и многие другие), физики и физико-хидшки добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.15]

    Многие положения концепции В. И. Касаточкина вполне приложимы и к объяснению молекулярной структуры нефтяных асфальтенов. Мы имеем в виду прежде всего такие фундаментальные положения этой точки зрения, как зависимость физических свойств от элементного состава этих соединений, утверждение, что основной структурной единицей (блоком) молекулярного строения является плоская гексагональная атомная сетка или копланарно конденсированные бензольные кольца с алифатическими короткими цепями на периферии этих плоских структурных блоков. Размеры и структура этих плоских структурных блоков могут сильно различаться, так же как могут различаться алифатические цени по числу С-атомов, по степени разветвленности и по количеству и характеру функциональных групп в них. Эти структурные блоки образуют трехмерные молекулы за счет валентных связей посредством боковых цепей. Распределение сопряженных кратных связей в основной структурной углеродоатомной сетке, подобной [c.96]

    Только на основе глубокого изучения физических свойств, элементного состава, химического строения, особенно определения состава и количества гетероатомов, природы их связи и положения в общей структуре молекул, направлений химических превращений можно разработать пути химико-технологической переработки этих сложных компонентов нефти. Изучение химического строения асфальтенов с использованием большого комплекса современных экс-перн.ментальных методов должно составить одно из основных направлений научного решения поставленной проблемы. [c.108]

    Рассмотрение нефтяных систем как молекулярных растворов господствовало достаточно долго. При этом в связи с трудностями аналитического выделения отдельных компонентов из средних и высших фракций нефти (масляных и газойлевых фракций) их характеризовали с помощью гипотетической средней молекулы. Модельные представления о строении молекулы смолисто-асфальтеновых веществ (САВ) получили широкое распространение. Характеристика таких гипотетических молекул — средняя молекулярная масса — входит во многие расчетные формулы зависимости свойств нефтяной фракции от Р, V, Т-условий и используется в технологических расчетах. Хотя сегодня достоверно показано, что это не всегда верно, поскольку молекулярная масса нефтяных фракций сильно зависит от условий ее определения (растворителя, температуры) [1]. До сих пор многие явления в нефтяных системах и технологические расчеты трактуются на основе физических законов, установленных для молекулярных растворов (законов Рауля-Дальтона, Генри, Ньютона, Дарси и т. д.). В результате теоретически рассчитанные доли отгона при выделении легкокипя-щих компонентов из нефти не совпадают с экспериментальными данными. Часто обнаруживающаяся в нефтяных системах (особенно с высоким содержанием парафинов и САВ) зависимость эффективной вязкости от скорости деформации свидетельствует о ее надмолекулярной организации. Отклонения от закона Дарси при течении таких систем впервые были подмечены в 1941 г. профессором В. П. Треби-ным. Однако эффекты нелинейного отклика, обусловленные особен- [c.172]

    Зависящие от состава и строения молекул парахор и молекулярная рефракция, имея одинаковую размерность (объем), обладают, однако, резко различными свойствами. Последнее вытекает из самой физической сущности этих величин. Действительно, молекулярная рефракция есть сумма электронных поляризаций входящих в состав молекулы атомов, а парахор измеряет объем пространства, в котором размещен 1 г-молъ вещества. Поэтому на величину Я больше влияют особенности строения молекул, обусловливающие изменение в распределении электронных плотностей у связанных атомов, парахор же более чувствителен к геометрической конфигурации молекул. [c.380]

    Не следует забывать, что химия исследует вещество только в одном из аспектов. Изучая состав, химические свойства, способы получения твердых веществ, мы не можем обходиться без представления об их электронной конфигурации, кристаллической структуре, без знания закономерностей, которым подчиняются изменения физических свойств с изменением энергетического состояния вещества, словом без физической теории и без физических экспериментов. Химия, физика твердого тела и молекулярная биология — по определению физика-теоретика айскопфа — являются непосредственным следствием квантовой теории движения электронов в кулоновском поле атомного ядра. Все многообразие химических соединений, минералов, изобилие видов в мире организмов обусловливается возможностью расположения в достаточно стабильном положении сравнительно небольшого количества первичных структурных единиц — атомов — огромным количеством способов, диктуемых пространственной конфигурацией электронных волновых функций. Длина связи, т. е. межатомное расстояние,— это диаметр электронного облака, определяемый амплитудой колебания электрона в основном состоянии. Поскольку масса ядра во много раз больше массы электрона, соответствующая амплитуда колебания ядра во много раз (корень квадратный из отношения масс) меньше. Поэтому, как отмечает Вайскопф, ядра способны образовывать в молекулах и кристаллах довольно хорошо локализованный остов, устойчивость которого измеряется энергией порядка нескольких электронвольт, т. е. долями постоянной Ридберга. Местоположения ядер атомов, образующих остов кристалла, с большой точностью определяются методом рентгеноструктурного анализа. Таким образом, бутлеровская теория строения, структурные формулы в наше время получили ясное физическое обоснование. [c.4]


Библиография для Физические свойства и строение молекул: [c.423]    [c.438]    [c.610]    [c.223]   
Смотреть страницы где упоминается термин Физические свойства и строение молекул: [c.124]    [c.355]    [c.21]    [c.22]    [c.30]    [c.21]    [c.44]   
Смотреть главы в:

Вакуумные конденсаторы химического машиностроения -> Физические свойства и строение молекул




ПОИСК





Смотрите так же термины и статьи:

Вода - самый распространенный растворитель. Физические свойства воды. Строение молекулы воды. Поляризация. Диполь Водородные связи

Молекула строение

Строение и физические свойства молекул воды

Физические свойства и химическое строение молекул

Физические свойства молекул

Химическое строение молекул связь с физическими свойствами

Шевчук, Ю. Н. Богословский, В. И. Сахаров. Зависимость величин удерживания ацетиленовых и других высоконепредельных углеводородов от физических свойств и электронного строения молекул

Шевчук, Ю. Н. Богословский, В. К. Сахаров. Зависи, ность величин удерживания ацетиленовых и других высоконепредельных углеводородов от физических г свойств и электронного строения молекул



© 2024 chem21.info Реклама на сайте