Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическое строение молекул связь с физическими свойствами

    Удельные сопротивления полимеров и их электрическая прочность (сопротивление пробою) еще недостаточно изучены связь их с другими физическими и химическими свойствами полимеров, а также с особенностями их внутреннего строения еще недостаточно выяснена. Наоборот, по диэлектрической проницаемости и диэлектрическим потерям полимеров имеется теоретический и экспериментальный материал, который дает возможность уже в настоящее время изучать связь этих свойств с другими свойствами полимеров. Измерение диэлектрической проницаемости является основным методом определения дипольного момента молекул и изучения их полярной структуры (см. 23). В связи с этим из пяти названных выше технических характеристик диэлектрических свойств остановимся на первых двух. [c.594]


    Для экспериментального исследования строения молекулы помимо химических методов используют физические, при проведении которых не теряется химическая индивидуальность вещества. К физическим инструментальным методам относят эмиссионную спектроскопию, рентгенографию, электронографию, нейтронографию, магнитную спектроскопию [электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР)], мольную рефракцию, парахор и магнитную восприимчивость. Последние три экспериментально более простых метода основаны на установлении физических свойств — характеристик вещества, обладающих аддитивностью, т. е. подчиняющихся правилу сложения. Мольная рефракция и парахор равны сумме аналогичных величин для атомов или ионов, из которых составлена молекула (аддитивное свойство), и поправок (инкрементов) на кратные связи, циклы н места положения отдельных атомов и групп, характеризующих структурные особенности молекулы (конститутивное свойство). Многие физические методы исследования строения молекулы используют и как методы физико-химического анализа. [c.4]

    СТЕРЕОИЗОМЕРЫ — вещества, молекулы которых при одинаковом составе и порядке химической связи атомов (одинаковом химическом строении) имеют различное пространственное строение, проявляющееся в различии физических и химических свойств. Различают геометрические (цис-, транс-)изомеры и оптические (зеркальные) изомеры  [c.238]

    Оптические методы нашли широкое применение в решении задач химического строения и физических свойств молекул различных классов. Важно отметить, что для определения главных значений тензора электронной поляризуемости используются данные нескольких методов, например данные по молекулярной рефракции, степени деполяризации релеевского рассеяния, двулучепреломления (электрического эффекта Керра) и электрических дипольных моментов. Такая интеграция методов требует более строгого подхода в интерпретации определяемых физических величин. Особенно этот вопрос остро стоит в связи с использованием теории взаимодействия излучения с изолированными молекулами. Учет влияния молекул жидкой среды требует дальнейшей разработки теории. [c.262]

    Основу органической химии составляет теория химического строения А. М. Бутлерова (1861). Она утвердилась и развивалась трудами выдающихся русских химиков В. В. Марковникова, Е. Е. Вагнера, С. Н. Реформатского, Л. А. Чугаева, А. Е. Фаворского, Н. Д. Зелинского и др. Согласно теории А. М. Бутлерова свойства вещества определяются не только числом и природой атомов, строящих молекулы данного вещества, но и порядком химической связи их в молекулах, т. е. химическим строением молекул. Эта теория успешно справилась с объяснением открытого в начале XIX в. явления изомерии, которое заключается в существовании соединений с одинаковым качественным и количественным составом, но различающихся физическими и химическими свойствами. Различие свойств у изомеров, по Бутлерову, есть следствие разного порядка химической связи одного и того же числа атомов каждого рода в изомерных молекулах. [c.461]


    Физическая химия раскрывает существо химических процессов. Химические реакции связаны с разнообразными физическими процессами теплопередачей, поглощением или выделением тепла, поглощением или излучением света, электрическими явлениями, изменением объема и др. В химических реакциях всегда осуществляется тесная связь физических и химических явлений изучение этой взаимосвязи — основная задача физической химии. Главное внимание в физической химии уделяется исследованию законов протекания химических процессов, состояния химического равновесия, изучению строения и свойств молекул, что позволяет решать основную задачу физической химии — предсказание хода химического процесса и конечного результата. Это приводит к возможности управления химическим процессом, т. е. к обеспечению наиболее быстрого и полного, наиболее оптимального проведения реакций. [c.6]

    В последние годы проявляется большой интерес к сераорганическим соединениям, содержащимся в высококипящих дистиллятах. Уже при исследовании их углеводородной части отчетливо прослеживается различие и многообразие химического строения молекул, которое значительно усиливается при переходе к гетероорганическим соединениям. Дистилляты, выкипающие выше 300° С, отличаются как химической, так и физической неоднородностью для них характерно усреднение и сближение элементного состава и свойств составляющих компонентов 24]. В связи с бурным развитием вторичных процессов в нефтепереработке и использованием составляющих нефти в качестве химического сырья, а также с возрастающей потребностью в высококипящих топливах и маслах знание природы и распределения основных функциональных групп ОСС приобретает в настоящее время все больший научный и практический интерес. Одновременно возрастает роль физических и физико-химических методов, которые, не вызывая существенных изменений в структуре молекул, позволяют изучать состав наиболее тяжелых фракций нефти. Оказалось, что для исследования сераорганических соединений высококипящих дистиллятов нефти неприменимо большинство традиционных методов, успешно используемых при изучении состава сераорганических соединений средних нефтяных дистиллятов. [c.11]

    В исследовании углеводородов высококипящей нефти отчетливо прослеживается различие и многообразие химического строения молекул, которое значительно усиливается при переходе к гетеро-органическим соединениям. Дистилляты, выкипающие при температуре выще 300°С, отличаются как химической, так и физической неоднородностью для них характерно усреднение и сближение элементного состава и свойств составляющих компонентов. Значение природы и распределение основных функциональных групп этих соединений приобретает в настоящее время все больший научный и практический интерес. Это связано с бурным развитием вторичных процессов в нефтепереработке и использованием составляющих нефти в качестве химического сырья, а также с возрастающей потребностью в высококипящих топливах и маслах. Одновременно возрастает роль физических и физико-химических методов, которые, не вызывая существенных изменений в структу- [c.55]

    По химическому строению молекулы, химическим и физическим свойствам оксид углерода проявляет большое сходство с молекулярным азотом. Молекулы СО и N2 изоэлектронны, имеют равные молекулярные массы, высокий порядок связи и относятся к самым прочным двухатомным частицам. В отличие от СО2 оксид углерода не обладает кислотной природой. Для него наиболее характерны реакции окисления и присоединения. Первые обусловлены степенью окисления углерода в С0(+2), а вторые — неподеленными электронными парами атомов углерода и кислорода. [c.360]

    Если энергия связи ПАВ с металлом или с уже образовавшимися на металле хемосорбционным или оксидным слоем больще, чем энергия связи молекул ПАВ с молекулами среды, то на металле образуются адсорбционные и хемосорбционные пленки ПАВ. Энергия связи ПАВ с металлом зависит в равной степени как от химического строения, полярности и донорно-акцепторных свойств ПАВ, так и от свойств металла — знака и величины заряда на его поверхности, ее физического состояния. [c.208]

    Таким образом, для того, чтобы понять связь, физических свойств с химическим строением, необходимо рассмотреть природу тех сил, которые вызывают образование молекул, а также сил действующих между молекулами и между атомами в каждой отдельной молекуле. Взаимодействие между атомами приводит к тому, что численные значения свойств молекулы обусловливаются не только значением свойств атомов, из которых данная молекула построена, но в большой степени также и теми величинами, которые характеризуют определенную связь, причем уже не удается различить, какая доля значения свойства принадлежит тому или другому атому. [c.11]


    В последние годы наблюдается расцвет промышленности полимерных материалов, которые находят все более широкое применение, постепенно вытесняя в ряде областей стекло, металлы и другие традиционные материалы. Совершенно очевидно, что при определении оптимальной области применения того или иного материала решающее значение приобретает проблема установления связи между химическим строением молекул и его макроскопическими физическими свойствами. Кроме того, если бы такую корреляционную связь удалось установить, то с учетом больших достижений предыдущих исследований в области как органической, так и неорганической химии, позволивших выработать определенные методологические приемы синтеза веществ с заданным молекулярным строением, в принципе можно было бы надеяться на получение веществ с требующимся в конкретном случае комплексом физических свойств. Сказанное выражает суть модного с недавнего времени понятия молекулярное конструирование . Тем не менее, следует принимать во внимание, что в случае полимерных материалов существует ряд серьезных препятствий для совместного развития чисто дедуктивных представлений о физических свойствах вещества, синтезированного из молекул данного строения, и реальных научных исследований.  [c.149]

    Рассматриваются основные физические и химические свойства полимеров, особенности их молекулярного строения и химических реакций, приводящие к изменению свойств, а также пути улучшения этих свойств. Даны представления об особенностях полимерного состояния вещества, о связи между строением молекул полимеров и свойствами полимерных материалов, о физикохимических основах формования волокон. [c.2]

    Первый период ломки фундаментальных представлений связан с именем А. М. Бутлерова — создателя теории химического строения молекул. Введение понятия химического строения как определенной последовательности дискретных связей между атомами, объединенными в данную молекулу, оказалось исключительно плодотворным и предопределило на многие годы дальнейшее развитие органической химии. После дополнения стереохимическими представлениями классический вариант теории строения стал фактически учением о геометрии молекул и об определяющем- значении этой геометрии для понимания хил(иче-ских и физических свойств органических соединений. [c.6]

    Гипотеза Вант-Гоффа послужила основой для развития важного направления химической науки — стереохимии, изучающей пространственное строение молекул и влияние его на физические и химические свойства вещества. В частности, получили объяснение рассматриваемые далее оптическая и геометрическая изомерия, наблюдаемые у некоторых органических соединений. Открылся путь к познанию не только химического строения (порядка связи атомов), но и реального расположения атомов в молекуле. [c.28]

    Во-вторых, обобщение химических явлений поставило на очередь важнейшие теоретические проблемы и заставило пересмотреть самые основы физических наук. Атомистика, бывшая вначале чисто химической проблемой, привела к развитию статистических методов в физике, ныне являющихся одним из наиболее важных и плодотворных ее орудий. Развитие другого важного и общего физического метода — термодинамики — также всегда было тесно связано с химической проблемой изучения течения химических реакций. Наконец, квантовая механика, являющаяся одним из величайших современных научных обобщений, также в значительной степени обязана своим возникновением потребности в объяснении механизмов химических реакций и связи между свойствами тел и строением образующих их молекул и атомов. В этом пересмотре основ физики химия сыграла решающую роль, но и для химии развитие физики имело столь же большое значение, и объяснение химических явлений стало возможным лишь после того, как физика обогатилась современными экспериментальными и теоретическими методами. Затруднительно было бы определить, что дало более плодотворные результаты влияние химии на физику или наоборот. Сейчас обе науки так тесно переплелись, что нет никакой возможности отчетливо разграничить принадлежность той или иной задачи к области химии или физики часто это больше определяется не ее содержанием, а углом зрения, под которым она рассматривается. [c.12]

    Для исследования строения молекулы используются физические методы, при которых вещество не изменяет своей природы. Удобными являются методы, позволяющие определить значение физико-химических констант, которые равны сумме аналогичных величин для атомов, входящих в молекулу (аддитивное свойство) и поправок (инкрементов) на кратные связи и циклы, отражающие их структурные особенности (конститутивное свойство). К аддитивным и конститутивным характеристикам относятся рефракция и парахор, с помощью которых решаются структурные и аналитические задачи, являющиеся целью настоящей работы. [c.5]

    Можно объяснить изложенные выше экспериментальные данные, исходя из современных представлений о зависимости между физическими свойствами и химическим строением органических соединений, а также из данных о прочности связей углерода с углеродом, водородом, кислородом и азотом (86, 146, 149, 208, 212]. Каждому температурному пределу соответствует определенное количество разложившихся сернистых соединений в коксе, которое (находится в определенной зависимости от энергетических состояний внутри его молекул. [c.156]

    Между атомами в молекулах низкомоле1сулярных органических соединений, в звеньях полимеров и между звеньями в цепях существуют химические (ковалентные) связи, относимые к сильному взаимодействию. Между молекулами низкомолекулярных соединений, между макромолекулами полимеров и между участками одной и той же цепи существует нехимическое взаимодействие (соответственно межмолекулярное и внутримолекулярное), не приводящее к образованию новых химических связей, - слабое взаимодействие. Это взаимодействие зависит от химического строения молекул, расстояния между молекулами и от их взаимного расположения. Нехимическое взаимодействие подразделяют на межмоле-кулярные силы и водородные связи. Оно определяет агрегатное и фазовое состояния и физические свойства вещества. [c.126]

    Ни одно физическое свойство не дает более точной информации о химическом строении углеводородов, чем спектр поглощения в инфракрасной области, особенно для простых алифатических соединений. Большинство полос поглощения возникает при резонансных вибрациях валентных связей и поэтому зависит от действительной инерции атомов и атомных групп в молекуле и сил между ними. В этой же области наблюдаются вращательные и вращательно-колебательные спектры, но они имеют меньшее значение [185]. Полосы, появляющиеся вследствие алифатических С—Н связей, особенно интересны, так как их частоты зависят от атомных весов атомов, с которыми связаны три другие валентности углерода [186—190]. [c.189]

    Вопрос об истинных значениях массы молекул асфальтенов, или об их молекулярном весе, имеет принципиальное научное значение для понимания важнейших физических свойств самых сложных по химическому составу и наиболее высокомолекуляр-ных по размерам молекул неуглеводородных составляющих нефти. Не менее важное значение имеет и знание истинных величин их молекулярных весов для решения вопроса о химической структуре и физическом строении этих твердых аморфных компонентов нефти. Неудивительно поэтому, что разработкой методов определения молекулярных весов асфальтенов и установлением связи между размерами их молекул и рядом фундаментальных физических их свойств, прежде всего реологическими свойствами и растворимостью, с образованием как истинных, так и коллоидных растворов, занимались многие исследователи на протяжении более 50 лет. Накоплен большой экспериментальный материал по изучению молекулярных весов смол и асфальтенов, выделенных из сырых нефтей, из тяжелых остатков продуктов переработки, из природных асфальтов. Если для нефтяных смол нет существенного расхождения в значениях молекулярных весов, полученных разными исследователями (обычно значения молекулярных весов лежат в пределах 400—1200), то для асфальтенов уже можно наблюдать большие расхождения. Данные, полученные различными методами, лежат в весьма широких пределах от 2000—3000 до 240 000—300000. Совершенно ясно, что самые низкие значения должны быть отнесены к собственно молекулам асфальтенов, т. е. истинным молекулярным их величинам. Значения же молекулярных весов в пределах от 10000 до 300 ООО соответствуют надмолекулярным частицам асфальтенов, т. е. ассоциатам молекул асфальтенов различной степени сложности. Значения молекулярных весов этих ассоциатов, или мицелл, зависят от многих факторов, но прежде всего от растворяющей способности и избирательности применяемых растворителей и концентрации асфальтенов в растворах. Весьма существенно на значениях найденных молекулярных весов частиц сказываются чистота и степень разделения по размерам молекул [c.69]

    Химическое строение. Различие в химических свойствах используемых для получения мембран полимерных материалов может быть сведено к разнице в полярности молекул и их размеров. Полярность, которая с физической точки зрения характеризует неравномерность распределения электронных облаков, на химическом уровне количественно описывается такими показателями, как плотность заряда, дипольный момент и способность к образованию водородной связи. Хотя ионы и можно классифицировать как крайний случай полярных частиц, наиболее часто на практике их рассматривают отдельно. [c.65]

    В физической химии применяется несколько теоретических методов. Квантово-механический метод использует представления о дискретности знергии и других величин, относящихся к элементарным частицам. С его помощью определяют свойства молекул и природу химической связи на основе свойств частиц, входящих в состав молекул. Термодинамический (феноменологический) метод базируется на нескольких законах, являющихся обобщением опытных данных. Он позволяет на их основе выяснить свойства системы, не используя сведения о строении молекул или механизме процессов. Статистический метод объясняет свойства веществ на основе свойств составляющих эти вещества молекул. Физико-химический анализ состоит в исследовании экспериментальных зависимостей свойств систем от их состава и внешних условий. Кинетический метод позволяет установить механизм и создать теорию химических процессов путем изучения зависимости скорости их протекания от различных факторов. [c.5]

    Смолистые вещества присутствуют в топливах в малых количествах (сотые и десятые доли процента), возрастающих с моле-кулЯ рной массой топлива. Тем не менее они оказывают значительное влияние на эксплуатационные свойства топлив и надежность работы двигателей, поскольку по химической природе и физическим свойствам резко отличаются от углеводородов топлива. Под смолами в топливах понимают окрашенные в темно-коричневый цвет полярные вешества сложного строения,, в молекулы которых входят кроме углерода и водорода гетероатомы — кислород, азот, сера — порознь или совместно (в циклы или в мости-ковые связи). [c.166]

    С введением в органическую химию электронных представлений, основанных на понятии ковалентной связи, как мы уже говорили, возникла современная теория химического строения. Правда, это не значит, что классическая, т. е. безэлектронная, теория химического строения сошла со сцены. Такой вывод был бы совершенно ошибочен. Будучи более грубым приближением к действительности, чем электронные теории, классическая теория продолжает верно служить органической химии. На классическую теорию в первую очередь опираются при исследовании строения природных веществ, к ней и классической стереохимии обращается почти вся синтетическая химия, она лежит в основе систематики и номенклатуры сотен тысяч органических соединений. Более того, применяя различные корреляционные соотношения и, в частности, прибегая к представлению о типах и подтипах связей, можно создать феноменологические теории зависимости между химическим строением и разнообразными физическими и физико-химическими свойствами органических молекул. Эти зависимости имеют уже количественную формуй. [c.351]

    Химия изучает вещества и их превращения. Свойства веществ опреде.пя-ются атомным составом и строением молекул или кристаллов. Химические превращения сводятся к изменению атомного состава и строения молекул. Поэтому понимание химических процессов невозможно без знания основ теории строения молекул и химической связи. Число известных химических соединенш имеег порядок миллиона и непрерывно возрастает. Число же возможных реакций между известными веществами настолько велико, что вряд ли можно надеяться на описание их всех в обозримом будущем. Поэтому так важно знание общих закономерностей химических процессов. Термодинамика позволяет предсказать направление процессов, если известны термические характеристик, веществ — теплоты образования и теплоемкости. Для многих веществ этих данных нет, но они могут быть с высокой точностью оценены, если известно строение молекул или кристаллов, если известна связь между термодинамическими и структурными характеристиками веществ. С другой стороны, статистическая термодинамика позволяет рассчитывать химическое равновесие по молекулярным постоянным частотам колебаний, моментам инерции, энергиям диссоциации молекул и др. Все эти постоянные могут быть найдены спектральными и другими физически.ми методами или рассчитаны на основе теоретических представлений, но для этого надо знать основные законы, управляющие движением электронов в атомах и молекулах, и строение молекул. Это одна из важных причин, почему мы должны изучать строение молекул и кристаллов, теорию химической связи. [c.5]

    Со строением молекул, их движением и взаимодействием связаны механические, тепловые, электрические, магнитные и многие другие свойства вещества. Молекулы непрестанно волнуют воображения ученых, являются объектом исследования в физике, химии, молекулярной биологии, физике полимеров, медицине. Определяются состав молекул, их размер и форма, длины связей и валентные углы, поляризуемость и дипольные моменты, частоты и амплитуды колебаний атомов и другие величины. В зависимости от состава и своего строения молекулы характеризуются различной степенью устойчивости к нагреванию, потоку радиации и другим физическим воздействиям. Строение же молекул, т. е. расположение атомов в них, предопределяется электронной конфигурацией атомов и характером химических связей между ними. [c.114]

    Описанные особенности парахора делают его удобной характеристикой, устанавливающей связь между химическим составом, строением молекулы и физическими свойствами образуемых веществ. Сравнение значений пара-хора, вычисленного через установленную опытным путем величину поверхностного натяжения (Ро . ) и по правилу аддитивности (Ртеор. ) так же, как и сравнение рефракций (Ron. с Ртеор. ). дзет возможность сделать заключение о строении молекулы. Подобные вычисления можно использовать для установления чистоты веществ и их концентрации в смеси. [c.24]

    В сложных молекулах, в особенности в молекулах, содержащих атомы или группы атомов с различной электроотрицательностью, ие только различные, но и одноименные (С—Н С—С и т. д.) связи могут отличаться друг от друга по распределению электронной плотности, в частностгт по полярности, в зависимости от химического строения молекулы. В общем случае это ведет к полярности всей молекулы, физически проявляющейся в на.личии дипольного момента. В сложных молекулах одноименные связи могут различаться такн е и по химическим свойствам. Так, общеизвестно различие подвижности атомов водорода при альфа-, бета- и т. д. атомах углерода в иасыщенных карбоновых кислотах, нитросоединепиях, нитрилах, альдегидах, кстонах и др. [c.46]

    Чтобы понять связь физических свойств веществ с их строением, необходимо знать природу сил, действующих между молекулами. До сих пор не существует строгой теории межмолекулярных сил. Суть современных теорий сводится к тому, что выявлены три наиболее вероятные причины, обусловливающие межмолекулярное взаимодействие иеионогенных соединений (вандерваальсовысилы) — взаимодействие постоянных диполей (ориентационные силы Кеезома) взаимодействие наведенных диполей (индукционные силы Дебая) взаимодействие мгновенных диполей, образованных благодаря определенному положению электронов в молекуле (дисперсионные силы Лондона). К этим трем видам сил можно добавить силы слабого химического взаимодействия типа водородных связей и слабых комплексоподобных взаимодействий. Иногда водородные связи не выделяют из ориентационных сил, отмечая их одинаковую природу. Мелвин-Хьюз относит к межмолекулярным силам взаимодействие между ионами, хотя в равной степени их можно отнести к внутримолекулярным связям. [c.8]

    Пограничная область вопросов между физическим и химическим аспектами классической теории строения молекул относится к установлению связи некоторых свойств молекул (или соответствующих веществ) с их строением, описываемым в понятиях химического аспекта теории. Здесь необходимо отметить основные работы, устанавливающие связь между строением молекул и следующими свойствами веществ или отдельных молекул мольным объемом, мольной теплоемкостью (Копи, 1855), мольной рефракцией (Бёрт-ло, 1856, Брюль, 1879), теплотой образования (Томсен, 1886), магнитной восприимчивостью (Паскаль, 1910), электрическим диполь-ным моментом (Дж. Дж. Томсон, 1923), тензором поляризуемости (Мейер и Оттербейн, 1931). [c.19]

    Однако эти тайны раскрывались постепенно, по мере накопления знаний, усовершенствования методов эксперимента и создания точной контрольной аппаратуры. Такие природные полимеры, как каучук, целлюлоза, были известны давно, однако химики раньше не знали еще в полной мере строения молекул этих полимеров и их химических свойств. Было известно, что все вещества состоят из молекул, а последние — из определенного числа тех или иных атомов. Утверждалось, что свойства веществ в основном зависят ог их химического состава. Однако к середине прошлого века уже накопилось достаточно наблюдений, которые позволили великому русскому химику А. М. Бутлерову создать теорию о связи химических и физических свойств веществ с химическим составом и главное со строением их молекул. А. М. Бутлеров изложил эту теорию па съезде немепких естествоиспытателей и врачей в городе Шпейере в 1861 г. Он блестяще доказал, что па свойства сложного вещества влияют не только количество и природа составляющих атомов, по главным образом химическое строение молекулы этого вещества. [c.7]

    Историю физической химии в XX веке нет возможности изложить в кратком очерке. Поэтому будет дана лишь обш,ая характеристика развития физической химии в XX веке. Если для XIX века было характерно изучение свойств веш,еств без учета структуры и свойств молекул, а также использование термодинамики, как основного теоретического метода, то в XX веке на первый план выступили исследования строения молекул и кристаллов и применение новых теоретических методов. Основываясь на крупнейших успехах физики в области строения атома и используя теоретические методы квантовой механики и статистической механики, а также новые экспериментальные методы (рентгеновский анализ, спектроскопия, масс-спектрометрия, магнитные методы и многие другие), физики и физико-хидшки добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.15]

    Только на основе глубокого изучения физических свойств, элементного состава, химического строения, особенно определения состава и количества гетероатомов, природы их связи и положения в общей структуре молекул, направлений химических превращений можно разработать пути химико-технологической переработки этих сложных компонентов нефти. Изучение химического строения асфальтенов с использованием большого комплекса современных экс-перн.ментальных методов должно составить одно из основных направлений научного решения поставленной проблемы. [c.108]

    Не следует забывать, что химия исследует вещество только в одном из аспектов. Изучая состав, химические свойства, способы получения твердых веществ, мы не можем обходиться без представления об их электронной конфигурации, кристаллической структуре, без знания закономерностей, которым подчиняются изменения физических свойств с изменением энергетического состояния вещества, словом без физической теории и без физических экспериментов. Химия, физика твердого тела и молекулярная биология — по определению физика-теоретика айскопфа — являются непосредственным следствием квантовой теории движения электронов в кулоновском поле атомного ядра. Все многообразие химических соединений, минералов, изобилие видов в мире организмов обусловливается возможностью расположения в достаточно стабильном положении сравнительно небольшого количества первичных структурных единиц — атомов — огромным количеством способов, диктуемых пространственной конфигурацией электронных волновых функций. Длина связи, т. е. межатомное расстояние,— это диаметр электронного облака, определяемый амплитудой колебания электрона в основном состоянии. Поскольку масса ядра во много раз больше массы электрона, соответствующая амплитуда колебания ядра во много раз (корень квадратный из отношения масс) меньше. Поэтому, как отмечает Вайскопф, ядра способны образовывать в молекулах и кристаллах довольно хорошо локализованный остов, устойчивость которого измеряется энергией порядка нескольких электронвольт, т. е. долями постоянной Ридберга. Местоположения ядер атомов, образующих остов кристалла, с большой точностью определяются методом рентгеноструктурного анализа. Таким образом, бутлеровская теория строения, структурные формулы в наше время получили ясное физическое обоснование. [c.4]

    КВАНТОВАЯ МЕХАНИКА - физическая теория, изучающая общие закономерности движения и взаимодействия микрочастиц (элементарных частиц, атомных ядер, атомов и молекул) теоретическая основа современной физики и химии. К. м. возникла в связи с необходимостью преодолеть противоречивость и недостаточность теории Бора относительно строения атома. Важнейшую роль в разработке К. м. сыграли исследования М. Планка, А. Эйнштейна, Н. Бора, М. Борна и др. К. м. была создана в 1924—26 гг., благодаря трудам Л. де Бройля, Э. Шредингера, В. Гейзенберга и П. Дирака. К. м. является основой теории многих атомных к молекулярных процессоБ. Она имеет огромное значение для раскрытия строения материи и объяснения ее свойств. На основе К. м были объяснены строение и свойства ато MOB, атомные спектры, рассеяние света создана теория строения молекул и рас крыта природа химической связи, раз работаиа теория молекулярных спектров, теория твердого тела, объясняющая его электрические, магнитные и оптические свойства с помощью К. м. удалось понять природу металлического состояния, полупроводников, ферромагнетизма и множества других явлений, связанных с природой движения и взаимодействием микрочастиц материи, не объясняемых классической механикой, [c.124]

    Химические и физические методы изучения Молекул. В создании правильных представлений о строении и свойствах молекул химические методы исследования играют главную роль. На основании элементарного анализа устанавливается эмпирическая формула вещества, а строение подтверждается в ходе исследования характерных для данного вещества химических реакций. Наряду с химическими методами исследования все большее значение приобретают физические методы. Их широкое использование обусловлено рядом преимуществ, например, физические методы, как правило, не вызывают каких-либо изменений в строении молекул изучаемых веществ, они значительно сокращают время и путь исследования. Когда же устанавливаются тонкие различия в структуре молекул (различия в характере связей, реакцрюнной способности групп и атомов, внутримолекулярные превращения и т. п.), физические методы оказываются незаменимыми и единственно возможными методами изучения. В химии используется большое количество физических методов, основанных на зависимости разнообразных физических (электрических, оптических, магнитных и др.) свойств от химической структуры молекул. Ниже в краткой форме рассматривается сущность ряда наиболее разработанных физических методов и их применение для изучения строения молекул. [c.36]

    Способность элемента к образованию аллотропных модификаций обусловлена строением атома, от которого зависит тип химической связи, а также строение молекул и кристаллов. Так, например, алмаз, графит, карбин и поликумулен состоят только из атомов углерода, но отличаются своими физическими свойствами и химической активностью. Объясняется это тем, что эти модификации углерода обладают разной кристаллической структ турой, разными связями между атомами. [c.5]

    Пожалуй, наиболее перспективным и важным направлением исследований неорганических веществ на структурном уровне является изучение закономерностей, обусловливающих специфику химических связей в монокристалле при различных способах заполнения и уплотнения узлов кристаллической решетки. Значение этих исследований в конечном счете определяется необходимостью получения твердых тел, свойства которых были бы обусловлены не столько характером связей между монокристаллами в поликристаллите, сколько химическим строением гигантского монолита — монокристалла с любым заданным заполнением и уплотнением узлов кристаллической решетки вплоть до идеального кристалла как единой замкнутой квантово-механической системы с минимумом свободных валентностей на поверхности. Идеал — всегда есть цель, к которой приближается реальность. И ничего нет фантастического в том, что касается создания макромолекул, полностью идентичных обычным молекулам с полным внутренним взаимным насыщением валентностей. Но это — только одна задача она диктуется требованиями создания тел с особой механической, жаро- и противокоррозионной прочностью. Сотни других задач связаны с получением тел с заданным числом и характером дефектов решетки решение этих задач позволит получать твердые тела с нужными химическими и физическими свойствами. [c.274]

    Молекулы представляют собой частицы вещества, состоящие из атомов, соединенных друг с другом химическими связями. Представление о молекулах впервые было введено в химии в связи с необходимостью отличать молекулу как наименьшее количество вещества, вступающее в химические реакции, от атома как наименьшего количества данного элемента, входящего в состав молекулы. В физике предположение о существовании молекул было введено для объяснения термодинамических и кинетических свойств жидкостей и газов. Оформление молекулярных воззрений в научную теорию принадлежит М. В. Ломоносову. Развивая атомистические идеи, основанные на понятии о молекуле как частице вещества, являющейся носителем eroi физических и химических свойств, он открыл закон сохранения материи и количества движения, вскрыл природу теплоты, установил, что теплота связана с движением молекул и является одной из форм обмена энергией между телами, доказал, что давление газа на стенки возникает в результате удара отдельных молекул, предсказал существование нуля Кельвина температуры, положил начало развитию атомистической химии и молекулярно-кинетической теории в физике, поставил вопрос о познании строения молекул. [c.113]


Смотреть страницы где упоминается термин Химическое строение молекул связь с физическими свойствами: [c.286]    [c.17]    [c.4]    [c.280]    [c.44]    [c.133]    [c.280]   
Основные начала органической химии Том 1 Издание 6 (1954) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Молекула строение

Молекулы связь

Строение химическое

Физические н химические свойства

Физические свойства и строение молекул

Физические свойства и химическое строение молекул

Физические свойства молекул

Химическая связь

Химическая связь связь

Химический связь Связь химическая

Химическое строение и химические свойства

Химическое строение связь с физическими свойствами



© 2025 chem21.info Реклама на сайте