Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород перенос при фотосинтезе

    Отличие нашего направления от других, в частности зарубежных, исследований заключалось, во-первых, в установлении и использовании чрезвычайно сильного влияния физико-химической природы среды на фотохимические свойства хлорофилла. Так, надлежащим выбором среды оказалось возможным осуществить в лабораторных условиях такие реакции, которые имеют сходные черты с переносом водорода при фотосинтезе. [c.361]


    Спектроскопические исследования показывают, что фотосинтез — это сложный процесс, включающий кооперативные взаимодействия многих молекул хлорофилла. Мотивы упаковки соседних молекул хлорофилла исследовались методами рентгеноструктурного анализа и ядерного магнитного резонанса (ЯМР) на ядрах водорода и С. Исследования, проведенные методом электронного парамагнитного резонанса, показали, что сразу после поглощения света (в течение наносекунды) электрон быстро вылетает из молекулы хлорофилла или переносится из нее. В результате остается неподеленный электрон, общий для двух молекул хлорофилла. Это наблюдение привело к мысли о том, что центром фотореакции является пара параллельных хлорофилловых колец, удерживаемых на близком расстоянии друг от друга водородными связями между аминокислотными группами. [c.72]

    Уже давно в теориях фотосинтеза предполагалось участие окислительно-восстановительных реакций в этом процессе. Однако в ранних теориях в основном внимание уделялось постулированному первичному акту переноса атомов водорода от воды к углекислоте. В 1941 г. в результате блистательного сравнительного анализа биохимии фотосинтетических процессов в самых разнообразных организмах Ван Ниль [426] высказал предположение, что первичный фотохимический акт включает образование первичного окислителя и первичного восстановителя. [c.413]

    Исследования А. М. Кузина показали, что в качестве первых продуктов фотосинтеза растения образуют уроновые кислоты. Это было подтверждено Е. А. Бойченко, осуществившей восстановление СОз при участии гидрогеназы изолированных хлоропластов в темноте. Эта работа имеет исключительно важное значение, освещая, во-нервых, вопрос о природе одного из ферментов, участвующих в переносе водорода на СО2, и, во-вторых, доказывая, что реакции восстановительного конца фотосинтеза осуществляются темновым путем. [c.13]

    Однако весьма вероятно и следующее истолкование противоречивости этих данных. Возможно, что специфичной частью процесса фотосинтеза является только фотоокисление воды и первые стадии переноса водорода. [c.14]

    В реакциях (5.1) — (5.7) углекислый газ восстанавливается до углеводов различными неорганическими восстановителями. В главе Ш мы определили нормальный фотосинтез как перенос водородных атомов от воды к углекислому газу. Ван Ниль [14, 15] обобщил эту концепцию, представляя все формы бактериального фотосинтеза в виде переноса водорода от различных водородных доноров (восстановителей) к двуокиси углерода в качестве общего водородного акцептора. [c.109]


    В главе III фотосинтез зеленых растений рассматривается как перенос водорода от воды к двуокиси углерода в главе V бактериальный фотосинтез характеризуется как перенос водорода к тому же акцептору, но не от воды, а от других восстановителей. Эти переносы водорода могут связываться с реакциями различного типа, например карбоксилированием, гидратацией, фосфорилированием или дисмутацией. Несмотря на это, мы можем с уверенностью допустить, что первичный фотохимический процесс является стадией основного окислительно-восстановительного процесса. [c.155]

    Отличительной чертой фотосинтеза является, вероятно, не фотохимический перенос водорода от воды к окислителю, более слабому, чем кислород, осуществляемый энергией видимого света (обычное явление даже в небиологических системах), а устранение обратной реакции. Последняя препятствует прямому доказательству первичного фотохимического окисления воды в простых неорганических системах и делает даже фотоокисление иона Ее++ тионином временным явлением. [c.157]

    Однако вводя в химию фотосинтеза свободные радикалы, мы стремились найти восстановитель с бодее высоким потенциалом, чем у любого соединения с насыщенными валентностями, а допуская, что превращение первичного продукта НХ является дисмутацией, мы теряем это преимущество. Можно предположить, что радикал НХ непосредственно идет на восстановление СОд без предварительной дисмутации. Более интересным представляется механизм, в котором между системами Ъ—HZ и X—НдХ включается вторая каталитическая система Т—НдТ (см. схему на фиг. Хб). Такой механизм открывает путь возможной утилизации энергии двух квант для образования одного радикала, а следовательно, и для нового объяснения того, как восемь квант могут использоваться при восстановлении одной молекулы двуокиси углерода. В главе УП предлагались две возможные гипотезы для механизма, в котором могли бы использоваться восемь квант для передачи четырех атомов водорода от воды к двуокиси углерода. Первая гипотеза — дважды повторяющаяся фотохимическая активация одних и тех же четырех водородных атомов (как в схемах на фиг. 19 и 20), вторая гипотеза— перенос энергии, вначале сосредоточенной на восьми водородных атомах, к четырем из них, что иллюстрируется системой [c.242]

    Опыты С тяжелым кислородом нами уже рассматривались (глава III), так как они составляют главную экспериментальную основу для объяснения фотосинтеза как переноса водородных атомов от воды к двуокиси углерода. Данные экспериментов с тяжелым водородом бегло упоминались в главе VII. Теперь опишем их бодее подробно. [c.305]

    Как указывалось, существенным моментом рассмотренных схем является раздельное получение кислорода и водорода в фотопроцессе. В этом отношении они являются моделью первичных стадий фотосинтеза. Если бы удалось разобщить транспорт электронов в фотосинтезирующей системе, то можно было бы ограничить фотосинтез только первичными процессами. Задача фотосинтетического получения молекулярного водорода свелась бы к организации фотокаталитического процесса переноса электронов от воды на протоны. Березин и Варфоломеев [71] предлагают несколько вариантов биофотолиза воды. Один из них представлен на рис. I. 8. [c.47]

    Л. к. играет важную роль в биохим. превращениях, протекающих в живой клетке, функционируя в качестве кофермента систем, осуществляющих окислительное декарбоксилирование а-кетокислот. Роль Л. к. в этих системах состоит в промежуточном переносе водорода и ацильных остатков. Л. к., по-видимому, играет также важную роль в процессе фотосинтеза. [c.488]

    Процесс фотосинтеза в растениях представляет сложный окислительно-восстановительный процесс, идущий через ряд промежуточных реакций, в котором вода, отдавая водород и служа восстановителем, сама окисляется, а двуокись углерода, принимая водород и служа окислителем, сама восстанавливается. Основной же смысл процесса фотосинтеза заключается в отрыве водорода от воды и в переносе его на двуокись углерода. [c.320]

    В вышеприведенных уравнениях экзер топическая реакция, в которой водород переносится от АНг к В, сопряжена с эндергони-ческим фосфорилированием АДФ в АТФ. Хотя в биологических системах, как подчеркивал Сент-Дьёрди [29], может происходить перенос энергии возбуждения, единственная в настоящее время хорошо известная реакция такого типа наблюдается при фотосинтезе. Во всех других случаях сопряжения энергии одна реакция способствует протеканию другой благодаря наличию промежуточного продукта, общего для обеих реакций. Природа общего промежуточного продукта, не входящего в уравнения (5.1)—(5.3), рассмотрена ниже. [c.240]

    Новые точки зрения на роль хлорофилла в переносе водорода при фотосинтезе следуют из представлений, которые выдвинули Тере-нин [240, 241], Льюис [375] и экспериментально подкрепил Краснов-ский [509, 644, 785, 789, 812]. Соглас1Ю этим представлениям, поглощая квант света, хлорофилл переходит в бирадикальное состояние и в таком виде сенсибилизирует реакции обратимого переноса протона. [c.623]

    Обширный класс химических соединений с гербицидными свойствами составляют производные мочевины. Они почти всегда применяются в качестве почвенных гербицидов системного действия. Биохимический механизм их действия на растения основан на ингибировании фотосинтеза, который определяют in vitro по так называемой реакции Хилла. Эта реакция происходит в присутствии изолированных хлоропластов в водной среде, причем вода под влиянием блокёров фотосинтеза подвергается фотолитическому расщеплению с образованием кислорода и водорода. Посредством подходящих акцепторов, например липоновой кислоты, водород переносится на пиридиновый кофермент и используется для гидрирования углекислого газа. Измеряют происходящее на свету превращение углекислого газа и образование кислорода. В качестве другого механизма действия производных мочевины следует назвать угнетение восстановления цитохрома. [c.237]


    К настоящему времени выяснена основная коферментная роль KoQj . Он оказался обязательным компонентом дыхательной цепи (см. главу 9) осуществляет в митохондриях перенос электронов от мембранных дегидрогеназ (в частности, НАДН-дегидрогеназы дыхательной цепи, СДГ и т.д.) на цитохромы. Таким образом, если никотинамидные коферменты участвуют в транспорте электронов и водорода между водорастворимыми ферментами, то KoQj благодаря своей растворимости в жирах осуществляет такой перенос в гидрофобной митохондриальной мембране. Пластохиноны выполняют аналогичную функцию переносчиков при транспорте электронов в процессе фотосинтеза. [c.243]

Рис. 14.1. Схема фотосинтеза 1 — ферментативное превращение Н2О в О2, 2 — перенос водорода от промежуточного вещества 2/2Н2 к Х/ХН2 в последовательности ферментативных стадий с помощью активированного светом хлорофилла, 3 — ферментативное превращение СО2 в (СН2О) Рис. 14.1. <a href="/info/105181">Схема фотосинтеза</a> 1 — <a href="/info/216006">ферментативное превращение</a> Н2О в О2, 2 — <a href="/info/31781">перенос водорода</a> от <a href="/info/9327">промежуточного вещества</a> 2/2Н2 к Х/ХН2 в <a href="/info/1321012">последовательности ферментативных</a> стадий с <a href="/info/410456">помощью активированного</a> <a href="/info/105365">светом хлорофилла</a>, 3 — ферментативное превращение СО2 в (СН2О)
    У прокариот известны три способа получения энергии разные виды брожения, дыхания и фотосинтеза. В процессах брожения в определенных окислительно-восстановительных реакциях образуются нестабильные молекулы, фосфатная группа которых содержит много свободной энергии. Эта фуппа с помощью соответствующего фермента переносится на молекулу АДФ, что приводит к образованию АТФ. Реакции, в которых энергия, освобождающаяся на определенных окислительных этапах брожения запасается в молекулах АТФ, получили название субстратного фосфо-рилирования. Их особенностью является катализирование растворимыми ферментами. Образующийся в восстановительной части окислительно-восстановительных преобразований сбраживаемого субстрата восстановитель (НАД Н2, восстановленный фер-редоксин) переносит электроны на подходящий эндогенный акцептор электрона (пируват, ацетальдегид, ацетон и др.) или освобождается в виде газообразного водорода (Нз). [c.94]

    В процессах дыхания и фотосинтеза освобождающаяся при переносе электронов энергия запасается первоначально в форме электрохимического трансмембранного градиента ионов водорода (ДДн+)> т.е. имеет место превращение химической и электромагнитной энергии в электрохимическую. Последняя затем может быть использована для синтеза АТФ. Поскольку в обоих процессах синтез АТФ обязательно связан с мембранами, реакции, приводящие к его образованию, получили название мембранзави-симого фосфорилирования. Последнее подразделяется на два вида окислительное (АТФ образуется в процессе электронного переноса при окислении химических соединений) и ф о-тосинтетическое (синтез АТФ связан с фотосинтетическим электронным транспортом) фосфорилирование. Следует подчеркнуть, что принципы генерации АТФ при фотосинтезе и дыхании, т. е. механизмы мембранзависимого фосфорилирования, одинаковы. Таким образом, энергия, получаемая в процессах брожения, дыхания или фотосинтеза, запасается в определенных формах. [c.97]

    Основные научные работы посвящены исследованию сверхбыстрых химических реакций импульсными методами. Совместно с Р. Дж. Р. Норришем соацал (1950) первую установку импульсного фотолиза. Ими впервые были получены спектры поглощения многих простых свободных радикалов, изучен механизм их превращений, показано существование быстрых рекомбинационных процессов. Им удалось зарегистрировать спектральную картину развития реакции хлора с кислородом, инициируемую световым импульсом. Исследовал быстрые реакции в кондеч-сированной фазе. Предложил метод определения абсолютного квантового выхода триплетных состояний. Разработанные им приемы изучения деградации энергии триплетных молекул позволили представить детальную картину быстрых процессов, следующих за фотовозбуждением. Установил основные кинетические закономерности реакций переноса электрона и атома водорода. Определил константы кислотно-основного равновесия для синглетных и триплег-ных состояний ароматических молекул нашел связь между константами скорости реакций и природой возбужденного состояния. Исследовал механизм первичных фотохимических реакций на модельных системах фотосинтеза. Одним из первых создал установки импульсного лазерного фотолиза. [c.404]

    Дискутируется вопрос о месте первого в электрон-транспорт-ной системе фотосинтеза и о месте второго в электрон-транспорт-ной системе дыхания. Как видно из опытов, эти вещества по функциональным группам идентичны п-бензохинону, образующемуся в результате окисления гидрохинона. Не исключено, что гидрохинон в цитохромоксидазной системе и и-бензохинон в реакции Хилла действуют как аналоги естественных веществ. Выше были указаны примеры, когда при применении в системах вместо простых фенолов более сложных фенольных веществ из растений получались аналогичные результаты. Все это свидетельствует о том, что опыты с простыми экзогенными веществами приносят пользу в деле познания окислительно-восстановительных процессов црирод-ных фенольных веществ в организмах. Возникает вопрос, в чем конкретно состоит биологическое значение рассмотренных здесь систем. Еще в начале нашего века Палладии [26] высказал предположение, что фенольные вещества в растениях выполняют функции переноса водорода с субстратов дыхания на молед улярный кислород. Изложенные здесь факты являются экспериментальным подтверждением этого предположения. Обнаружено, в том числе и нами [2], что полифенолоксидаза концентрируется в наружных частях растений. Так как растения дышат поверхностью, то не исключено, что система полифенолоксидаза — фенольное вещество выполняет важную роль в питании растений кислородом. Как сле- [c.144]

    Казалось странным называть окислением процесс, при котором образуется свободный кислород, однако известно, что отделение водорода от воды и есть окисление по общему смыслу этого термина. В вышеизложенной схеме (а) угольный ангидрид восстанавливается до углерода, а последний гидратируется водой — процесс, казалось бы, не связанный с окислением. В схеме (в) Вильштеттера и Штоля ни гидратирование двуокиси углерода до угольной кислоты, ни разложение угольной кислоты на формальдегид и кислород не носят окислительно-восстановительного характера. Однако и гидратация С до Н2СО и разложение Hg Og до Н. СО и О2 требуют переноса водородных атомов от кислорода к углероду это и есть признак окислительно-восстановительного процесса, даже если перенос проходит интрамолекулярно, т. е. между двумя атомами одной и той же молекулы, а не интермолекулярно, как в типичных окислительно-восстановительных реакциях. Таким образом, рассматривать фотосинтез как окислительно-восстановительную реакцию между водой и двуокисью углерода— значит не выдвигать гипотезу, а констатировать факт. [c.57]

    Исходя из обобщения Клюйвером и Донкером идей Виланда, ван Ниль представляет фотосинтез как перенос водорода от воды к двуокиси углерода у высших растений и от других водородных доноров к двуокиси углерода у бактерий. [c.58]

    Франк [18] и 1Птоль [21] высказали мысль, что первичным фотохимическим процессом в фотосинтезе может быть обмен водорода на гидроксил (см. главу XIX). Однако допущение переноса гидроксильных радикалов от угольной кислоты к воде равноценно допущению, что одна часть выделяющегося кислорода происходит из двуокиси углерода, а это противоречит данным эксперимента (глава III). [c.156]

    Динитрофенол сильно действует и на фотосинтез и на фоторедукцию, но не оказывает специфического действия на реакцию адаптации. Гаффрон [33,34] находит, что динитрофенол тормозит также водородное брожение в темноте, но не влияет на выделение водорода на свету или даже стимулирует его. Это дока вает, что последний процесс не зависит от энзима, участвующего в процессе образования водорода на свету (см. главу VI). Динитрофенол не имеет сродства с тяжелым металлом, и потому предполагается, что он действует на энзиматически активные белки. Его действие на фотосинтез выражается в торможении переноса водорода от промежуточного восстановленного продукта реакции к двуокиси углерода, так как эта стадия одинакова и в фотосинтезе н в фоторедукции. (Каталитически активные белки могут служить передатчиками водородных атомов, тогда как комплексы тяжелых металлов переносят электроны.) Влияние динитрофенола на водородное брожение требует специального объяснения. Хотя динитрофенол тормозит и фотосинтез и фоторедукцию, он оставляет у адаптированных водорослей лишь одну световую реакцию — фотохимическое выделение водорода. Кажущаяся стимуляция этой реакции динитрофенолом может объясняться устранением потерь, обычно вызываемых реакцией водорода с двуокисью углерода, которая образуется при брожении и недостаточно быстро поглощается щелочами. [c.328]

    Фоторедукция. Опыты по фиксации С Оз адаптированными к водороду водорослями Seenedesmus при 540 люкс [7] показали, что образовавшиеся продукты идентичны с продуктами фотосинтеза и скорости этого образования в обоих случаях также очень близки. Типичные радиограммы для обоих опытов приведены на фиг. 8 и 9. Таким образом, основное отличие фотосинтеза от фотовосстановления заключаеа ся в источнике и способе переноса водорода, а не в способах восстановления углерода образуемыми при этом восстанавливающими агентами. [c.589]

    Метаболическая цепь переноса энергии состоит из ряда сопряженных реакций окисления и восстановления, в каждой из которых происходит лишь незначительное изменение свободной энергии, соответствующее небольшому участку окислительно-восстановительной шкалы. Наиболее окисленным соединением этой цепи является молекулярный кислород, а наиболее восстановленным — молекулярный водород. Зеленые растения способны к образованию О2 и в то же время к образованию такого сильного восстановителя, как Из (или даже более сильного восстановителя). Так как потенциал водородного электрода Е ) равен —0,42 в, а потенциал кислородного электрода равен -Ь0,81 в, при фотосинтезе должен создаваться общий химический потенциал >1,2 в. Один моль квантов красного света (1 эйнштейн) с длиной волны 700 ммк (длина волны, которая инициирует превращение) соответствует примерно 40 ккал или около 1,8 электронвольт (1 эв соответствует 23 ккал молъ). Если бы каж- [c.552]

    Другие механизмы образования АТФ непосредственно связаны с использованием кислорода цитохромными системами, которые осуществляют перенос электронов или водорода (окислительное фосфорилирование), а также с системами фотосинтеза, в которых необходимая энергия поставляется за счет света (фотофосфорилирование). И в этом случае оказалось, что наиболее существенной стадией синтеза АТФ является фосфорилирование АДФ, а не аде-нозпп-5 -фосфата (АМФ). Однако известна реакция миокиназного типа, в которой эти три нуклеотида связаны между собой таким образом, что АМФ обратимо фосфорилируется АТФ с образованием двух молекул АДФ [c.312]

    Хлорофилл, как известно, принимает непосредственное химическое участие в процессе фотосинтеза, являясь одним из звеньев "в цепи окислительно-восстановительных реакций, приводящих к отнятию водорода от воды и присоединению его к СО2. Роль бактериохлорофилла у фотосинтезирующих бактерий, очевидно, такая же, как хлорофилла а У растений. Эти пигменты в растворе способны также сенсибилизировать реакпию фотохимического переноса водорода, как и хлорофилл (Красновский, Войновская,1951 Красновский, Пакшна, 1959). [c.147]

    Каротиноиды и фикобилины, по современным представлениям,непосредственно не участвуют в фотохимической реакции фотосинтеза. Известно, что в отсутствие хлорофилла фотосинтез не идет. Органы (ткани) растений, содержацие каротинощщ, но не имеющие хлорофилла, не ассимилируют. Кроме того, показано, что фикоэритрин в растворе не способен сенсибилизировать ни реакции фотоокисления аскорбиновой кислоты кислородом воздуха, ни реакции переноса водорода от аскорбиновой и пировиноградной кислот к сафранину и рибофлавину - то, что осуществляет хлорофилл (Красновский, Евстигнеев и др., 1952)- - . [c.147]

    По существу первичный фотохимический процесс фотосинтеза можно отнести к окислительно восстановительной реакции с переносом электронов (или водородных атомов) от донора (НгО) к акцептору— ТФПН, который выступает в качестве переносчика водорода к СОг- Так как разность между редокс-потенциалами пар [c.464]

    Не все стадии в процессе фотосинтеза являются выясненными и строго доказанными. Однако несомненно, что возбужденный светом хлорофилл является донором электронов, восстанавливая при участии атомов водорода из воды НАДФ до НАДФ-Нг, и, с другой стороны,— акцептором электронов, которые от ОН-ионов воды через цитохром возвращаются на хлорофилл или расходуются на образование АТФ. В то время как первичные фотофизические процессы при фотосинтезе заключаются в поглощении и переносе энергии квантов света, первичные фотохимические процессы заключаются прежде всего в образовании трех веществ молекулярного кислорода, восстановленного НАД или НАДФ и АТФ. Именно в реакциях [c.338]

    РГсходя из общего представления о природе химических, в частности обменных, реакций, мы можем высказать предположение о вероятном характере световой стадии фотосинтеза. Дыхание растений — процесс, обратный фотосинтезу, — включает реакции двух типов при первых разрываются углеродные цепочки больших органических молекул, при вторых происходит отщепление атомов водорода от углерода и перенос их с помощью ферментов на кислород с образованием воды. В процессе фотосинтеза должны иметь место те же два типа реакций, но только реакции должны идти в обратном направлении — перенос водорода от воды к углекислоте и образование углеродных цепочек. Перенос водорода при дыхании сопровождается выделением энергии, и, следовательно, при фотосинтезе он должен сопровождаться ее накоплением. Накапливаемая энергия — это преобразованная энергия света. Значит, световая реакция фотосинтеза — это, по всей вероятности, перенос водорода от кислорода к углероду против градиента химического потенциала , т. е. от более устойчивой формы к менее устойчивой. Если позаимствовать сравнение из механики, то можно сказать, что при дыхании атомы водорода скатываются с горы, а при фотосинтезе удары квантов света (отдельных атомов света), поглощаемых хлорофиллом, подталкивают их наверх [c.44]

    Изотоп 0 применялся в исследованиях по фотосинтезу С. Рубеном и М, Каменом, которые получили очень важные данные. Пользуясь СОг и НгО, содержащими тяжелый кислород, они показали, что весь кислород, образующийся при фотосинтезе, происходит из воды, а не из углекислоты. (Вот блестящий пример сведений, которые могут быть получены только с помощью меченых атомов и никак иначе ) Данные Рубена и Ка-мена подтверждают предположение о том, что фотосинтез — это прежде всего перенос атомов водорода от воды к углекислоте с выделением кислорода. [c.51]

    Схема фотосинтеза у пурпурных несерных бактерий представлена на рис. 132. Бактериохлорофилл а реакционного центра возбуждается и передает электрон на бактериофеофитин. Электрон проходит через хинон и ряд переносчиков назад к Рзуо, восстанавливая его. При этом на уровне цитохромов образуется АТФ. Чтобы синтезировать восстановительные эквиваленты, необходимо либо использовать в качестве донора электронов молекулярный водород, который может напрямую восстановить НАД", либо осуществить обратный перенос электронов с затратой АТФ. [c.186]


Смотреть страницы где упоминается термин Водород перенос при фотосинтезе: [c.223]    [c.317]    [c.87]    [c.263]    [c.219]    [c.387]    [c.384]    [c.391]    [c.211]    [c.348]    [c.183]    [c.320]    [c.250]    [c.307]   
Биохимия растений (1966) -- [ c.261 , c.262 ]




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез



© 2025 chem21.info Реклама на сайте