Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализатор карбонат калия

    В этом катализаторе карбонат калия может быть заменен нитратом калия, а применение бората калия обеспечивает более высокую селективность катализатора. [c.393]

    Сами щелочные металлы так же, как их гидриды, обладают высокой активностью и поэтому часто предлагаются как катализаторы,, причем на самых различных носителях. В табл. 21 дается обзор-таких катализаторов особенно перспективной кажется комбинация натрия с карбонатом калия в качестве носителя. [c.223]


    Д е г и д р о генизация боковой цепи. Примером этой реакции может служить конверсия этилбензола, получаемого при алкилировании бензола этиленом, до стирола. Реакция протекает в интервале температур от 650 до 700° С или при более низких температурах, а случае применения соответствующих катализаторов. Так, Облад и др. [30] нашли, что в контакте с окисью хрома реакция проходит при 480° С. Во время мировой войны стирол, используемый для получения синтетического каучука, производился главным образом посредством процесса Доу [16] с использованием в качестве катализатора промотиро-ванной карбонатом калия и стабилизированной окисью меди, окиси железа, нанесенной на окись магния. Температура устанавливалась в интервале от 600 до 660° С. Для удаления отложившегося на катализаторе углерода использовался пар в количестве до 2,6 кг на килограмм этилбензола. Реакции дегидрогенизации также способствовало применение бензола в качестве разбавителя или низких давлений. Выходы продукта доходили до 35% за проход, а предельные выходы — порядка 90%. Время действия катализатора — год или больше. [c.107]

    Промотирование железоокисных катализаторов щелочными металлами (8-9%) оказывает существенное влияние на энергию связи кислорода в кристаллической решетке катализатора и соответственно на скорость выгорания углеродистых отложений, но не оказывает влияния на механизм окисления углеродистых отложений [3.27]. При температуре ниже 550 С каталитическое выгорание углерода происходит вследствие воздействия двух соединений — карбоната калия и оксида железа. При температуре выше 550"С калий связывается оксидом железа (П1) в феррит. Введением промоти-рующих добавок можно повысить, но нельзя понизить энергию связи кислорода. Поэтому промотирующее влияние добавок щелочных металлов на процесс окисления углерода будет проявляться в основном лишь в области высоких температур, когда лимитирующим этапом регенерации является присоединение кислорода к катализатору и увеличение энергии связи кислорода приводит к ускорению окисления угле- [c.70]

    Например, при изготовлении смешанных катализаторов на основе окислов металлов VHI группы раствор нитратов таких металлов смешивают с карбонатом натрия при температуре 75° С, что приводит к образованию осадка, который промывают. Только после этого полученный материал направляют на смешение. В другом случае осадок получают при добавлении карбоната калия к раствору нитратов металлов (никеля и др.), содержащего гидроокись алюминия. Полученную массу отфильтровывают, промывают, сушат и прокаливают. И только после этого полученный материал направляют на смешение и последующую переработку. Иногда часть полученною катализатора после высокотемпературной прокалки измельчают и возвращают в цикл, направляя на стадию смешения с исходными материалами. [c.21]


    Известно, что более однородную композицию можно получить при использовании так называемого мокрого способа смешения компонентов. Особенность его состоит в том, что они смешиваются в виде суспензий или водных растворов с последующим удалением избыточной влаги. При использовании этого способа смесь закиси никеля, окиси магния и гидрата окиси алюминия гомогенизируют с добавлением воды, после чего осадок отжимают на прессах и затем просушивают при температуре до 300 С. В другом примере приготовления катализатора готовится водная суспензия карбоната никеля, гидравлического цемента (весовое соотношение вода цемент равно 3 1). Смесь выдерживают до созревания и направляют на формовку. В раствор нитратов никеля, хрома, алюминия вводят карбонат калия, что сопровождается выпадением осадка, который отфильтровывают, промывают, сушат, прокаливают, размалывают, смешивают со связующим (цементом) и направляют на формование. [c.22]

    Промотор можно вводить в носитель до и после пропитки его активными компонентами. Так, окись калия вводят в катализатор (в виде 1%-ного раствора карбоната калия), а затем носитель пропитывают раствором веществ, содержаш>1Х никель и уран. В другом случае катализатор получают погружением глинозема в расплав нитратов никеля и урана с последующим прокаливанием его до образования соответствующих окислов. После этого его выдерживают в растворе карбоната калия на протяжении 30 мин. [c.27]

    При работе с железным катализатором синтез ведут при несколько более высоких температурах (порядка 280—360° С) II давлениях (порядка 20—42 атм). Основными преимуш ествами железного катализатора (обычно промотированного небольшим количеством карбоната калия или окиси калия) являются низкая стоимость, более широкие пределы соотношения СО водород , меньшая чувствительность к перегреву и более широкий диапазон ценных продуктов синтеза. Как кобальтовый, так и железный катализаторы легко отравляются серой, поэтому обязательным условием является чистота исходного синтез-газа. Большие трудности при конструировании реакционных устройств для синтеза вызывает обеспечение эффективного теплоотвода, так как реакция синтеза сильно экзотермична. Сложным является также разделение продуктов синтеза. [c.593]

    Сравнительно небольшие изменения рабочих условий приводят к существенным изменениям состава продуктов реакции. Так, если при использовании смесей газов, в которых отношение На СО равно 0,8—1, повысить давление до 18—20 ат и добавить немного карбоната калия, то образуется продукт, содержащий 25—40% олефиновых углеводородов и 35—40% спиртов остаток составляют парафиновые углеводороды. Проводя реакцию при 200 ат, можно получить 80% спиртов, а в присутствии рутениевого катализатора — парафины с высокой температурой плавления и молекулярным весом 23 тыс., что соответствует молекуле с 1650 атомами углерода. [c.256]

    Ход определения. Навеску тонко измельченного катализатора около 1 г помещают в платиновый тигель, предварительно доведенный до постоянной массы, и сушат при 105—110° С. Одновременно на технических весах взвешивают десятикратное количество карбоната калия-натрия, измельченного в ступке и высушенного при 105— 110° С. Этот реактив добавляют в тигель с катализатором небольшими порциями, тщательно перемешивая. Полученную смесь сверху засыпают остатком карбоната натрия-калия, тигель закрывают крышкой, помещают в муфельную печь и сплавляют катализатор с реактивом при 1000° С в течение 30—40 мин до образования однородной прозрачной массы. По окончании сплавления тигель погружают до половины в холодную воду со льдом. Охлажденный плав в тигле выщелачивают горячей водой и переносят в фарфоровую чашку тигель и крышку промывают также горячей водой. [c.103]

    Этот крупнотоннажный процесс имеет важное практическое значение. Этилбензол может быть легко получен путем взаимодействия этилена с бензолом. Дегидрирование этилбензола также не вызывает особых затруднений. Образующийся стирол широко применяется в синтезе пластмасс и эластомеров. Дегидрирование ведут при 425—500 °С над системой из оксида железа и карбоната калия в качестве катализатора. Используется реактор с неподвижным слоем катализатора (рис. 5). Необходимое для дегидрирования тепло подводится в реактор очень большим объемом водяного пара, отношение которого к объему паров этилбензола достигает 10 1. Следует пояснить, что пар подается не только для нагрева, но и для того, чтобы поддерживать относительно высокую степень окисления железа в катализаторе. Высокое отношение пар/этилбензол также уменьшает образование углистых отложений. [c.151]

    Сплавы на основе никеля. Использование сплавов на основе никеля в условиях сильного воздействия коррозии рассматривалось выше. Сплав монель с содержанием N1 — 30 Си используется в ряде установок, таких, как охладители соленой воды, в частности морской, и нагреватели испарителей питательной воды, в которых вода циркулирует в трубном пространстве, а также в теплообменниках, в которых происходит коррозионное растрескивание и другие виды коррозии, вызванные воздействием хлоридов. Монель обладает значительной стойкостью к коррозии, вызванной фтористыми соединениями, и может использоваться, например, в ребойлерах и конденсаторах при алкилировании с применением фтористого водорода НР в качестве катализатора [12]. Однако на современных заводах, где применяются меры по очистке воды, для изготовления теплообменного оборудования находит широкое применение углеродистая сталь [13]. Монель может также использоваться в уставовках с горячей каустической содой и горячим раствором карбоната калия. [c.316]


    Производство и потребление стирола. Основным процессом получения стирола в промышленности остается каталитическое дегидрирование. Увеличению равновесного выхода стирола благоприятствует повышение температуры и понижение давления. Поэтому дегидрирование ведут при температуре около 600 °С, используя разрежение или подачу острого пара. Выход стирола за проход составляет 25—35%. Катализатором служат смеси оксидов железа и хрома, промотированные, например, карбонатом калия. Ректификация стирола-сырца проводится в вакууме при добавлении ингибиторов полимеризации. Принципиальная схема процесса представлена на рис. 5. Сравнительно небольшая разница температур кипения стирола и этилбензола требует применения высокоэффективных ректификационных колонн. [c.56]

    Следует также упомянуть об интересном синтезе, исходящем из этилового спирта. Нагревание смеси паров этанола с водородом при 200° под давлением в присутствии медного катализатора, промотированного карбонатом калия. [c.306]

    Таким же образом можно получать третичные амины из вторичных [25—27]. И в этом случае для ароматических соединений реакция идет с трудом. Однако из дифениламина, иодбензола и карбоната калия Б присутствии медного катализатора мол<но получить три-фениламин с выходом Й2—85% [28]. [c.506]

    Конденсация вторичных аминов с альдегидами легко идет сама по себе или с таким катализатором, как карбонат калия, давая- хорошие выходы метилендиаминов [5—8]. Если брать более высокомолекулярные алифатические альдегиды, содержащие а-водородные атомы, вместо метилендиаминов обычно получают енамины. Поскольку некоторые метилендиамины при перегонке разлагаются, образуя [c.524]

    Перегруппировка происходит под действием основных катализаторов (карбонат калия, амид натрия, атилат натрия и др.)- Ее можно рассматривать как внутримолекулярную конденсацию Клаизена. реакция имеет большое препаративное значение, так как продукты перегруппировки легко циклизуются, например, под действием бромистого водорода в ледяной уксусной кислоте с образованием флавонов  [c.864]

    Конденсация ароматических кетонов с формальдегидом в присутствии более щелочных катализаторов (карбонат калия) приводит к образованию сложных продуктов реакции см. также работу Фьюсона [4]. [c.436]

    Фишер [18] попытался в катализаторе 100 Ni 18ТЬОз 100 кизельгур заменить торий более дешевым марганцем. Катализатор состава Ni Мп кизельгур =100 20 100 готовили осаждением двуокиси марганца из раствора нитрата Мп с помощью перекиси водорода и с последующим осаждением всего катализатора карбонатом калия. Этот катализатор работал в течение 4 недель при 190—200° и атмосферном давлении и за один проход давай углеводородов Сд и выше максимально 90 г м , а в среднем—около 75 e M При введении в катализатор небольших количеств окиси алюминия активт ность катализатора повышалась. [c.110]

    Катализатор получают смешиванием гидроокиси алюминия или гидроокисей алюминия и магния с раствором нитратов никеля и уранила с последуюш,им введением (при перемешивании) раствора карбоната калия. Он формуется в виде гранул методом экструзии при добавке к массе связующего. Катализатор может быть приготовлен также пропиткой сформованного носихеля (окись алюминия или шпинель) растворами солей никеля и уранила с последующей нропиткой раствором КОН или прокаливанием шихты из смеси сухих солей составляющих компонентов [c.68]

    Шелл дивелопмент компани разработала неосажденные катализаторы из окиси железа, промотированные карбонатом калия. Такой катализатор, известный как Шелл 105 и имеющий состав 90% ГегОз, 4% СггОз и 6% КгСОз, обладает хорошим самореге-нерирующими свойствами, требует меньше пара, но его селективность несколько ниже. При глубине превращения 27% выход бутадиена составляет 68—72%. С увеличением глубины превращения селективность катализатора снижается. При этом образуется больше газообразных продуктов, окислов углерода. Срок службы такого катализатора высокий — достигает нескольких месяцев. Катализатор Шелл 105 широко применяется в промышленных условиях. [c.71]

    За счет частичного сжигания метана при помощи особых горелок температура газовой смеси повышается, в результате чего на никелевом катализаторе при температуре 940—1000° завершается конверсия метана. Проконвертированный аз охлаждается вспрыскиванием воды до 400—425° и поступает на конверсию СО, которая также протекает в присутствии катализатора. В результате этого образуется дополнительное количество водорода, а СО превращается в СОа. Горячая газовая смесь проходит теплообменник, где охлаждается, подогревая при этом карбонатный и медноаммиачные растворы. Охлажденный до 110° газ орошается горячим раствором карбоната калия и медноаммиачным раствором для удаления СО2. Очищенный газ после дополнительного охлаждения водой подается на синтез аммиака. [c.109]

    Катализатором, наиболее широко используемым в промышленности, является ион арсенита, As(0H)a0 , который вводится в раствор карбоната калия, используемый для абсорбции СОа, в виде арсенита калия или AS2O3. Константа скорости для арсенита составляет около 5000 л1 моль -сек) при 25 °С, а энергия активации— около 5700 кал/моль. Так как каталитическим действием обладает лишь анион, а не недиссоциированная мышьяковистая кислота, то значение константы [ at] скорости реакции первого порядка будет уменьшаться при снижении pH до уровня, при котором диссоциация будет частично подавляться. Это может происходить в карбонат-бикарбонатных растворах при обычных температурах. Однако в промышленных условиях абсорбцию СОа растворами поташа проводят чаще всего при температуре около 100 °С. В таких условиях константа диссоциации, видимо, достаточно велика, чтобы обеспечить практически полную ионизацию арсенита во всех участках абсорбционного аппарата. Шарма и Данквертс дают информацию о влия- [c.243]

    Таким образом, на основе того, что нам известно о стандартной реакции Виттига, на первый взгляд перспектива улучшения ее проведения в МФК-условиях маловероятна. Однако в 1973 г. Меркль и Мерц [483] показали, что для проведения реакции Виттига даже с неактивированными фосфониевыми солями можно использовать систему концентрированный раствор гидроксида натрия/органический растворитель. С тех пор эту препаративно очень простую методику широко используют [483]. Вопросы, связанные с механизмом реакции, все еще остаются не совсем ясными. Некоторые авторы использовали в качестве катализаторов аммониевые соли или краун-эфиры, другие обходились без катализаторов, аргументируя это тем, что, как известно, фосфониевые соли сами являются межфазными катализаторами. Однако во многих случаях при использовании водного гидроксида натрия первая стадия депротонирования проходит, по-видимому, межфазно. Образующийся илен является нейтральной частицей, и поэтому для облегчения его диффузии в глубь органического слоя катализатор не нужен. Это приводит к тому, что конкурирующая реакция с водой не происходит. В других случаях в качестве щелочей использовали твердый трет-бутоксид калия или карбонат калия [484], твердый фторид калия [1297] или твердый гидроксид натрия [1782]. [c.252]

    Новая модификация синтеза индолов по Фишеру, катализируемого щелочами, осуществляется нагреванием реактантов в сульфолане с твердым карбонатом калия и молярным количеством катализатора. Если в качестве МФ-ватализаторов используют 18-краун-6, то источником К является ониевая соль КзК К+Вг или алкилгалогенид  [c.274]

    Недавно был обнаружен интересный и необъясненный до настоящего времени факт [1299] смесь твердого карбоната калия и 1 мол. % твердого фторида калия является очень эффективной синергической щелочной системой при условии, что обе используемые соли тщательно высушены, а в качестве катализатора применяют BU4NHSO4 реакционную смесь кипятят [c.295]

    Перспективными ингибиторами коксообразования служат СОЛИ щелочных металлов (скажем, карбонат калия), являющиеся катализаторами газификации органических соединений и кокса кислородом или водяным паром уГак, исследования показали высокую эффективность действия карбоната калия, вводимого в незначительном количестве в бензин-рафинат при нагреве его в опытной печи до 780—840 °С. При разбавлении сырья водяным паром (20—80%) печь проработала непрерывно 1500 ч. После остановки печи кокса в змеевике не оказалось [9]. [c.275]

    В ряде опытов применяли алюмо-кобальт-молибденовый катализатор (3% СоО и 157о МоОз) в смеси с карбонатом калия или без него, а в других использовали выделенный из угля пирит в смеси с карбонатом калия. В качестве растворителя в начале опыта в автоклав загружали антраценовое масло. В опытах с рециркуляцией (например, с углем > 0-74-75) через 9 циклов рециркуляции примерно 80% антраценового масла постепенно за-.мещалось каменноугольным маслом. Для разделения масла и асфальтенов использовали бензол и пентан. [c.327]

    Ожижение углей под действием Л1 — Со — Мо-катализатора и компонентов минеральной части углей. Для некоторых низкозольных углей, например для VYO-74-14 и УО-74-3, наблюдались низкая степень превращения угля и селективность образавания каменноугольного масла при действии синтез-газа в типичных условиях. Иопользование карбоната калия, пирита или молибдата кобальта (Со — Мо на АЬОз) в качестве катализаторов значительно увеличивало и общую степень превращения угля и селективность образования масла при существенном снижении вязкости продукта, растворенного в антрацене. Для угля Ш 0-74-14 [c.333]

    При конверсии нефтезаводских газов и бензинов возникает опасность отложения углерода на катализаторе. Для конверсии бензинов фирмой I I разработан катализатор 46-1 с щелочными добавками [16]. В этом катализаторе калий химически связывается с алюмосиликатами, образуя комплексные соединения, например KAlSiO 4. В условиях процесса паровой конверсии под действием водяного пара и двуокиси углерода эти соединения медленно разлагаются с образованием небольших количеств карбоната калия. Карбонат калия предотвращает образование углерода, однако он [c.81]

    Блокирует поры метанирующего катализатора при испарении раствора карбоната калия Такое же [c.151]

    Контактную массу готовят сплавлением в атмосфере азота смеси оксидов железа Гез04, алюминия AI2O3, калия К2О, кальция СаО и кремния бЮг, или порошков металлических железа и алюминия с оксидами кальция и кремния и карбоната калия с последующим измельчением массы до размеров зерен катализатора (5 мм) и восстановлением их водородом в колонне синтеза аммиака. При этом протекают реакции  [c.199]

    Кирби [8] сообш,ает о результатах работ военного и послевоенного времени по подбору катализаторов. Катализатор, применявишйся во время войны, был известен под номером 1707 он содержал 72,4 мес. % окиси магния, 18,4 вес.% окиси трехвалентного железа, 4,6 вес.% окиси меди, 4,6 вес.% едкого кали. На этом катализаторе еш,е происходило в некоторой степени отложение угля, что заставляло сокращать продолжительность рабочего цикла или увеличивать продолжительность регенерации, во время которой через катализатор пропускали оди н водяной пар без бути.ленов. При 650° и отношении пара к бутилену, равном 7 1, катализатор приходилось каждые 1—2 часа пропаривать в течение 10 мин. При такой высокой температуре карбонат калия, который необходим для поддержания длительного срока службы катализатора и для подавления обуглероживания, обладает уже летучестью, достаточной для того, чтобы он постепенно уносился из катализатора эти потери карбоната калия нужно непрерывно компенсировать. [c.209]

    По карбонильной активности формальдегид превосходит все альдегиды, как алифатические, так и ароматические, поэтому в присутствии мягких основных катализаторов он легко реагирует с алифатическими альдегидами, не давая возможности тоследним самоконденсироваться. В тех случаях, когда в реакцию вводят избыточное количество формальдегида, она не останавливается на стадии образования альдоля, в котором оставшийся в а-положении атом водорода еще подвижнее, чем в исходном альдегиде. Например, при взаимодействии формальдегида с ацетальдегидом (у которого атомы водорода в а-положении настолько подвижны, что могут быть сняты таким слабоосновным агентом, как карбонат калия) с одной молекулой ацетальдегида реагируют сразу три молекулы формальдегида, образуя тригидроксиальдегид (19)  [c.200]

    На лабораторную доработку вопроса ушло в 1909 г. немнога времени, почти сразу применили опытный аппарат (автоклав),, вмещавший 2 п. масла. Катализатор готовили осаждением гидрата закиси никеля (гидроокиси никеля П) на кизельгуре (1 0,6). Промытый, высушенный, тонко измельченный катализатор восстанавливали в токе водорода. Вскоре научились получать из хлопкового масла весьма удовлетворительный продукт с титром выше 50°. Тогда стали создавать заводскую установку с автоклавом на 50 п. масла. Так началось заводское производство его сразу же наметили развить в масштабе 300—400 тыс. п. (5—6,5 тыс. т) в год. Работали почти целиком на хлопковом масле Оно поступало из Средней Азии и имело, по анализам 1910—1911 гг., свободных жирных кислот 0,09— 0,11%, йодное число 112,6—113,5. Масляные баки вмещали почти годовой запас масла, что обеспечивало хорошее отстаивание. Рафинации не было. Водород получали электролизом воды. По образцу приобретенного в Германии водоразлагателя системы Шмидта изготовили в России, преодолев многие трудности, еще 19 таких же. В установке непрерывно циркулировал раствор химически чистого карбоната калия. Практически можно было одновременно использовать 17 электролизеров, они давали около 2500 водорода в сутки, расходуя около [c.408]

    Серотонина адипинат (XI). 150 г X, 3 л этилового спирта и 30 г палладиевого катализатора, содержащего 5% окиси палладия на карбонате калия, гидрируют при 18—25°С и давлении водорода 3 атм. Катализатор отфильтровывают, промывают 150 мл этилового спирта и к спиртовому фильтрату приливают горячий раствор 82,5 г адипиновой кислотм NB 450 мл этилового спирта. (Фильтрацию растворов, содержащих серотонин, и получение се- [c.170]

    Описан [54] метод М-алкилирования 2-бензимидазолонов 47, которые были получены, в свою очередь, при внутримолекулярной циклизации и декарбоксилировании о-ди(метоксикарбониламино)бензолов. Оба этапа, циклизация и М-алки-лирование с образованием соединений 48а-Г, были осуществлены за одну операцию с использованием алкилирующего агента, толуола как растворителя, смеси порошкообразных гидроксида и карбоната калия как основания и в присутствии соли четвертичного аммониевого основания, например, ТЭБАХ, выступающего в качестве катализатора межфазного переноса. [c.48]

    Блокирует поры катализатора при исиарении раствора карбоната калия Такое Ж9 действие, как в процессе Бенфилд. Кроме того, АзгОз является каталитическим ядом. При содержании в катализаторе 0,5% мышьяка активность снижается на 50% [c.401]


Смотреть страницы где упоминается термин Катализатор карбонат калия: [c.10]    [c.205]    [c.176]    [c.466]    [c.324]    [c.334]    [c.82]    [c.239]    [c.120]    [c.353]    [c.717]    [c.534]    [c.113]   
Непредельные нитросоединения (1961) -- [ c.10 , c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Калий карбонат

Катализаторы калия



© 2025 chem21.info Реклама на сайте