Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неводные растворы, диссоциация кислот и оснований

    Кислотно-основное титрование (иногда называется также методом нейтрализации). В качестве рабочих титрованных растворов (реактивов) применяют обычно кислоты и щелочи. Определять этим методом можно кислоты, щелочи, соли слабых кислот и соли слабых оснований, а иногда также вещества, которые реагируют с такими солями. Если в растворе содержится несколько компонентов, имеющих различные кислотно-основные свойства, нередко возможно раздельное определение таких компонентов в их смеси. Применение неводных растворителей (спирт, ацетон и т. п.), в которых степень диссоциации кислот и оснований сильно изменяется, позволяет расширить число веществ, которые можно определять титрованием кислотами или основаниями. -% [c.272]


    Классическая теория электролитической диссоциации Аррениуса рассматривает кислоты как соединения, образующие при диссоциации в водном растворе водородные ионы, а основания — как соединения, диссоциирующие с образованием гидроксильных ионов. Однако в дальнейщем изучение химических процессов, протекающих в неводных растворах, показало, что эта теория имеет ограниченный характер. [c.42]

    Реакция нейтрализации протекает не только в водных, но и в неводных растворах. Химическая природа неводного растворителя влияет на состояние ионов в растворе и на степень диссоциации. Одно и то же вещество может быть в одном растворителе солью, в другом кислотой, в третьем основанием. Например, ацетат аммония в воде — соль, в аммиаке — кислота, в уксусной кислоте — основание. Хлорид аммония в воде вследствие гидролиза является слабой кислотой (и солью), в жидкой фтористоводородной кислоте — основанием, в жидком аммиаке — сильной кислотой. Амид калия в уксусной кислоте — слабое основание, в воде — сильное основание, в жидком аммиаке — очень сильное основание. Амид калия в жидком аммиаке — более сильное основание, чем гидроокись калия в воде. [c.444]

    Электролиты — это химические соединения, которые в растворе (полностью или частично) диссоциируют на ионы. Различают сильные и слабые электролиты. Сильные электролиты диссоциируют в растворе на ионы практически полностью. Примерами сильных электролитов в водных растворах могут служить некоторые неорганические основания (NaOH) и кислоты (НС1, HNO3), а также большинство неорганических и органических солей. Слабые электролиты диссоциируют в растворе только частично. Доля продиссоциировав-ших молекул из числа первоначально взятых называется степенью диссоциации. К слабым электролитам в водных растворах относятся почти все органические кислоты и основания (например, СН3СООН, пиридин) и некоторые неорганические соединения. В настоящее время Б связи с развитием исследований в неводных растворах доказано (Измайлов и др.), что сильные и слабые электролиты являются двумя различными состояниями химических соединений (электролитов) в зависимости от природы растворителя. В одном растворителе данный электролит может быть сильным электролитом, в другом — слабым. [c.244]

    Выбрать растворитель для того или иного титрования можно, строго говоря, только на основании данных о константах диссоциации кислот и оснований и данных о ионном произведении среды. Кроме того, во многих случаях выбор неводного растворителя и условий титрования может быть сделан на основе выведенных выше уравнений и описанных примеров применения неводных растворителей для улучшения условий титрования. Для того, чтобы облегчить пользование неводными растворителями, приводим сводную табл. 48 условий титрования, составленную в соответствии с нашей классификацией применения неводных растворителей для улучшения условий титрования. В этой таблице для каждого титрования приведены объекты титрования, растворители, титрующий раствор, применявшиеся электроды (при потенциометрическом) и индикаторы (при визуальном) титровании. [c.461]


    Книга состоит из десяти глав и написана, исходя из представлений, что деление электролитов на сильные и слабые указывает только на состояние электролитов в растворе. Диссоциация кислот, оснований и солей рассматривается с единой точки зрения. Значительное внимание уделено неводным растворам электролитов. [c.2]

    В последние годы установлено, что одно и то же веш,ест-во в зависимости от растворителя может быть и сильным и слабым электролитом. Классификация электролитов на слабые и сильные указывает только на состояние электролита в растворе, а не на его принадлежность к определенному классу веществ. В связи с этим диссоциация кислот, оснований и солей в водных и неводных растворах рассматривается с единой точки зрения, развиваемой в последние годы автором. Благодаря такой постановке вопроса в курсе электрохимии растворов отводится значительно больше, чем обычно, места изучению свойств неводных растворов электролитов. Водные растворы рассматриваются как частный случай растворов вообще. [c.4]

    Анионы наряду с катионами являются продуктом электролитической диссоциации молекул. Анионы существуют в водных и неводных растворах солей, кислот и оснований, а также в расплавах и в кристаллах с ионной решеткой. [c.274]

    В растворах различных веществ в жидких неводных растворителях и сжиженных газах помимо ионов, предсказываемых теорией электролитической диссоциации, имеются разнообразные ионы и молекулы, вызывающие аномалии в поведении истинных растворов, которые не могут быть объяснены ни гипотезой С. Аррениуса, ни современными теориями Дебая — Хюккеля и Л. Онзагера, поскольку предметом их не является изучение влияния растворителей на свойства электролитов. Следует отметить, что теория Бренстеда и другие теории, предметом которых было исследование влияния растворителей на силу кислот и оснований, также не объясняют аномалий в поведении электролитов в неводных растворах. Как показывают исследования, указанные аномалии обусловливаются взаимодействием растворенного вещества с растворителем. [c.391]

    Этап П1. Рассчитать концентрации неводных растворов кислот, у которых степень диссоциации равна на основании найденных величин и заданных диэлектрических постоянных. [c.18]

    Пожалуй, наиболее изученной областью химии неводных растворов являются кислотно-основные реакции, исследование которых началось еще с сольво-систем. Согласно определению сольво-сп-стем, кислота может быть рассмотрена как вещество, которое путем прямой диссоциации или реакции с растворителем дает катион, характерный для растворителя основание — вещество, которое путем прямой диссоциации или реакции с растворителем дает анион, характерный для растворителя. В случае протонного растворителя катионом является сольватированный протон, и при этом условии протонное представление о кислоте эквивалентно понятию о кислоте как о сольво-системе. Например, типичные реакции нейтрализации в аммиаке протекают следующим образом  [c.351]

    Еще в конце XIX в. было установлено влияние добавок кислот и оснований на скорость реакций в водных растворах. Это привело к заключению, что ионы водорода н гидроксила отличаются каталитическими свойствами. Дальнейшие исследования показали, что каталитическая активность кислот и оснований сохраняется и в неводных растворах, где электролитическая диссоциация весьма слаба. [c.408]

    Неводные растворы имеют ряд преимуществ 1) многие органиче ские вещества, кислоты и основания плохо растворимы в воде, но хо рошо — в органических растворителях (например, бензойная кислота алкалоиды, парафин) 2) неводные органические растворители позво ляют сильно увеличивать диссоциацию молекул органических кислот и оснований 3) в неводных растворах отсутствует гидролиз солей [c.50]

    Заканчивая рассмотрение единой количественной теории диссоциация электролитов, следует заметить, что она основана на том положении, что в неводных растворах, а во многих случаях и в водных растворах, диссоциация любых электролитов подчиняется закону действия масс. В связи с этим было принято, что деление электролитов на сильные и слабые указывает только на состояние их в растворе, а не на принадлежность их к определенному классу веществ. Процесс диссоциации любых электролитов— кислот, оснований и солей — рассматривался с единой точки зрения как процесс, проходящий в несколько последовательных стадий. [c.359]

    Протоны, как и электроны, только переходят от одних частиц к другим, но не существуют в свободном состоянии в водных и неводных растворах. Протолитическая теория аналогична электронной теории окислительно-восстановительных процессов, по которой электроны переходят от частиц восстановителя к частицам окислителя окислитель и восстановитель всегда образуют сопряженные пары. Окисление одного вещества вызывает восстановление другого ( 31). Кислота, основание,соль и растворитель тесно связаны между собой. Кислота при диссоциации образует катион, характерный для растворителя, основание образует анион, характерный для растворителя. Например, в жидкой двуокиси серы образуются катион сероокиси 50"и сульфит-ион  [c.56]


    Применение неводных растворителей значительно расширило возможности кислотноосновного титрования. В неводных растворителях возможно титрование очень слабых (в воде) кислот и оснований, раздельное титрование смеси кислот, а также смеси оснований с близкими (в воде) константами диссоциации, титрование солей сильных кислот (оснований) по вытеснению. Неводные растворители позволяют расширить возможности титрования по методу осаждения, распространив его па ряд новых веществ за счет уменьшения растворимости осаждаемой соли в неводных растворах. Различное изменение силы солей позволяет осуществить раздельное титрование смеси солей с одним анионом по осаждению этого аниона. [c.440]

    Возможности кислотно-основного титрования слабых электролитов в неводных средах. В неводных растворах можно титровать очень слабые (в воде) кислоты и основания, при титровании которых в водных растворах не удается получить резкого скачка титрования вследствие гидролиза солей слабых кислот или слабых оснований, образующихся в водных растворах. Причиной гидролиза вещества в водном растворе является собственная диссоциация воды, например  [c.424]

    Потенциометрическое определение не только смеси кислот или оснований с близкими константами диссоциации, но и смеси ряда сильных кислот успешно можно осуществить в неводных растворах благодаря дифференцирующим свойствам различных органических растворителей (см. гл. XI). [c.42]

    Согласно Измайлову, диссоциация кислот, солей и оснований на ионы в водных и неводных растворах зависит от ряда сопряженных динамических равновесий образования сольватов — продуктов присоединения электролита к молекулам растворителя, диссоциации сольватов с образованием сольватированных ионов лиония и лиата, ассоциации сольватированных ионов с образованием ионных пар, или двойников. Соотношения между активными концентрациями продуктов этих реакций зависят от свойств растворенного электролита и растворителя, а также от их концентраций. [c.395]

    Определение /Снап и Кв в неводных растворах. По величинам констант диссоциации /Снап (и рЛ ндп), Кв (и рКв) можно судить о нивелирующем и дифференцирующем действии данного растворите.1я в отношении определенных групп кислот или оснований. [c.408]

    Анионы — отрицательно заряженные частицы, в состав которых входят отдельные атомы или группы атомов различных химических элементов. Анион в зависимости от его состава может нести один или несколько отрицательных зарядов. Анионы наряду с катионами являются продуктом электролитической диссоциации молекул солей, кислот и оснований. Анионы существуют в водных и неводных растворах, а также в расплавах и кристаллах веществ с ионной решеткой. Большинство анионов имеет более сложный состав, чем катионы. В состав многих анионов входит несколько атомов, в то время как большинство катионов состоит только из одного атома. [c.241]

    Согласно классической теории электролитической диссоциации С. Аррениуса кислоты, соли, основания (электролиты) в водных и некоторых неводных растворах существуют в виде независимых друг от друга частиц — ионов, образовавшихся при распаде молекул. Такие частицы (катионы и анионы) существуют в растворах независимо от того, наложено или нет на раствор электрическое напряжение. С. Аррениус ввел представление о частичной диссоциации электролитов в растворах. [c.191]

    Теория Бренстеда устанавливает количественные закономерности, характеризующие диссоциацию кислот и оснований в различных растворителях. Она охватывает как водные, так и неводные растворы кислот и оснований и учитывает не только физические, но и химические факторы, влияющие на диссоциацию кислот. [c.88]

    Электропроводность растворов электролитов зависит и от диэлектрической проницаемости растворителя чем меньше диэлектрическая проницаемость, тем ниже электропроводность. Поскольку природа растворителя определяет константу диссоциации электролита, то в растворителях с низкой диэлектрической проницаемостью по сравнению с водными растворами константы диссоциации электролитов уменьшаются. Даже сильные, полностью диссоциированные в воде электролиты в большинстве неводных растворов диссоциируют не полностью. К ним относятся не только кислоты и основания, но и соли. [c.151]

    Справедливы ли эти определения применительно к неводным растворам, где не может быть и реч и о существовании ионов водорода и гидроксил-ионов, образующихся за счет электролитической диссоциации воды Какие вещества называют кислотами и основаниями, когда речь идет о неводных растворах Каковы современные представления о реакциях нейтрализации, протекающих в неводных растворах Вот те вопросы, на которые нужно ответить, чтобы правильно понять процессы кислотно-основного титрования, осуществляемые в неводных растворах. [c.8]

    Исследования показали, что диссоциация сильных в воде электролитов в некоторых неводных растворах подчиняется закону действия масс. И. А. Измайловым [1], высказавшим мысль о необходимости нахождения общих закономерностей, охватывающих как сильные, так и слабые электролиты, было показано, что в действительности процессы взаимодействия растворителя и электролита, протекающие в растворах кислот, оснований и солей, значительно многообразнее, чем это предполагалось ранее. Этим же автором предложена новая схема диссоциации электролитов, учитывающая все главнейшие процессы, протекающие в растворах. [c.16]

    Из выведенных общих уравнений вытекает основное положение, что диссоциация сильных в воде электролитов кислот, солей и оснований в неводных растворах подчиняется закону действия масс. Указанные схемы процессов и уравнения, связывающие константы отдельных равновесий с обычными константами диссоциации кислот и оснований, становятся теперь общепринятыми, [c.21]

    Учитывая, что определение констант диссоциации электролитов экспериментальным путем и методами расчета не составляет особых трудностей, мы считаем, что суждение о нивелирующе-диффе-ренцирующем действии растворителя по термодинамическим константам является не только более точным, чем основанное на ОШК, но и, более перспективным. Этот метод является тем более предпочтительным, что он позволяет накапливать сведения о физико-химических константах, которые с успехом могут быть использованы и для других химико-аналитических и физико-химических целей. Например, для расчета теоретических кривых титрования в неводных растворах на основе констант автопротолиза и констант диссоциации кислот, оснований и солей используют уравнения электронейтральности раствора  [c.203]

    Методы потенциометрического титрования. Потенциометрическое титрование-—один из объективных электрохимических способов объемного анализа — служит для определения концентрации раствора и константы электролитической диссоциации слабой кислоты и слабого основания. Его применяют при исследовании растворов, окращенных и мутных многокомпонентных с малой концентрацией слабых электролитов и других, визуальное титрование которых затруднено. Виды потенциометрического титрования аци-днметрическое, алкалиметрическое, иодометрическое и другие основаны на реакциях осаждения, окисления, восстановления, комп-лексообразования и т. п. в водных и неводных растворах. Потенциометрическое титрование проводят компенсационным и некомпенсационным методами. [c.167]

    Теория электролитической диссоциации подробно разбирается в учебниках по неорганической и аналитической химии. Она не охватывает все случаи взаимодей ствия веществ, особенно в неводных растворах. В 1923 г Бренстед и Лоури предложили протолитическую теорию согласно которой к кислотам относятся вещества, спо собные отдавать протоны, а к основгниям — вещества способные их присоединять. Из исходных кислоты и ос нования всегда получаются новые сопряженные. кислота и основание  [c.85]

    При химических взаимодействиях в растворах всегда образуются смеси электролитов и присутствуют различные ионы. Одни из них образуются в результате диссоциации сильных электролитов, другие — слабых электролитов. Некоторые ионы вступают в реакцию, при этом образуются новые малодиссоциированные соединения, малорастворимые осадки, комплексные соединения или продукты реакций окисления — восстановления. Таким образом, в процессе титрования растворы представляют собой сложные системы, в которых в ряде случаев имеется несколько химических равновесий, в том числе и автопротолиз растворителя. Концентрация ионов зависит от общего состояния системы в каждый момент титрования. Поскольку состояние системы определяется термодинамическими константами, характеризующими химические равновесия, эти величины могут служить критериями применимости методов. К ним относятся константы диссоциации кислот, оснований, амфолитов (в неводных растворах также константы диссоциации солей), константы автопротолиза растворителей, константы нестойкости комплексов, произведения активностей осадков, окислительновосстановительные потенциалы и т. д. Термодинамические величины характеризуют полноту протекания реакций, а следовательно, и значения равновесных концентраций ионов. Теоретические кривые титрования дают возможность устанавливать, при каких значениях указанных констант кривые кондуктометрического титрования имеют излом, позволяющий найти точку эквивалентности. При этом реакции не обязательно должны протекать практически до конца, так как смещение ионных равновесий происходит в продолжение всего процесса титрования. Поэтому в основу кондуктометрических определений могут быть положены реакции в какой-то мере обратимые, что недопустимо в ряде случаев при использовании классических химических методов и некоторых физико-химиче-ских методов анализа. [c.38]

    Равновесные концентрации ионов могут быть рассчитаны, если известна концентрация титруемого раствора, количество добавленного титранта и значения констант диссоциации. Когда в основу определения положено кислотно-основное взаимодействие, химические равновесия характеризуются константами диссоциации кислот, оснований, амфоли-тов, а в неводных растворах также константами диссоциации солей. Если в процессе титрования образуются малорастворимые осадки или комплексные ионы, состояние равновесий обусловливается значениями произведений растворимости осадков и констант нестойкости комплексов. При использовании реакций окисления — восстановления равновесия зависят от окислительно-восстановительных потенциалов и т. д. В ряде случаев существенное влияние в общей системе равновесий оказывает константа автопротолиза растворителя. [c.98]

    Согласно приведенному в гл, 2 определению Аррениуса, кислота представляет собой вещество, повышающее концентрацию ионов водорода в водном растворе, а основание - вещество, повышающее концентрацию гидроксидных ионов. Более общее определение кислот и оснований было предложено в 1923 г. Бренстедом и Лаури. Определение Бренстеда-Лаури применимо не только к водным, но и к неводным растворам. Согласно Бренстеду-Лаури, кислотой называется любое вещество, способное высвобождать ионы водорода, или протоны, а основанием-любое вещество, способное соединяться с ионами водорода и, следовательно, удалять их из раствора. Теперь, когда мы понимаем, что молекулы воды находятся в равновесии со своими диссоциированными ионами Н и ОН , нетрудно убедиться, что в случае водных растворов оба определения оказываются эквивалентными. Кислоты, как в представлении Аррениуса, так и в представлении Бренстеда, hsj wt h веществами, высвобождающими ионы водорода. Если основание, в представлении Бренстеда, соединяется с ионами водорода, это значит, что в водном растворе оно смещает равновесие реакций (5-5) в сторону диссоциации до тех пор, пока не восстанавливается баланс. В результате образуются дополнительные гидроксидные ионы, и, таким образом, в водных растворах определение основания по Бренстеду совпадает с определением основания по Аррениусу. [c.214]

    Если же система сопряженных катионных кислот остается одной и той же, а изменяется лишь диэлектрическая проницаемость, то константа нротолитического равновесия (сила кислоты) не зависит от среды. Это наблюдается при диссоциации кислот в смесях воды со спиртами. В этом случае второй кислотой во всех смесях является кислота Н3О+, так как основность воды значительно выше, чем спиртов. Как правило, сила катионных кислот, т. е. кислот, образованных из оснований (NHI, H3NHI, jHeNHi), не изменяется с изменением диэлектрической проницаемости почти до растворов, содержащих 90% неводного растворителя. [c.269]

    Понятия о кислотах и основаниях ранее рассматривались с классических позиций, возникших после теории электролитической диссоциации Аррениуса и развитых Косселем. Такие взгляды не исчерпывают, однако, сложного вопроса о свойствах кислот и оснований. Более широко этот вопрос рассматривается в общепринятых теориях Бренстеда и Льюиса, в теории сольвосистем Э. Франклина для неводных растворов. Большое значение для правильного понимания этого вопроса имеют взгляды А. Шатенштейна, М. Усановича, Н. Измайлова и др. [c.179]

    Благодаря полярности молекул и достаточно высокой диэлектрической проницаемости жидкий аммиак является хорошим неводным растворителем. Жидкий аммиак положил начало химии неводных растворов. Результаты исследования поведения веществ в жидком аммиаке дали возможность построить обобщенную теорию кислот и оснований, открыли перед химией новые пути проведения реакций синтеза ранее неизвестных веществ и т. д. В жидком аммиаке хорошо растворяются щелочные и щелочно-земельные металлы, сера, фосфор, иод, многие соли и кислоты. Вещества с функциональными полярными группами в жидком аммиаке подверга-]отся электролитической диссоциации. Однако собственная ионизация аммиака 2ЫНа(ж) ЫН - -ЫН2 ничтожно мала и ионное произведение [NHi] lNH.r]= 10 - при —50 °С. [c.249]

    Представления о кислотах и основаниях, основанные на теории электролитической диссоциации, применимы лишь при условии, что веш,ества реагируют в водном растворе. Однако эти представления не объясняют процессов, протекающих в неводных растворах. Так, например, если хлорид аммония в водном растворе ведет себя как соль (диссоциирует на ионы NH и С1 ), то в жидком аммиаке он проявляет свойства кислоты — растворяет металлы с выделением водорода. Мочевина OiNHa) в жидком аммиаке проявляет свойства кислоты, в безводной уксусной кислоте — свойства основания, а в водном растворе она нейтральна. Как основание ведет себя азотная кислота, растворенная в жидком фтороводороде или в безводной серной кислоте. [c.189]

    В общем случае многие основания и кислоты в неводных средах могут сильно изменить степень диссоциации. Например, слабая в водном растворе сернистая кислота Н280а в жидком аммиаке диссоциирована примерно в такой же степени, как HNOз в водном растворе, т.е. является сильной кислотой. Таким образом, характер диссоциации гидроксидов (по кислотному или основному типу), а также степень диссоциации зависит от природы растворителя, в частности от его донорно-акцепторной активности по отношению к протону. Так, в ряду [c.283]

    Свойства соляной кислоты в водных и неводных растворах, а также в смешанных водно-неводных растворителях были исследованы более подробно, чем свойства любого другого электролита, и они могут служить иллюстрацией основных свойств ионных растворов для того случая, когда отсутствуют затруднения, связанные с наличием ионов с зарядом больше единицы. В начале данной главы будет рассмотрен вопрос об определении степени диссоциации этой кислоты в средах с различной диэлектрической постоянной на основании данных об электропроводности. Затем будут подробно описаны свойства соляной кислотц на основании данных об электродвижущей силе элемента [c.311]


Смотреть страницы где упоминается термин Неводные растворы, диссоциация кислот и оснований: [c.128]    [c.116]    [c.326]    [c.399]    [c.208]    [c.8]    [c.78]   
Введение в электрохимию (1951) -- [ c.433 ]




ПОИСК





Смотрите так же термины и статьи:

Диссоциация кислот

Неводные растворы, диссоциация

Основания диссоциация

Основания и кислоты

Основанне диссоциация

Растворы неводные



© 2025 chem21.info Реклама на сайте