Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неводные растворы электродные потенциалы

    Электродные потенциалы, возникающие при погружении металлов в водные и неводные растворы, разность потенциалов между двумя соприкасающимися электролитами, мембранные потенциа.г1Ы на мембранах, пропускающих одни ионы легче других,— все это случаи, когда механизм возникновения разности потенциалов на границе двух фаз относится к описанному выше первому типу. [c.165]

    ДЛЯ неводных систем недостает многих необходимых сведений, и поэтому приходится довольствоваться качественными выводами. Стандартный электродный потенциал можно рассчитать довольно точно с помощью первичного эффекта среды. Так как стандартная э. д. с. ячейки определяется лишь по взаимодействию ион — растворитель, необходимо учитывать только первичный эффект среды. Расчет этого эффекта можно сделать по уравнению Борна, хотя и есть некоторые сомнения в его пригодности. Энергию, необходимую для переноса иона радиуса г из раствора с диэлектрической проницаемостью б1 в другой растворитель с диэлектрической проницаемостью 62, можно определить по формуле  [c.357]


    Известны экспериментальные и теоретические методы расчета электродных потенциалов [770]. Однако сравнение электродных потенциалов в различных средах связано с рядом непреодолимых трудностей. Эти трудности в первую очередь определяются выбором электрода сравнения, которым в водных растворах является стандартный водородный электрод, приравниваемый к нулю. В неводных растворах наблюдается значительный сдвиг потенциала водорода в зависимости от природы растворителя. [c.233]

    Примеси в растворе могут изменить активность реагирующего компонента. Некоторые примеси обладают сильной тенденцией к образованию комплексов с реагирующим компонентом в растворе, изменяя электродный потенциал. В неводных растворах электродный потенциал может значительно искажаться за счет присутствия даже следовых количеств воды. [c.130]

    ОНИ слишком энергично реагируют с водными растворами. При приведении в соприкосновение электродов из щелочных металлов с электролитом весь материал расходуется на химическую реакцию настолько быстро (со взрывом), что не удается отобрать во внешнюю цепь существенное количество электричества. При замене водных растворов электролитов на неводные реакции щелочных металлов с электролитом замедляется, но соответственно снижается и электродный потенциал. Попытки использовать для отрицательного электрода магний или алюминий затруднены тем, что эти металлы находятся либо в пассивном состоянии и имеют потенциал значительно более положительный, чем соответствует табл. 59 стандартных потенциалов, либо при активации начинают слишком бурно реагировать с электролитом. Первичные элементы с электродами из магния все же удалось осуществить. [c.468]

    Прямая потенциометрия состоит в измерении точной величины электродного потенциала и нахождении по уравнению Нернста активности потенциалопределяющего иона в растворе. Методом потенциометрии определяют pH водных и неводных растворов, в том числе производственных растворов олигомеров анализируют кислые и основные примеси в диметилформамиде и диметилацетамиде определяют хлорид-ионы и кислотные компоненты в производственных растворах, реакционные концевые группы в олигомерах и т.д. Кроме того, метод широко используют для расчета термодинамических констант электрохимических и химических реакций. [c.300]

    Для определения констант скоростей, превышающих 10" см-с , полярографический метод не пригоден, но он может давать важную термодинамическую информацию (стандартные электродные потенциа лы и вычисляемые по ним данные по свободной энергии и констан там устойчивости). Существует обширная литература по электродным потенциалам различных органических и неорганических окислительно восстановительных пар, основанная на потенциалах полуволны как в водных, так и в неводных растворах. Однако в некоторых случаях возникает вопрос, является ли окислительно-восстановительная пара достаточно обратимой, чтобы потенциал полуволны определялся выражением для обратимых волн [c.216]


    Стандартный электродный потенциал (см.) в неводных растворителях часто мало отличается от такового в воде, хотя различия в степени сольватации ионов могут привести к некоторому его смещению. Для измерения электродных потенциалов в неводных растворителях обычно пригодны электроды сравнения, используемые для водных растворов. Однако при замене растворителя скорости электрохимических реакций могут радикально измениться, поскольку изменятся факторы, определяющие легкость перехода электронов на поверхности электрода. К таким факторам относятся сольватация электроактивных ионов, их способность к образованию ионных пар и комплексообразованию, адсорбируемость растворителя и активных частиц на поверхности электрода и ряд других, которые могут влиять на структуру двойного электрического слоя (см.). [c.117]

    Для каждого типа неводного электролита (неводные растворы, расплавы, твердые электролиты) можно выбрать подходящие электроды сравнения, измерить потенциалы других электродов и составить таблицы электродных потенциалов. Как правило, последовательность реакций (электродов) в ряду сильно не изменяется как в водной, так и в других средах сильный восстановитель, например литий, будет иметь более отрицательный потенциал, чем более слабый восстановитель, например медь. [c.67]

    Когда определяют формальные электродные потенциалы в водных растворах, используя НКЭ в качестве электрода сравнения, поправка на диффузионный потенциал между водным раствором и насыщенным раствором хлорида калия обычно составляет лишь несколько милливольт [152], и ею вообще можно пренебречь. Однако диффузионные потенциалы между, скажем, 0,1 М водным раствором перхлората натрия и неводными растворителями часто довольно значительны, и их нельзя не учитывать. Нет прямого способа измерения этих диффузионных потенциалов, и, если формальный электродный потенциал, определенный для пары, например, в ацетонитриле, должен быть выражен относительно водного НКЭ без диффузионного потенциала, [c.160]

    Если измерения формальных электродных потенциалов проводятся для пар в неводном растворителе относительно водного НКЭ, как это часто и бывает на самом деле, то поправку на диффузионный потенциал легко внести, выразив эти потенциалы относительно водного НКЭ без диффузионного потенциала. Например, формальный электродный потенциал пары d2+/ d(Hg) в 0,1 М растворе перхлората натрия в пропиленкарбонате (ПК) [c.162]

    Возможность разряда металлов из водных растворов затрудняется по мере увеличения атомного номера в одной и той же группе периодической системы, хотя нормальный электродный потенциал становится положительнее. Так, хром выделяется из водных растворов самостоятельно с выходом по току до 25%, в то время как вольфрам и молибден осаждаются лишь в виде сплавов. Выход по току при осаждении марганца составляет до 90%, в то время как выход по току при осаждении рения может быть равен 28%. Электроосаждение из водных растворов переходного металла марганца, имеющего весьма электроотрицательный электродный потенциал, связано с заполнением -электронных уровней электронами с непараллельными спинами и это обусловливает относительно невысокое перенапряжение при его выделении. Нормальные потенциалы тантала, ниобия и ванадия близки к потенциалу марганца и цинка, однако из водных растворов осадить их в заметных количествах не удалось. Это обусловливается более высоким перенапряжением разряда этих металлов и низким перенапряжением водорода на них. Получение.покрытий переходными металлами III—V групп возможно из неводных сред или расплавленных солей, о чем будет сказано в следующих главах. [c.80]

    Если измерения формальных электродных потенциалов проводятся для пар в неводном растворителе относительно электрода сравнения в том же растворителе, то также необходимо внести поправку на диффузионный потенциал между водным НКЭ и неводным раствором и на потенциал между электродом сравнения в неводном растворителе и водным НКЭ, выразив эти потенциалы относительно водного НКЭ без диффузионного потенциала. Следующий пример проиллюстрирует это положение. [c.163]

    Хотелось бы знать, можно ли приготовить в подходящих неводных растворителях другие катионы низшей степени окисления, неизвестные до сих пор в растворе. Среди редкоземельных известны твердые соединения европия (П1), иттербия (III), самария (III), тулия (III) и неодима (III). Полярографическое восстановление трех первых соединений в водном растворе дает сначала двухвалентные ионы, а затем амальгаму. Все три амальгамы, иттербий (II) и самарий (II) быстро окисляются водой, и в водном растворе их выделить нельзя. При полярографическом восстановлении тулия (III) и неодима (III) в водном растворе тулий (II) или неодим (II) не образуется, даже мгновенно. Поскольку при переходе ионов от воды к растворителю с меньшей сольватирующей способностью сдвиг в положительном направлении формального электродного потенциала для пары III/II много больше, чем для пары II/0(Hg), как и следовало ожидать, при полярографическом восстановлении тулия (III) и неодима(III) в растворителях с меньшей сольватирующей способностью, чем у воды, появляются признаки образования тулия (II) и неодима (II) в таких растворителях. Однако в ацетонитриле [5, 130] и бензонитриле [130] как тулий(III), так и неодим (III) дает лишь одну трехэлектронную волну восстановления, показывающую, что в присутствии ртути тулий (II) и неодим (II) будут диспропорционировать до трехвалентного иона и амальгамы даже в этих растворителях. [c.170]


    По аналогии с уравнением (26) можно записать реакцию, происходящую на любом металлическом электроде. В каждом случае электродный потенциал будет непосредственно зависеть от активности иона металла, отнесенной к общему для всех растворителей стандартному состоянию [ср. с уравнением (27)]. Сольватация иона металла уменьшает его свободную энергию и активность. Если другие факторы, такие, как энергия ионизации и теплота сублимации, сохраняются постоянными, то чем сильнее связи между катионом металла и молекулами растворителя, тем больше реакционная способность металла и электроотрицательность его электродного потенциала [31]. Кольтгофф [32] опубликовал ценный обзор по фундаментальным принципам электрохимии неводных растворов и, в частности, по применению их в полярографии. [c.328]

    Нашими предыдущими работами [ ] было показано, что зависимость потенциала стеклянного электрода от pH раствора для электродов из стекла Юза в кислой области отклоняется от прямолинейности и проходит через положение минимума. Это одинаково относится как к водным, так и к неводным растворам. Было также показано, что положение минимума калибровочной кривой является характерной величиной как для электродного стекла, так и для растворителя. [c.173]

    Значительная часть работ, относящихся к катодному выделению металлов из неводных сред, сводится к полярографическим исследованиям на ртутном капельном электроде. Наиболее полно они представлены в библиографическом указателе по полярографии [50]. Поскольку ртуть в некоторых органических растворителях окисляется при потенциалах, предшествующих потенциалам восстановления ионов отдельных металлов (например, Ag+ в ДМСО, ДМФ [796]), дальнейшим расширением границ полярографических исследований явились вольт-амперные измерения на твердых, преимущественно платиновых, электродах [796, 681, 766, 689, 588, 892, 1118, 814], гораздо реже — на электродах типа Ме/Ме -1- [681, 479, 162, 609, 642]. Особого внимания заслуживает применение вращающегося платинового электрода, который обладает высокой чувствительностью, сочетающейся с иными преимуществами твердых электродов (отсутствие колебаний силы тока, обусловленных капанием на ртутном капельном электроде, емкостного тока). На вращающихся платиновых электродах целесообразно исследовать растворы деполяризаторов, в которых вследствие низких коэффициентов диффузии весьма малы диффу знойные токи, так как здесь предельный ток во много раз больше, чем на ртутном электроде. На таком электроде редко появляются максимумы. Оптимальными условиями работы вращающегося платинового электрода являются строго постоянные температура и скорость вращения электрода, обеспечивающие постоянство диффузионного тока и низкие концентрации деполяризатора, позволяющие избежать изменения электродной поверхности из-за осаждения металлов. Большое значение имеет форма электрода [433]. При вольт-амперных измерениях на твердых электродах довольно часто используют скорости изменения потенциала — гораздо большие, чем в классической полярографии на ртутном капельном электроде. Широкое распространение в последнее время [c.73]

    Теория. Как следует из уравнения (1Х.З ), потенциал водородного электрода является формальной мерой активности протона в растворе. Электрод дает воспроизводимые значения потенциалов в некоторых неводных средах, например, смеси уксусной кислоты и ее ангидрида [9], и во многих водных и смещанных растворах. Вероятно, растворитель не участвует в электродной реакции. Предполагается, что водородный электрод обратим относительно протонов независимо от того, действительно ли свободные протоны присутствуют в данной среде в заметном количестве. Устойчивость и воспроизводимость потенциалов водородного электрода подтверждает, что активность протона ан имеет в этих средах определенное значение [10]. Не существенно, являются ли протоны, участвующие в равновесном процессе на поверхности электрода, свободными или они находятся в сочетании с частицами растворенного вещества или растворителя, от которых они легко отделяются. [c.213]

    Начальное направление электродного процесса до установления равновесного состояния, заряды металла и раствора зависят от энергии сольватации потенциалопределяющих ионов. Энергия сольватации определяется индивидуальными свойствами растворителя, в частности его диэлектрической проницаемостью, то электродный потенциал должен иметь неодинаковое значение в различных растворителях. При изучении электрохимических систем с неводными растворами встречаются существенные затруднения из-за выбора электрода сравнения, который должен иметь постоянный потенциал в растворах элек- [c.486]

    Применимость стеклянных электродов в неводных растворах может быть ограничена неполноценной функцией и иногда высоким сопротивлением среды. Несмотря на эти трудности, стеклянные электроды оказались удовлетворительно функционирующими в органических растворителях с диэлектрической проницаемостью, равной 2,3 [131]. Ликкен [132, 133] успешно применил стеклянные электроды в бензин-изопропиловом спиртовом растворителе после насыщения стеклянной поверхности водой. Промывание электрода водой после погружения его в неводную среду может полностью восстановить электродную функцию. В случае употребления стеклянных электродов в этанол-водных смесях, содержащих менее 90 вес.% этанола, трудности невелики [65, 134]. При высоких концентрациях этанола или ацетона в воде обнаруживаются некоторые сокращения линейного участка кривых Е—pH, а также и изменения потенциала во времени. В 40% растворе спирта теоретический наклон сохраняется при pH 3—9,5, но в 50 и 70%-ном спирте отклонения наступают при pH 7 и 8, соответственно [105, 106]. В метаноле потенциал стеклянного электрода стабилен [135]. Более того, стеклянный электрод обладает удовлетворительной водородной функцией в перекиси водорода [136], а также функцией иона дейтерия в тяжелой воде [137, 138]. Он способен также показывать правильные результаты в муравьиной [139], в уксусной [ПО, 140] кислотах, хотя в первой наблюдается постепенная потеря функции. Практически удовлетворительные результаты получаются в ацетонитриле [142, 143] , хинолине и пиридине [145], а также в диметилформамиде [146]. [c.287]

    Широкое использование электродов серебро—галогенид серебра в электрохимических измерениях объясняется их компактностью и легкостью изготовления. Наиболее важным применением хлорсеребряного электрода является исследование термодинамических свойств электролитов, таких, как стандартный электродный потенциал и коэффициенты активности. Электроды типа серебро—галогенид серебра могут также использоваться в неводных растворах. Однако это применение ограничено сильной тенденцией иона серебра к образованию комплексов, что значительно увеличивает растворимость галогенндов серебра. Хлорсеребряные электроды нашли важное применение в исследовании свойств биологических мембран. [c.141]

    Химик-неорганик, конечно, заинтересован в плодотворном использовании сдвигов формального электродного потенциала, возможно, для синтеза в растворе ионов необычной степени окисления. Растворители, которые сольватируют сильнее, чем вода, являются комплексообразователями в водном растворе комплексообразующие вещества широко использовались для стабилизации в водном растворе состояний более высокой степени окисления, например для стабилизации серебра(II) в виде иона те-трапиридинсеребра (II). Таким образом, для получения ионов необычно высокой степени окисления не всегда необходимо применять неводные растворители зачастую можно работать с водными растворами, содержащими комплексообразователи. [c.168]

    Хотя водные растворители частично, а протонные растворители полностью исключены из данного обзора, все же эпизодически будет упоминаться водный каломельный электрод, так как он наиболее широко применяется в качестве электрода сравнения при исследовании апротонных растворителей. В этом случае диффузионный потенциал на границе между водным и неводным растворами приобретает даже более важное значение, чем собственно электродный процесс. Поскольку проблема шкалы относительных потенциалов в различных растворителях недавно была рассмотрена весьма подробно Штреловым [424], а соответствующая проблема рН-шкалы — Бейтсом [29], здесь этим аспектам электродных потенциалов не будет уделяться много внимания. [c.204]

    Литий, который используют как вещество отрицательного электрода, представляет собой самый легкий среди твердых элементов металл серебристо-белого цвета с удельной массой 0,534, температурой плавления 186°С и температурой кипения 1609°С. По химическим свойствам он больше похож на магний и кальщй, чем на натрий и другие щелочные металлы. Однако при нормальной температуре литий, реагируя с водой, легко превращается в гидроксид. По этой причине необходимо использовать неводные электролиты типа органических. Реакция разряда протекает по уравнению ЬI Ь + е и сопровождается переходом лития в раствор. Стандартный электродный потенциал лития самый низкий среди металлов (3,045 В), а допустимая токовая нагрузка на единицу массы самая высокая (3,83 А - ч/г). По этим причинам литий можно считать наилучшим активным веществом отрицательного электрода для элементов, с высокой плотностью энергии. При изготовлении литиевого электрода используют простой способ, в соответствии с которым металлический литий в виде пластины наносят на никелевый собирающий электрод. [c.136]

    Влияние растворителя на электродвижущие силы К Осмотическая теория Нернста в ее первоначальном виде ничего не говорит о влиянии растворителя на электродные потенциалы я на электродвижущие силы. Необходимость такого влияния может быть однако доказана термодинамически. Это также следует из того, что мерило электродного потенциала — электролитическая упругость растворения—является мерой стремления ионов переходить в раствор, которое должно зависеть от обеих фаз не только от металла, но и от растворителя. Разбивание электродного потенциала на два слагаемых ео = е2- - о> сделанное впервые Л. В. Писаржевским (см. выше 206), также приводит к выводу, что если е зависит лишь от рода металла, то вд зависит также и от растворителя даже в растворах с одинаковой активностью ионов. Опытные данные приводили к прр тиворечивым результатам, так как в неводных растворах боль шей частью неизвестны ни диффузионные потенциалы, ни степени диссоциации, ни активности. Только более новые исследования, в которых эти факторы были учтены, показали с несомненностью влияние растворителя на электродные потенциалы е и на Е. [c.392]

    Для сравнения электродных потенциалов в различных раство-рителях нужно относить все потенциалы к одному электроду сравнения. В водных растворах последним обычно является водородный электрод, стандартный потенциал которого в воде условно принят за нуль при всех температурах. Такой выбор не может считаться удачным для неводных сред, поскольку протон характеризуется весьма специфическим взаимодействием с растворителем и потенциал водородного электрода будет наиболее сильно изменяться при переходе от одного растворителя к другому. Кроме того, возникает дополнительная трудность, заключающаяся в необходимости оперировать с активностью ионов Н+ в неводных растворах, значения которой во многих растворителях оценить можно лищь с большей или меньшей степенью неопределенности (см. раздел IX. 6). [c.279]

    Алюминий — сер бристо-белый металл с уд. весом 2,7 и температурой плавления 660° С. Его атомный вес 26,97. Стандартный электродный потенциал алюминия 1,66 в и электрохимический эквивалент 0,335 г/а-ч. В химических соединениях трехвалентен. Хорошо растворим в едком кали и едком натре, а из кислот — в соляной кислоте. Гальваническое осаждение алюминия осуществляется из неводных растворов или из расплавов. [c.112]

    Для измерений в неводных растворителях пригодны также и гомогенные ион-селективные электроды. Речниц и Кенни [142, 143] исследовали поведение РЬ -селективного мембранного электрода (Орион 94-82) в метаноле, диметилсульфоксиде, 1,4-диоксане и ацетонитриле. Для того чтобы исключить при измерениях диффузионный потенциал на границе вода — неводный растворитель, который образуется при использовании электрода сравнения с водным электролитом, в качестве электрода сравнения был взят стеклянный катионообменный электрод (Бекман № 39047), т. е. измерения проводились методом дифференциальной потенциометрии. Твердая мембрана индикаторного электрода состоит из смеси PbS/Ag S. Электродная функция линейна и подчиняется уравнению Нернста в диапазоне концентраций РЬ от 10 до 10 г-ион/л в 20%-ном водном растворе метанола и примерно от 2-10 до 10 г-ион/л (с более крутым наклоном) в 50%-ном водном растворе метанола. Аналогичные результаты получены в смесях диметилсульфоксид — вода. [c.48]

    Ряд исследователей представили информацию о щелочной ошибке стеклянных электродов в неводных средах. Так, Вегман и др. [85] изучали щелочную ошибку в уксусной кислоте. Харлоу [86] исследовал влияние малых количеств иона калия в титранте (0,25 М. гидроксид тетрабутиламмония) на электродную функцию в смеси 80% пиридина и 20% изопропанола и обнаружил уменьшение чувствительности электрода к изменениям кислотности. Величина эффекта изменялась от электрода к электроду и зависела от состава стекла и предварительной его обработки. Систематическое изучение щелочной ошибки стеклянного электрода в изопропаноле проводили Карлберг и Юханссон [87], которые сравнивали поведение стеклянного и водородного электродов в изопропаноле. Ими установлено, что стеклянные электроды, показывающие малую щелочную ошибку в воде, в изопропаноле ведут себя идеально. Двухвалентные ионы вызывают меньшие отклонения потенциала от его идеального значения, чем одновалентные. При перенесении электродов из щелочных в кислотные растворы наблюдается гистерезис, но это явление не отмечается при обратном перенесении. Таким образом, титрование следует проводить от кислотных к щелочным растворам, а не наоборот. [c.296]

    При установлении стехиометрии суммарной электродной реакции (1.25) важно определять стехиометрический коэффициент для молекул растворителя. Однако в обычно изучаемых водных растворах электролитов концентрация молекул воды велика и практически не изменяется. Для установления числа молекул воды, которые освобождаются или связываются при протекании суммарной электродной реакции, в растворы вводят неводные растворители, позволяющие контролируемо изменять активность (концентрацию) молекул воды. При этом, однако, возникают дополнительные трудности, связанные с изменением характера процессов межионной ассоциации в растворе (по сравнению с водным раствором), изменением диффузионного потенциала и т. д. Количественный учет процессов сольватации и десольватации частиц, участвующих в электродных и химических реакциях в растворах, является одной из наиболее важных проблем при изучении равновесий и кинетики В рзстворнх, но эти вопросы в кястоящее время мэло изучены. [c.18]


Смотреть страницы где упоминается термин Неводные растворы электродные потенциалы: [c.178]    [c.206]    [c.93]    [c.161]    [c.209]    [c.209]    [c.37]    [c.65]   
Теоретическая неорганическая химия Издание 3 (1976) -- [ c.538 ]




ПОИСК





Смотрите так же термины и статьи:

Неводные растворы потенциалы

Нормальные электродные потенциалы в неводных растворах

Потенциал раствора

Потенциал электродный потенциал

Растворы неводные

Стандартные электродные потенциалы в неводных растворах

Электродный потенциал



© 2025 chem21.info Реклама на сайте