Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод анализа измерений спектральные

    Анализ твердых неметаллических материалов. Такие объекты включают в себя природные минералы, руды, полупроводниковые вещества и материалы, различного рода стекла. Основу газосодержания перечисленных объектов составляют газовые включения. Задача анализа в этом случае может заключаться как в определении полного газосодержания, так и в определении содержаний отдельных газообразующих элементов (как правило, кислорода, углерода, серы). Первая задача обычно решается применением вакуумной высокотемпературной экстракции газов из анализируемой пробы с последующим объемно-манометрическим измерением количества газа. Условия экстракции (температура, сбор газа и пр.) определяются отдельно для каждой конкретной аналитической задачи. Вторая задача решается на основе применения различных селективных методов анализа — масс-спектрального, спектрального, различных вариантов метода изотопных добавок и др. [c.930]


    В 1946 г. была опубликована статья Воге и Мэй [28], в которой сообщалось об измерениях равновесия реакции (IX). Применив спектральный метод анализа (исследование спектров поглощения в инфракрасной области), авторы имели возможность количественно определить в равновесных смесях содержание всех трех изомеров бутена с прямой цепью , т. е. бутена-1, г ыс-бутена 2 и транс-бутена-2. [c.309]

    Спектры, расположенные в ультрафиолетовой, видимой и ближней инфракрасной областях длин волн, называются оптическими, и соответственно "методы анализа, основанные на использовании этих спектров, — оптическими. За единицу измерения длин волн спектральных линий в оптическом диапазоне принят нанометр (1 нм==10 м). [c.6]

    Основная задача экспериментального изучения химического равновесия — определение состава равновесной смеси. Для этого необходимо, сохраняя внешние условия постоянными, проследить за изменением состава реагирующей смеси с течением времени, пока состав не перестанет изменяться. Постоянство температуры осуществляется с помощью термостатов. Постоянство давления обеспечивается маностатом. Во избежание изменений равновесного состава в ходе его измерений применяют физико-химические методы анализа, позволяющие анализировать смесь без нарушения установившегося равновесия. Особенно удобны электрохимические и спектральные измерения (электрическая проводимость, [c.251]

    Стандартные образцы — эталоны для различных методов анализа С. о. представляют собой различные материалы, химический состав которых точно известен. Напр., эталоны сталей для спектрального анализа, содержащие небольшие количества примесей легирующих металлов никеля, марганца, хрома идр. С. о. применяют при контроле химического состава сырья (руд, огнеупоров, концентратов и др.), полупродуктов и продукции машиностроительной и металлургической промышленности на содержание тех или иных компонентов. Стандартные (титрованные) растворы — растворы с точно известной концентрацией реактива. С, р, представляют основные рабочие растворы во всех методах титриметрического анализа — количественного определения вещества, основанного на измерении объемов растворов, затраченных на реакцию (титрование). Стандартный электродный потенциал (нормальный электродный потенциал) — потенциал электрода в растворе, в котором ионы, определяющие электродны [c.126]

    Спектроскопические методы анализа основаны на измерении интенсивности электромагнитного излучения, которое испускается анализируемым веществом (эмиссионный спектральный анализ) либо поглощается им. В последнем случае методы анализа называют абсорбционными. Они получили широкое распространение в различных областях науки и техники. Классификация этих методов приводится в учебниках, указанных в списке литературы. [c.125]


    Определение содержания конкретного элемента можно проводить методом лазерно-индуцированного спектрального анализа, описанного в последующих главах, с использованием углерода в качестве внутреннего стандарта. Поскольку содержание всех элементов в пробе равно 100 %, для определения содержания углерода нужно приблизительно знать содержание остальных элементов, например О, Н, С1. По измеренному соотношению интенсивностей с помощью калибров- [c.38]

    Измерения Сф можно проводить с помощью химических, спектральных или других известных методов анализа функциональных групп. [c.336]

    Может ли вообще спектральный анализ быть правдивым Физические процессы, сопровождающие возбуждение спектра и его регистрацию происходят в мире, где нет этого понятия. Оно возникает лишь при попытке использовать результаты для каких-то решений и действий. Вот тут-то и появляется статистика. Появляется, чтобы стать гарантом правдивости, знаком качества результата анализа. Ясно, что верно это не только для спектрального анализа, но и вообще для всех возможных методов анализа, любых измерений. Книга, которую вы открыли, как раз и рассказывает о многих важных практических аспектах приложения статистических методов в аналитической химии. А цель этих вводных заметок — попытаться вписать материал книги в общий, более широкий контекст, найти ее место в рамках всей проблемы статистика — аналитика . Давайте посмотрим, как складываются отношения между анализом и статистикой на различных этапах анализа. [c.5]

    Классические химические методы анализа, как и физикохимические методы, основаны обычно на той или другой химической реакции. Наоборот, в физических методах химические реакции отсутствуют или имеют второстепенное значение, хотя в спектральном анализе интенсивность линий иногда существенно зависит от химических реакций в угольном электроде или в газовом пламени. Основной принцип спектрального анализа заключается в измерении интенсивности излучения атомов, возбужденных при высокой температуре, т. е. чисто физический принцип. [c.6]

    Приборы, снабженные устройством для спектрального разложения люминесцентной эмиссии, имеют также светофильтры, чтобы устранить попадание на щель спектрографа рассеянного света ртутной лампы. Возможность отделить тот участок спектра, который возбуждает люминесценцию, является преимуществом этого метода анализа. Метод основан на том, что вещество сначала поглощает свет, а затем часть поглощенного света вещество отдает в виде люминесценции. Таким образом, в первой части люминесцентный метод аналогичен фотометрическому в обоих случаях реакция тем чувствительнее, чем сильнее поглощает свет определяемое вещество. Коэффициент превращения энергии поглощенного света в энергию люминесцентной эмиссии не может быть больше единицы. Поэтому при прочих равных условиях интенсивность сигнала (на 1 г-моль вещества) при люминесцентном анализе неизбежно будет меньшей, чем при фотометрическом анализе. Однако чувствительность каждого метода зависит не только от интенсивности сигнала, но и от значения фона (точнее, от колебаний или флуктуаций фона). В фотометрическом методе сигнал (поглощение света) измеряется на интенсивном фоне потока света той же длины волны. Это существенно уменьшает надежность точного измерения слабого поглощения. В люминесцентном же анализе в принципе можно уменьшить фон почти до нуля может влиять лишь комбинационное рассеяние света молекулами растворителя. Таким образом, возможность устранения фона при измерении люминесценции повышает чувствительность метода. [c.161]

    Под чувствительностью количественного микроанализа, как и в других методах анализа, основанных на измерениях интенсивности спектральных линий детектором в импульсном режиме, понимается такое количество элемента в анализируемом микрообъеме образца, которое создает интенсивность линии, в три раза превосходящую статистические флуктуации интенсивности фона за определенный интервал времени. [c.66]

    Оптические методы анализа основаны на измерении оптических свойств анализируемой среды (интенсивности окраски, оптической плотности,. коэффициента преломления, спектральных характеристик и др.). [c.147]

    Рассмотрим методы оценки ошибок измерения. Подробное изложение этих методов применительно к спектральному анализу можно найти в ряде статей [зэо-394] монографий 209.315,395] Следует различать два рода ошибок систематические и случайные. Систематические ошибки действуют в данной серии измерений в одну сторону либо они завышают все результаты измерений, либо их занижают. Они обусловлены какой-то постоянно действующей причиной — чаще всего неисправностью самой аппаратуры. Случайные ошибки дают отклонения в обе стороны, т. е. получаются и преувеличенные и преуменьшенные результаты. Случайные ошибки, например, могут получиться из-за непостоянства силы тока в разрядной трубке, из-за дефекта на фотографической пластинке и т. д. [c.158]


    Учет систематических ошибок возможен только путем сравнения результатов спектрального анализа с результатами других методов анализа, в частности, с химическим анализом. Однако в некоторых случаях, особенно при спектральном анализе газов, такое сравнение практически не всегда возможно. Приведем пример возможной систематической ошибки при спектральном анализе газов. Допустим, что манометр Мак-Леода, которым измеряют давление при составлении смеси, отградуирован неправильно. В этом случае повторные измерения проверят не правильность анализа, а только его воспроизводимость, т. е. повторяемость результатов анализа одной и той же смеси при неоднократных его повторениях. Из результатов многократно проведенных анализов можно определить среднюю концентрацию элемента [c.158]

    Русское издание справочника состоит из четырех томов, разделенных на 0 выпусков. В первом выпуске первого тома содержатся сведения по организации и п[юек-тированию лабораторий, по отбору проб и организации работы. Далее описаны ос швы качественного анализа иеоргаиических и органически.х соединений, а также методы количественного анализа объемный анализ, электроанализ, потенциометрия и конду1Сто-метрия. Во втором выпуске первого тома описаны физические методы исследований измерение температуры, давления, удельного веса и др., оптические измерения (1 оло-риметрия, спектральный анализ, поляриметрия, рентгеновский анализ), а также методы TexHH4f K0r0 анализа газов, микрохимического и коллоидно-химического анализа. Первый выпуск первой части второго тома содержит описание методов анг.лиза топлива, воды и воздуха. [c.485]

    Спектрометрический метод анализа отличается от спектрографического метода способом измерения выходного аналитического сигиала и основан на фотоэлектрической его регистрации. В основе спектральных методов с фотоэлектрической регистрацией спектров лежат те же зависимости, которые используются в визуальных и фотографических методах анализа. В современных приборах применяются такие радиотехнические схемы, которые представляют выходной сигнал как в виде i-рафнческой зависимости величины, пропорциональной иитенсивности спектральной линии от концентрации определяемого элемента, так и в виде цифровой записи. [c.111]

    Оптические методы анализа основаны на измерении характе]5истик оптических свойств вещества (испускание, поглощение, рассеивание, отражение, преломление, дифракция, интерференция, поляризация света), проявляющихся при его взаимодействии с элекгромагнитшш излучением. По характеру взаимодействия электромагнитного излуч(шия с веществом оптические методы анализа обычно подразделяют на эмиссионный спектральный, атомно-абсорбционный, молекулярный абсорбционный спектральный (спектрофотометрия, фотоэлектроколориметрия), люминесцентный, нефелометрический, турбодиметрический, рефрактометрический, интерферометрическиг поляриметрический анализ, а также спектральный анализ на основе спектров комбинационного рассеяния (раман-эффект) и некоторые другие методы, также использующие взаимодействие электромагнитного поля с веществом — ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР), ядерная гамма-резонансная спектроскопия (эффект Мессбауэра) и т. д. [c.516]

    Также подробно описаны в специальных руководствах инструментальные физические методы анализа (спектральный анализ, интерферометрия, измерение теплопроводности газов и др.). Ниже кратко излагаются важнейшие физические методы, определ ёяиягчистоты газов, наиболее часто используемые в препаративной химии газов определение плотности газа и жидкой фазы, измерение давления ларов жидкой фазы, измерение температуры плавления. [c.79]

    Элементный К. а. можно проводить хим. методами с испольэ. р-ций обнаружения, характерных для неорг. ионов в р-рах или атомов в составе орг. соединений. Эти р-ции обычно сопровождаются изменением окраски р-ра (см. также Капельный анализ), образованием осадков (см., напр.. Микрокристаллоскопия) или выделением газообразных продуктов. К. а. неорг. в-в часто требует систематич. хода, при к-ром с помощью хим. р-ций иэ смеси последовательно выделяют небольшие группы ионов (т. н. аналит. уш ы элементов), после чего проводят р-ции обнаружения. В дробном К. а. каждый элемент открывают непосредственно в смеси по специфич. р-ции. Хим. методы имеют практич. значение при необходимости обнаружения только 1—2 элементов. Многоэлементные фиэ. методы, напр, эмиссионный спектральный анализ, активационный анализ, рентгеноспектральный анализ (см. Рентгеновская спектроскопия), позволяют обнаружить ряд элементов после проведения небольшого числа операций. Молекулярный и функциональный К. а. проводят с помощью инфракрасной спектроскопии, комбинационного рассеяния спектроскопии, масс-спектрометрии, ядерного магнитного резонанса и хроматографии, Используют также хим. методы и методы, основанные на измерении таких физ. характеристик в-ва, как, напр., плотность, р-римость, т-ры плавления и кипения. [c.250]

    Важное практич. значение имеют методы, основанные на исследовании испускания и поглощения электромагн. излучения в разл. областях спектра. К ним относится спектроскопия (напр., люминесцентный анализ, спектральный анализ), нефелометрия и турбидиметрия и др. К важным Ф.-х. м. а. принадлежат электрохим, методы, использующие измерение электрич. св-в в-ва волыпамперометрил, кондуктометрия, кулонометрия, потенциометрия и т. д.), а также хроматография (напр., газовая хроматография, жидкостная хроматография, ионообменная хроматография, тонкослойная хроматография). Успешно развиваются методы, основанные на измерении скоростей хим. р-цик (кинетические методы анализа), тепловых эффектов р-ций (термометрич. титрование, см. Калориметрия), а также на разделении ионов в магн. поле (масс-спектрометрия). [c.90]

    Инструментальные методы анализа — количественные аналитические методы, для выполнения которых требуется электрохимическая оптическая, радиохимическая и иная аппаратура. К И, м. а. обыч1ю относят 1) электрохимические методы— потенциометрию, полярографию, кондуктометрию и др. 2) методы, основанные на испускании или поглощении излучения,— эмиссионный спектральный анализ, фотометрические методы, рентгеноспектральный анализ и др. 3) масс-спектральный анализ 4) методы, основанные на измерении радиоактивности. Имеются и другие И. м. а. [c.57]

    Выше было сказано, что для работы с комхаютером нужно дать ответ на два вопроса что такое молекула и что значит ее исследовать Оказалось, что ответ на первый вопрос не определен, но, как ни странно, это не мешает вполне точно ответить на второй Ответ будет следующим исследовать молекулу — это значит построить на количественном уровне совокупность ее моделей разного уровня иерархии Полнота исследований характеризуется степенью сложности и информативности моделей, параметры которых и подлежат определению в результате подходящих экспериментов и последующей обработке результатов измерений Вот на таком языке уже можно объясняться даже с компьютером, и он все поймет Итак, со строгой, математической (логической) точки зрения, единственно понятной компьютеру, исследовать молекулу — это значит найти числовые значения параметров, характеризующих ту или иную модель Но ведь вообще не существует методов непосредственного измерения, например, длин связей или зарядов на атомах молекулы Можно измерить спектры молекул, наблюдать дифракционную картину при рассеянии электронов на молекулах итд Другими словами, всю информацию о числовых значениях параметров молекулярных моделей приходится получать на основании не прямых (как измерение длины стола линейкой, например), а косвенных наблюдений Это, в свою очередь, возможно только тогда, когда установлена физическая связь между моделью и ее проявлением (отображением) на множестве тех величин, которые уже поддаются непосредственному измерению Если обратиться к спектральному анализу молекул, то это означает, что должна быть установлена связь между, например, значением упругости валентного угла и положением частот полос поглощения в инфракрасном спектре [c.92]

    Разработан ИК-спектроскопический метод кол гественного определения фенола и олефинов в реакционной массе в процессе алкилирования фенола высшими а-олефинами, а также в любой из фракций алкилата, с учетом изомеризации олефинов. Содержание фенола определяется по методу внутреннего стандарта, с использованием концентрационной зависимости отношения интенсивностей аналитических полос 510 и 557 см О ю / 0557. Содержание олефиновых углеводородов определяется суммированием концентраций трех изомеров а-, транс-ЦИС- аналитические частоты а- и транс-олефинов — 915 и 970 см . При этом концентрация цис-изомера оценивается по уравнению Сцис=К Стране, постулируя эквивзлентность реакционной способности транс- и цис-олефинов. Экспрессность разработанного метода анализа, обусловленная отсутствием растворителя при проведении спектральных измерений (за исключением высоких концентраций), в сочетании с достаточной гувствительностью и точностью, а также возможностью одновременного определения фенола и олефинов, делает его перспективным для практики. [c.39]

    Точность спектральных методов невелика, так как характерные пики и-крезола очень слабы и с трудом выделяются на фоне спектров других крезолов [18, 19, 20]. Калориметрические методы определения л-крезола [4 11], а также метод калориметрического измерения кинетики [21 сложны и при наличии примесей других фенолов точность этих методов также недостаточна. В литературе сообдается о методе определения и-крезола, основанном на осаждении его в виде п-крезоксиуксусной кислоты, которая а отличие от о-крезоксиуксусной кислоты кристаллизуется из горячей воды [31. Влияние присутствия л-крезола, однако, не указано. Некоторые авторы определяли содержание -крезола по температуре плавления смеси из 1 ч. испыгуемой пробы и 9 ч. чистого п-крезола [22]. Этот метод не получил распространения из-за заметного изменения температуры плавления чистого -крезола вследствие его гигроскопичности. В последнее время ряд исследований посвящен xpoмaтoгpaфнчe кo гy анализу фенолов. Однако с помощью хроматографии разделить п- и лг-крезолы не удается [14, 24]. Методы определения /г-крезола в сточных водах [12, 141 не могут быть применены для анализа крезольных фракций и определения в них -крезола. [c.420]

    Абсорбционный спектральный анализ в ультрафиолетово видимой и инфракрасной областях спектра. Различают спектр фотометрический и фотоколориметрический методы. Спектроф тометрический метод анализа основан на измерении поглощен света (монохроматического излучения) определенной длины во. ны, которая соответствует максимуму кривой поглощения вещее ва. Фотоколориметрический метод анализа основан на измерен светопоглощения или определения спектра поглощения в пр) борах—фотоколориметрах в видимом участке спектра. [c.328]

    Методы, основанные на измерении величин, характеризующих световое излучение, путем преобразования их в электрический сигнал и обработки его вторичными блоками, имеют широкое распространение, поскольку они хорошо вписываются в технологический процесс. К таким методам можно условно отнести фотометрический, деиситометрический, колориметрический и некоторые разновидности поляризационного и спектрального методов. Фотометрический метод предполагает измерение вторичной освещенности, яркости, светового потока или интенсивности светового излучения, полученного после взаимодействия с контролируемым объектом. Использование той или иной физической величины зависит от конкретной реализации метода, выбранной оптической системы и первичного измерительного преобразователя. Деиситометрический состоит в том, что измеряется оптическая плотность или коэффициент пропускания. Поляризационный отличается использованием поляризованного света и анализом поляризации прошедшей компоненты. Колориметрический заключается в анализе цветовых составляющих света или их отношения. При реализации этих методов основной процесс измерения или преобразования может быть сведен во многих случаях к фотометрическому, поэтому рассмотрим его как основной вариант построения аппаратуры и отметим особенности в реализации других методов. [c.251]

    Входной и выходной сигналы фильтра являются цифровыми, так что в устройстве циркулируют только двоичные коды. Поскольку операция з ножения отсчетов цифрового сигнала на число иногда выполняется неточно за счет округлений или усечений произведений, в общем случае цифровое устройство неточно реализует заданную функцию, и выходной сигнал отличается от точного решения. Следует помнить, что в цифровом фильтре погрешность выходного сигнала не зависит от условий, в которых работает фильтр температуры, влажности и т.п. Кроме того, эта погрешность контролируема - ее можно уменьшить, увеличивая число разрядов, используемых для представления отсчетов цифровых сигналов. Именно этим определяются основные преимущества цифровых фильтров - высокая точность обработки сигналов и стабильность характеристик - по сравнению с аналоговыми и дискретными фильтрами. Строго говоря, цифровые фильтры представляют собой нелинейные устройства, к которым не следовало бы применять методы анализа и синтеза линейных систем. Однако число разрядов в кодах, циркулирующих в цифровых фильтрах, как правило, достаточно велико, чтобы сигналы могли считаться приблизительно дискретными, а фильтры -- линейно дискретными. Достоверность результатов измерений зависит от соотношения сигнал-шум, параметров помех, действующих в канале измерения, разрядности применяемой аппаратуры аналого-цифрового преобразования и качества алгоритмов последующей обработки результатов измерения. В настоящее время основным способом повышения достоверности результатов измерения является построение новых алгоритмов обработки цифровых отсчетов аналогового сигнала (цифровая фильтрация, спектральный анализ, адаптивные и оптимальные методы обработки). [c.144]

    Киреев В. А., Курс физпческоИ химии, 3 изд.. М., 1975 Жуховицкий А. А., Шварцман Л. А., Физическая химия, 3 изд., М., 1976 Д а н п э л ь с Ф., ОлбертиР., Физическая химия, пер. с англ., М., 1978 Эткинс П.. Физическая химия, пер. с англ., т. 1—2, М., 1980. М. И. Темкин. ФИЗИЧЕСКИЕ МЕТОДЫ АНАЛИЗА, основаны на измерении физических (гл. обр. ядерных, атомных, молекулярных) характеристик, обусловливакяцих хим. индивидуальность определяемых компонентов. Такими характеристиками м. о. спектры испускания и поглощения электромагн. излучения (радиочастотные, ИК, видимые, УФ, рентгеновские и гамма-спектры), естеств. и искусств, радиоактивность, магн. св-ва и др. Наиб, широкое распространение получили методы спектрального анализа. [c.621]

    Примечание. Удовлетворительные результаты могут получиться, если сплошной фон в спектре и вуаль пластинки незначительны. Точный рас чет константы требует учета интенсивности фона и точного измерения интев сивности линий с помощью микрофотометра. Описание микрофотометров I методов фотометрирования см В. М. Т а т е в с к и й. Спектроскопия, Изд МГУ, 1951 В. К. Прокофьев, Фотографические методы количествен, ного спектрального анализа металлов и сплавов, Гостехтеоретиздат, 1951, [c.99]

    ИК-спектрофотометрия служит также и главным методом измерения равновесий (1) — концентраций их компонентов. Описание аналитического применения ИК-спектров и его трудностей (лучше преодолеваемых на обертоне 2удн, см. [8, 191) не входит в нашу тему, поскольку конечные результаты — константы равновесий — не связаны с физической сущностью метода анализа, не содержат ничего спектрального . В важном частном случае летучих кислот, прежде всего простых молекул, предпочтителен анализ равновесий (1) в растворах и в неразбавленных основаниях (аналогично калориметрии) методом газо-жидкостной хроматографии [20, 21]. Этим методом, преимущества и ограничения которого подробно рассмотрены в [22], были определены неизвестные ранее энергии ВС простых кислот разной силы хлористого водорода, ацетиленов и сероводорода [21—23]. [c.114]

    По этому методу определяют коэфф. контрастности для фотонластинок, на к-рых сфотографированы спектры эталонов, и для фотопластинок со спектрами анализируемых проб. Св-ва фотопластинок учитывают введением переводного множителя , позволяющего согласовывать измерения, сделанные па разных фотопластинках использованием характеристической кривой фотопластинки фотометрировапием со ступенчатым ослабителем, дающим возможность измерять непосредственно величину логарифма интенсивности (метод фотометрического интерполирования). Для контроля положения аналитической кривой фотографируют спектры эталонов (метод контрольного эталона). При фотоэлектрической регистрации спектра световая энергия преобразуется фотоэлементом или фотоэлектронным умножителем в электрическую. По величине же электр. сигнала оценивают интенсивность спектральной линии. Фотоэлектрические методы основываются на тех же зависимостях, что и визуальные и фотографические. Однако используются другие устройства — двухканальные (папр., тина ФЭС-1) или многоканальные установки типа квантометров (напр., типов ДФС-10, ДФС-31, ДФС-36, ДФС-41). В фокальной плоскости 36-канального прибора типа ДФС-10 есть 36 выходных щелей и приемных блоков, к-рые настроешл на определенные спектральные линии и сведены в программы по 5—12 элементов в каждой (сталь, чугун, цветные снлавы). Для анализа одного образца необходимо 3—5 мин. Пламенная фотометрия также является фотоэлектрическим методом анализа, где в качестве источника света используется пламя горючего газа (напр., светильного) [c.423]

    В последние годы при оценке точности измерений все больше иснольз /ются методы математической статистики. Применение методов математической обработки результатов измерений может повысить точность и чувствительность анализа Наибольшее распространение получил так называемый дисперсионный анализ ошибок ) сущность которого заключается в разложении суммарной дисперсии на ряд величин. Пользуясь методами дисперсионного анализа, суммарную случайную ошибку спектрального анализа можно разложить на ряд составляющих. Так, например, Л. Е. Бернштейн, В. В. Налимов и О. Б. Фалькова оценке точности и правильности спектральных методов анализа геологических проб разложили суммарную случайную ошибку на следующие составляющие  [c.161]


Смотреть страницы где упоминается термин Метод анализа измерений спектральные: [c.42]    [c.44]    [c.621]    [c.505]    [c.324]    [c.170]    [c.312]    [c.184]    [c.29]    [c.250]    [c.144]    [c.19]    [c.67]    [c.607]    [c.607]    [c.423]    [c.668]   
Автоматический анализ газов и жидкостей на химических предприятниях (1976) -- [ c.43 , c.46 , c.54 , c.92 ]




ПОИСК





Смотрите так же термины и статьи:

Спектральные методы при анализе

Спектральный анализ



© 2025 chem21.info Реклама на сайте