Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные орбиты соединения

    Если бы мы хотели образовать молекулярные орбитали соединения углерода с водородом с помощью перекрывания 2рх-А0 углерода с ]з-АО водорода и перекрывания 2ру-А0 углерода с 1з-АО водорода, то такое соединение имело бы формулу СН2 и две связи С—Н были бы перпендикулярны друг другу, как показано на рис. 9. 2з-Орбиталь, заполненная двумя электронами, и незаполненная 2рг-орбиталь не принимают участия в этом взаимодействии. [c.54]

    Химическую связь в молекуле метана, СН4, удается хорошо объяснить, исходя из представлений о тетраэдрических хр -гибридных орбиталях атома углерода. Эти представления позволяют также объяснить строение этана, СзН , и многих других органических соединений, в которых атомы углерода соединены друг с другом в цепи простыми связями. В этане к каждому из двух атомов углерода присоединено по три атома водорода с образованием ковалентных связей, в которых участвуют три из четырех гибридных хр -орбиталей. Четвертая хр -орбиталь каждого атома углерода используется для образования ковалентной связи с другим таким же атомом. Перекрывание р -гибридных орбиталей двух атомов углерода приводит к возникновению устойчивой связывающей молекулярной орбитали и неустойчивой разрыхляющей орбитали. Связывающая орбиталь, симметричная относительно оси С—С, является а-орбиталью и заполнена двумя электронами со спаренными спинами. [c.565]


    Для объяснения большинства соединений, в которых число валентных электронов не меньше числа валентных орбиталей, достаточно воспользоваться представлением о двухатомных химических связях, которое позволяет рассматривать одновременно только пары атомов. Однако, как мы уже знаем из обсуждения бензола (разд. 13-5), локализованные молекулярные орбитали являются лишь приближенным описанием того, что имеет место в действительности. Иногда приходится конструировать делокализованные молекулярные орбитали из атомных орбиталей, принадлежащих нескольким или даже всем атомам молекулы. В случае молекулы бензола можно рассматривать раздельно связи С—Н и а-связи С—С, но шесть р-орбиталей атомов углерода приходится рассматривать совместно. [c.272]

    Рассмотрим молекулу метана — простейшего органического соединения. Атом С находится в центре тетраэдра, атомы Н — в вершинах последнего. Все расстояния С—Н одинаковы, углы НСН равны 109 28. Для метана, как и для воды, молекулярные орбитали многоцентровые. Если записать их как линейные комбинации атомных орбиталей, надо учесть четыре 15-АО водородных атомов д, 5в, 5с и о и четыре внешние орбитали атома углерода 2 , 2р , 2ру и 2р , всего восемь АО (1 -электроны углерода сохраняют атомный характер). Молекулярных орбиталей образуется также восемь четыре связывающих, на которых в основном состоянии молекулы разместятся восемь валентных электронов и четыре разрыхляющие, свободные от электронов. Это обеспечивает высокую стабильность молекулы СН4. Все восемь молекулярных орбиталей метана можно изобразить одной формулой (для упрощения опустим коэффициенты при АО)  [c.99]

    В некоторых случаях молекулярные орбитали образуются не из двух, а из нескольких атомных орбиталей. Так, в молекуле бензола шесть р-электронов образуют шесть молекулярных орбиталей, которые составляют единую систему и не могут рассматриваться как три пары орбиталей. Именно эта единая система из шести электронов обусловливает особые ароматические свойства бензола и его производных. Такие системы молекуляр[1ых орбиталей называют многоцентровыми. В молекуле ВаН шесть валентных электронов двух атомов В и шесть валентных электронов шести атомов Н обеспечивают соединение 8 атомов, т. е. образование 7 связей. [c.11]

    Некоторые молекулы, хотя они на первый взгляд являются валентно насыщенными системами, так как их валентные электроны попарно заселяют молекулярные орбитали, отнюдь не лишены способности соединяться химическими связями с другими молекулами, не разрывая при этом своих собственных межатомных связей. Одни из этих молекул для этого должны иметь незанятые валентные орбитали, а другие — неподеленные пары электронов. Таким образом, одни молекулы проявляют способность присоединять другие молекулы до тех пор, пока не будут заняты все их валентные орбитали. Как известно, р -орбиталь бора не занята в молекуле ВРз. Поэтому эта молекула присоединяет молекулу аммиака, атом азота которой имеет на валентной орбитали одну пару неподеленных электронов, причем образуется донорно-акцеп-торная связь, почти ничем не отличающаяся от других ковалентных связей. Следовательно, нет оснований называть подобные соединения молекулярными комплексами — это настоящие атомные, а не молекулярные соединения. Связи подобного типа с донорами электронов могут образовать также молекулы — соединения бериллия, алюминия и др. В молекулах типа ВеРг имеются две незанятые валентные орбитали. Благодаря этому фторид бериллия присоединяет две молекулы диэтилового эфира, кислород которого служит донором электронов. Если в молекулах имеются незанятые валентные орбитали и недостаточное количество электронов для их нормального заселения парами электронов, как, например, в молекулах бороводородов, то эти молекулы в ряде случаев соединяются друг с другом путем делокализации всех валентных электронов между всеми молекулярными орбиталями, в результате чего все они оказываются частично заселенными электронами и между молекулами образуются настоящие химические связи. Это относится не только к взаимодействию молекул диборана с образованием высших боранов, но и к конденсации атомов металлов, в результате которой получаются твердые металлы. Атомы металлов также имеют незаселенные валентные орбитали, которые при конденсации сливаются в валентную зону и таким образом становятся достоянием всех валентных электронов. [c.88]


    Таким образом метод молекулярных орбиталей показывает, что при соединении двух атомов в молекулу возможны два состояния электрона — две молекулярные орбитали (им отвечают функции и фа) одна с более низкой энергией Ei и другая — с более высокой энергией а- Это можно иллюстрировать диаграммой, представленной на рис. 88 . такие диаграммы часто используют в методе МО.Квадрат (его часто заменяют кружком) около уровня энергии символизирует квантовую ячейку — орбиталь, которая может быть занята одним электроном или двумя электронами с противоположно направленными спинами. Поскольку на МО возможно пребывание как двух, так и одного электрона, метод МО позволяет оценивать вклад в химическую связь не только электронных пар, но и отдельных электронов. [c.185]

    Молекулярные орбитали в комплексных соединениях. Поскольку теория кристаллического поля рассматривает центральную частицу комплекса как ион, ее результаты нельзя считать удовлетворительными, когда связь центрального атома с лигандами далека от ионной. [c.225]

    Характеристика распределения зарядов в комплексной частице не исчерпывает вопроса о валентном состоянии центрального иона. В принципе после образования соединения нужно рассматривать не валентные орбитали атома, а возникшие молекулярные орбитали. Однако ряд допустимых приближений иногда позволяет считать, что атомные орбитали иона металла сохраняются при вхождении его в комплексную частицу, но испытывают возмущение под действием лигандов, в связи с чем может измениться порядок их заполнения электронами. В соответствии с этим у иона Ре + (3 ) в комплексной частице все электроны могут быть неспаренными  [c.15]

    Описание электронной структуры большого класса веществ, так называемых сопряженных соединений, содержащих чередующиеся двойные и ординарные связи, ведется в рамках метода МО ЛКАО в приближении Хюккеля ст-связи рассматриваются независимо от тс-связей. Молекулярные орбитали л-связей находят отдельно с помощью той или иной разновидности метода МО ЛКАО. Наиболее простой из них является полуэмпирический метод МО Хюккеля (сокращенно МОХ) — разновидность метода МО ЛКАО, предложенная Хюккелем еще в 1931 г. (не путать с приближением Хюккеля ). Особенности метода Хюккеля  [c.212]

    Расчет по МОХ позволяет предсказать, в каком направлении изменяется ПИ в ряду сходных соединений. Энергия занятой молекулярной орбитали (ВЗМО) согласно МОХ соответствует ПИ электрона с этой орбитали. Для бензола (I) Е (ВЗМО)=а+ р, для нафталина (П) Е (ВЗМО) =а-ь0,бр, а для антрацена (1П), нафтацена (IV) и пентацена (V) Е (ВЗМО) имеет еще более высокие значения  [c.235]

    Локализованные молекулярные орбитали в координационных соединениях. На примере СН4 и других молекул было показано, как много-центровые орбитали можно преобразовать в эквивалентные локализованные молекулярные орбитали. Подобное преобразование возможно и для МО координационных соединений переходных металлов. Для октаэдрического комплекса 1Т1(Н20)б] было получено шесть запол- [c.252]

    Соотнощение коэффициентов С1 и С2 показывает долю участия соответствующей атомной орбитали при построении молекулярной орбитали. В свяЗ И с этим они служат мерой полярности соединения. При С1>Сг вероятность пребывания электрона у атома с 11)1 больше, чем у атома с грг- Первый атом более электроотрицательный, чем второй. Таким путем в методе МО ЛКАО учитывается поляризация химической связи. [c.92]

    Сопряженные двойные (или тройные) связи [16]. Примером такой структуры служит, конечно, бензол, но простейшим соединением такого типа является бутадиен, молекулярные орбитали которого изображены на рис. 2.3. Перекрывание четы- [c.51]

    Молекулярные орбитали координационных соединений [c.188]

    Ковалентной связью называют взаимодействие между атомами, при котором связь возникает (энергия системы понижается) в результате перехода электронов с атомных орбиталей на нижележащие связывающие молекулярные орбитали. Но ведь это при соединении атомов происходит всегда Если при таком переходе имеет место перераспределение электронной плотности от- [c.143]

    Наиболее длинноволновый максимум должен соответствовать переходу электрона с высшей заполненной атомной или молекулярной орбитали на низшую незаполненную орбиталь. В случае соединений с двухэлектронными связями электроны могут находиться на а- или я-орбиталях или в виде неподеленных пар электронов (/1-орбнтали). При этом наименьшей энергией обладают электроны на а-орбитали, затем электроны на я-орбитали (см. рис. 10). Вакантная разрыхляющая я -орбиталь находится ниже вакантной разрыхляющей о орбитали. Поэтому можно ожидать, что соединения, у которых все электроны внешнего электронного слоя участвуют в образовании а-связей, например насыщенные углеводороды, будут поглощать в дальней ультрафиолетовой области (так называемая вакуумная ультрафиолетовая область, где существенно поглощают кислород и азот, в связи с чем вся оптическая схема прибора должна находиться в вакууме). [c.36]


    Как видно, в отличие от рассматривавшегося выше метода валентных связей, квантово-химический метод молекулярных орбиталей дает ясное и четкое представление о физической сущности явления ароматичности. Взамен весьма нечетких использовавшихся ранее химических критериев ароматичности из него вытекает следующее определение ароматическими являются такие ненасыщенные циклические соединения, у которых все атомы цикла принимают участие в образовании единой сопряженной системы, а я-электроны этой системы образуют замкнутую электронную оболочку, полностью заполняя связывающие молекулярные орбитали. [c.22]

    Из схемы видно, что единственный электрон размещается иа Осв молекулярной орбитали. Образуется устойчивое соединение энергия связи 255 кДж/моль, длина связи 0,106 нм. Молекулярный ион парамагнитен. Если принять, что кратность связи, как и в методе валентных связей, определяется числом электронных пар, то кратность связи в равна 7г- Записать процесс образования Н2 можно следующим образом  [c.122]

    Метод молекулярных орбиталей. Молекулярные орбитали в комплексных соединениях образуются по тому же нриицину и обладают теми же свойствами, что и молекулярные орбитали в двухатомных молекулах (см. 45). Отличие заключается в том. что в комплексных соединениях МО являются мно-гоцентровыми, делокализованными, подобно тому, что имеет место, иапример, в молекуле бензола (см. 167). [c.600]

    Чтобы объяснить свойства соединений бора, иногда приходится учитывать возможность образования химической связи сразу между тремя атомами. Три атомные орбитали, по одной от каждого из трех атомов, могут комбинировать друг с другом, образуя три молекулярные орбитали одну связывающую, одну разрыхляющую и одну несвязывающую. [c.272]

    Основным доводом в пользу нахождения неспаренного спина в тг-си-стеме ароматического лиганда типа пиридина или фенильной группы является результат замещения атома водорода цикла на группу СН3. Если наблюдаемый сдвиг протона СН3 меняет знак по сравнению со знаком сдвига протона, находящегося в том же самом положении в кольце незамещенного соединения, то спиновая плотность находится в л-системе. Это происходит потому, что спиновая плотность в л-систе-ме — преимущественно углеродной системе—делокализована непосредственно на метильные протоны, т.е. связанные в этими протонами орбитали атомов водорода характеризуются небольшими коэффициентами в л-молекулярной орбитали. В незамещенном ароматическом соединении 1.5-орбиталь водорода ортогональна л-системе, и л-спиновая плотность должна поляризовать а-связь С — Н, чтобы повлиять на протоны. В результате знак спиновой плотности на Н противоположен знаку спиновой плотности в л-системе. [c.179]

    К сожалению, в большинстве парамагнитных комплексов ионов переходных металлов число атомов настолько велико, что расчет методом МО всего комплекса практически невозможен. Кроме того, даже если число атомов приемлемо, встает вопрос, может ли расчет, проведенный по расширенному методу Хюккеля или по методу ЧПДП, дать разумные волновые функции для соединений с такой большой разницей в величинах зарядов, какая существует между ионом металла и лигандом. При рассмотрении таких систем предполагается, что ион металла дает по крайней мере меньшее возмущение к вкладу протона в молекулярную орбиталь, представляющую собой главным образом МО неподеленной пары, и в другие молекулярные орбитали свободного лиганда, участвующие в связывании. Это допущение разумно для большинства комплексов, в которых прочность связи металл — лиганд составляет 10—20 ккал/моль. С учетом этого приближения проводится расчет по методу МО свободного лиганда и анализ электронной плотности с использованием волновых функций нейтрального лиганда (см. гл. 3). Последний позволяет определить, какими должны быть величины Л, если на каждой из орбиталей, которые, как ожидается, смешиваются с орбиталями металла при образовании комплекса, находится по одному электрону. Результаты таких расчетов для различных замещенных пи-ридинов представлены в табл. 12.1. [c.182]

    Молекулярные орбитали в комплексных соединениях. Пс скольку теория кристаллического поля рассматривает центральную частицу комплекса как ион, ее результаты нельзя считать удовлетворительными, если связь комплексообразователя с лигандами далека от ионной. О неточности ионной модели свидетельствует и спектрохимический ряд. В этом ряду, например, ион СМ-предшествует иону р-, однако ион Р" меньше иона СЫ- и на основании электростатики следовало бы ожидать большего воздей-. ствия на центральный ион ионов Р , чем СЫ . [c.127]

    Наиболее строгое объяснение природы связи в комплексных соединениях достигается применением метода молекулярных орбиталей. Этот метод значительно сложнее теории кристаллического поля расчет энергии связи в комплексных соединениях по методу МО требует использования мощных вычислительных машин. По теории кристаллического поля расчеты несравненно проще, и ею нередко пользуются при рассмотрении объектов, к которым она не вполне применима, для получения ориентировочных оценок. Для комплекса волновая функция молекулярной орбитали фмо представляет собой линейную комбинацию, состоящую из волновых функций орбитали центрального атома металла фм и групповой орбитали лигандов 2сфь (линейная комбинация определенных орбиталей лигандов)  [c.127]

    Сэндвичевыеп соединения. К данным соединениям относятся ферроцен (см. рис. 17) и др. Молекулярные орбитали ферроцена Ре(С5Н5)2 строятся как линейные комбинации 3(1-, 4х- и 4р-А0 железа и десяти 1г-орбиталей колец (по пяти от каждого кольца). Возникает 19 МО. На них переходят восемь электронов Ре и десять от двух пентади-енильных колец. Из этих 18 электронов 12 размещаются на связывающих МО alg, и и 6 на несвязывающих МО a g и Ос- [c.128]

    Б работе [ row,1978] представлены результаты исследования ПХДД в отношении их способности вызывать хлоракне. Из рис. 15.8, где представлены формулы этих соединений, видно, что они похожи по структуре симметричные молекулы с двумя бензольными или конденсированными бензольными кольцами. В цитируемой работе также отмечается, что эти вещества имеют одинаковое расположение электронов на внешней молекулярной орбитали. [c.407]

    Теория молекулярных орбиталей существование подобных соединений объясняет следующим образом. Как показано ниже, в ионе HF за счет ls-орбитали водорода и двух 2р-орбиталей двух атомов фтора возникают три молекулярные орбитали связывающая о , несвязывающая а й разрыхляющая [c.293]

    СЫ- или СО),, т. е. имеет место делокализация электронов, можно показать с помощью спинрезонансной спектроскопии. Необходимо построить молекулярные орбитали комплексных соединений подобно тому, как это было показано при рассмотрении молекулярных орбиталей СН4 (разд. 6.3.4). Для этого берутся определенные линейные комбинации молекулярных орбиталей лигандов, которые имеют такую же симметрию, как и атомные -орбитали центрального иона. Линейные комбинации для октаэдрических комплексов приведены в табл. А.28, а в более наглядном виде—на рис. А.58. (Индексы симметрии а1е, е , (ы и т. д. взяты из системы обозначений, принятых в теории групп, и здесь не обсуждаются.) Молекулярные орбитали комплексных соединений образуются линейной комбинацией таких атомных орбиталей металла и орбиталей лиганда, которые имеют одинаковую симметрию, так как в этом случае наблюдается максимальное перекрывание. Результаты энергетических расчетов молекулярных орбиталей представлены на рис. А.59. Разрыхляющие орбитали отмечены звездочкой. Заполнение электронами происходит, как обычно, попарно. Если в образовании связи принимают участие-12 электронов от шести октаэдрических лигандов и п -электронов металла, то первые заполняют связывающие и- и -орбитали, а -электроны — несвязывающие t2e- и разрыхляющие вг -орбитали. Последние две молекулярные орбитали играют ту же роль, как и в теории поля лигандов. Их расщепление также обозначают 10/) , хотя на энергию расщепления влияет перекрывание при образовании ковалентных связей. [c.136]

    Указанием на наличие связей М—М могут служить относительно более короткие расстояния между атомами металла. Возможность образования связей М—М в основном определяется такими факторами, как степень окисления металла, вид лигандов и др. Магнитные свойства многих этих соединений также не могут непосредственно свидетельствовать о простом спаривании электронных спинов атомов металла и образования связи М—М. На магнитных свойствах могут сказываться не только М—М-взаимодействия, но и сильное перекрывание орбиталей атомов металла и лигандов. Например, в КиОг молекулярные орбитали имеют значительную протяженность. Это соответствует образованию энергетических зон, что сильно влияет на магнитные свойства соединения. [c.616]

    Дальнейшему развитию теории гетерогенного катализа способствовало использование метода молекулярных орбиталей (МО) — теория поля лигандов для комплексных соединений. Поскольку в этой теории рассматриваются молекулярные орбитали адсорбированных молекул (атомов) и атомов катализатора, она дает возможность установления связи между их химической способностью и каталитической активностью катализатора. Для расчетов обычно используется метод линейных комбинаций атомных орбиталей (МОЛКАО). Широкому использованию кваптоЕомеханических расчетов в в атализе в настоящее время препятствуют трудности математического описания сложных многоатомных систем субстрат — катализатор. А [c.304]

    Таким образом, насыщаемость — понятие относительное, оно свяг зано с тем, насколько низко лежат молекулярные орбитали, на которые должны переходить электроны сливающихся молекул. Если энергия этих орбиталей достаточно низка, то молекулы, которые принято считать валентно насыщенными, образуют весьма устойчивые соединения с другими молекулами или атомами. [c.139]

    В теории кристаллического поля (ТКП) лиганды выступают только как Источник создаваемого ими поля. Химическая связь центральный ион — лиганд рассматривается как ионная (например, в [СоРе] ) или ион-дипольная ([Ре(Н20) ), электронная оболочка центрального иона— как автономная, а oбoJЮЧки лигандов вообще не рассматриваются. Такой подход является приближенным. Опыты по электронному парамагнитному резонансу показывают, что электронная плотность ие сосредоточена на лигандах и центральном ионе, а частично размазана в объеме комплексного иона, т. е. что связь в координационных соединениях — ковалентная с большей или меньшей полярностью. Для описания такой связи необходимо привлечь теорию молекулярных орбита-лей, как более общую, чем электростатическая теория ионной связи. В ней находят объяснение Т01якие магнитные эффекты, интенсивность спектров поглощения и другие свойства, не получившие объяснения в ТКП. Сама же ТКП оказывается частным случаем более общей теории МО ЛКАО, получившей в химии координационных соединений название теории поля лигандов (ТПЛ), основы которой заложены Ван-Флеком. [c.247]

    Имеется много доказательств, вытекающих главным образом из рассмотрения констант спин-спинового взаимодействия в ЯМР-спектрах, что связи в циклопропанах отличаются от связей в соответствующих соединениях, не имеющих углового напряжения [204]. В обычном атоме углерода гибридизуются одна 5- и три р-орбитали, давая почти эквивалентные зр -орби-тали (разд. 1.11), каждая из которых на 25% имеет 5-харак-тер. Но в циклопропановом атоме углерода четыре гибридные орбитали далеко не эквивалентны. Две орбитали, направленные к внешним связям, имеют больший х-характер, чем обычная 5р -орбиталь, тогда как две орбитали, образующие связи внутри цикла, имеют меньший 5-характер и больший р-характер, что делает их похожими на обычные р-орбитали, для которых характерны валентные углы 90, а не 109,5°. Поскольку угловое напряжение за счет уменьшения углов в циклопропанах соответствует разности в величине характеристичного угла и реального угла в 60°, этот дополнительный характер частично снимает напряжение. Внешние орбитали на 33 %, имеют 5-харак-тер, т. е., по существу, являются р -орбиталями внутренние орбитали только на 17 % имеют 5-характер, так что их можно назвать зр -орбиталями [205]. Таким образом, каладая углерод-углеродная связь в циклопропане образована перекрыванием двух 5р -орбиталей. Расчеты по методу молекулярных орбита-лей показывают, что такие связи не являются целиком сг-свя-зями. В обычных С—С-связях 5р -орбитали перекрываются таким образом, что прямая, соединяющая ядра, становится осью симметрии электронного облака. Но в циклопропане электронная плотность смещена в сторону от кольца. Направление орбитального перекрывания показано на рис. 4.5 [20] угол 0 для циклопропана составляет 2Г. Аналогичное явление наблюдается и для циклобутана, но в меньшей степени здесь угол 0 равен 7° [206]. Связи в циклопропане называют изогнутыми, или банановыми -, по своему характеру они являются промежуточными между о- и я-связями, поэтому циклопропаны в некоторых отношениях ведут себя подобно соединениям с двойной связью [207]. Данные УФ-спектров [208] и некоторые другие данные свидетельствуют о том, что циклопропановое кольцо участвует в сопряжении с соседней двойной связью, причем в кон- [c.188]

    При соединении двух частиц по мере их сближения атомные орбитали начинают перекрываться и переходят в молекулярные орбитали — связывающую и разрыхляющую. Ехлн на исходных атомных орбиталях имелось в сумме два электрона, то образуется прочная химическая связь и ее образование не связано с преодолением какого-либо энергетического барьера. В табл. 7 приведены значения предэкспоненциальных множителей и энергий активации для некоторых реакций рекомбинации свободных радикалов (гомолитическая рекомбинация). Энергия активации, в соответствии со сказанным, близка к нулю. Предэкспоненциальные множители имеют при рекомбинации несложных свободных радикалов значе- [c.138]

    Исследования этой группы соединений с использованием локализованных орбиталей приводят к результатам, прямо противоположным полученным с помощью методов типа простого метода Хюккеля [13, 14]. Для волновой функции МО, локализованных по критерию минимальной энергии, характерно описание молекулы, в котором образование кратных связей минимально. Так, например, установлено, что в 83N2 [15, 16] имеются две связывающие и одна антисвязывающая локализованные молекулярные орбитали, т. е. бтг-электронов, тогда как для 83 Ы, [17] образуются только две локализованные орбитали 7г-типа, что указывает на наличие 4тг-системы остальные шесть электронов размещаются на орбиталях неподеленных пар атомов серы. Четыре тг-электрона в свою очередь размещаются на двух внеплоскостных МО, охватывающих сегмент N — 8 — N плоского цикла. Таким образом, возникают два весьма различных описания этого соединения в одном используется Ют-электронная модель, в другом — 41г-электронная. Явление такого типа (противоречие) встречается в других плоских системах, например 83 N2, 84 в более усложненном виде — в неплоских системах сера — азот. Ясно, что полученный вывод об электронной структуре зависит от используемого теоретического метода анализа — весьма неудовлетворительная ситуация. [c.171]


Смотреть страницы где упоминается термин Молекулярные орбиты соединения: [c.459]    [c.98]    [c.104]    [c.616]    [c.128]    [c.273]    [c.132]    [c.111]   
Справочник полимеров Издание 3 (1966) -- [ c.523 ]




ПОИСК





Смотрите так же термины и статьи:

Орбита



© 2025 chem21.info Реклама на сайте