Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород активный, определение спирте

    Активность кобальтовых и железных катализаторов синтеза из окиси углерода и водорода оценивается по выходу углеводородов на 1 синтез-газа, а активность окиси алюминия — по константе скорости дегидратации этилового спирта до этилена при определенной температуре. Помимо активности свежеприготовленного катализатора, часто необходимо знать их каталитическую стабильность после регенерационных операций или кратковременного нагрева до высоких температур. В частности, для алюмосиликатных катализаторов определяют индекс стабильности, под которым понимают индекс активности катализатора после шестичасовой его обработки паром при 750° С. При определении стабильности не ограничиваются подсчетом выхода целевой фракции до 200° С, а определяют также выход газа и его плотность и выход остатка после 200° С. Так как активность гетерогенных катализаторов решаюш им образом зависит от величины и состояния их поверхности, то в ряде случаев контроль их качества проводится по величине удельной поверхности (в м г), которая определяется методом адсорбции толуола или других, чаще всего красящих веществ. [c.305]


    Практическое использование описанного метода определения реальных активностей отдельных ионов наталкивается на принципиальное затруднение следующего характера [187, 188]. Компенсирующие эффекты вольта-цепей в значительной степени зависят от состояния поверхностей растворов, причем чем выше концентрация, тем сильнее различие в поверхностных свойствах исследуемого и стандартного растворов. В силу этого значения активностей отдельных ионов отражают суммарный эффект, связанный с изменением как концентрации раствора, так и его поверхностных свойств. Поэтому применение метода вольта-эффекта для определения реальных активностей ионов пока ограничено, по-видимому, концентрациями порядка <0,1 М. Введение поверхностноактивных веществ в раствор для подавления поверхностного адсорбционного потенциала хлористого водорода (при определении активности ионов Н+ в водных растворах НС1), т. е, насыщение растворов высокомолекулярными алифатическими спиртами или кислотами, как это рекомендовано в работах [187, 188], по-видимому, вносит дополнительный эффект, влияющий на активность ионов, а именно эффект изменения структуры воды. [c.59]

    Перекисные соединения, в том числе и перекись водорода, как известно, вещества малостабильные, способные распадаться с выделением кислорода. Склонность их к распаду под влиянием различных причин (температуры, катализа, среды) создает определенные трудности в достижении высоких выходов этих соединений при их получении. В работах некоторых авторов [1, 2] имеются указания о еще меньщей стабильности перекисных соединений при получении их в металлических реакторах. Известна малая термическая стабильность перекиси водорода в ее водных растворах, особенно в присутствии каталитически активных примесей. При разработке промышленного метода получения перекиси водорода окислением изопропилового спирта было замечено, что перекись водорода в органических растворителях более стабильна, чем в водных растворах. В частности, большая устойчивость перекиси водорода в изопропиловом спирте, чем в водной среде, наблюдалась авторами при изучении влияния -у-лучей на скорость реакции окисления изопропилового спирта. [c.19]


    При замене одного или нескольких атомов водорода в молекуле спирта на галоид повышается биологическая активность на все виды организмов. Так, например, этиленхлоргидрин обладает в несколько раз более сильным инсектицидным и фунгицидным действием, чем этиловый спирт. Этиленхлоргидрин способен вызывать нарушение состояния покоя у растений, что представляет определенный практический интерес для культуры картофеля. Используя этиленхлоргидрин можно проводить посадку картофеля только что собранными клубнями, что имеет значение для южных районов, где целесообразно получение двух урожаев в один сезон. [c.108]

    Спирты и фенолы удобно анализировать методом, основанным на определении активного водорода. Активный водород — это водородные атомы, которые связаны с ненасыщенными углеродными атомами или с атомами кислорода, азота или серы. Активный водород достаточно подвижен, и для его определения используют реакцию с реактивом Гриньяра (1) или алюмогидридом лития (г)  [c.187]

    Протоны, образующие связи с кислородом, азотом с серой, находятся в спиртах, фенолах, карбоновых кислотах, енолах, аминах, амидах, меркаптанах и других соединениях. В большинстве случаев такие протоны относятся к так называемым активным атомам водорода. Характер таких активных протонов зависит от силы межмолекулярных взаимодействий и скорости химического обмена. На положение сигналов таких протонов сильно влияет концентрация раствора, его температура и характер растворителя. Поэтому для определения истинных химических сдвигов активных протонов используют растворитель, не образующий водородных связей (например, четыреххлористый углерод), и производят измерения при нескольких концентрациях раствора, после чего экстраполяцией к бесконечному разбавлению раствора определяют величину химического сдвига. Полученное при этом значение 6 соответствует отдельным молекулам, не связанным межмолекулярными водородными связями. [c.133]

    Химические свойства. Подвижность водорода гидроксильной группы. Атомы водорода гидроксильных групп в спиртах проявляют определенную подвижность (активность). Подобно воде, спирты реагируют с щелочными металлами (натрием, калием и др.), которые замещают водород спиртовых гидроксильных групп при этом образуются так называемые алкоголяты и выделяется водород [c.107]

    Радиохимические методы особенно ценны в определении активного водорода, поскольку они обеспечивают высокую чувствительность анализа. Эти методы позволяют анализировать микроколичества органических соединений и определять концевые функциональные группы в некоторых полимерах. В соответствующих анализах применяют либо реакцию изотопного обмена активного водорода, содержащегося в анализируемом соединении, с тритием, содержащимся в гидроксильных группах спиртов или в тритиевой воде, либо реакцию активного водорода с алюмогидридом лития, меченным тритием. [c.246]

    В определениях активного водорода с применением изопропа-нола- Н [10] было предложено использовать коэффициент распределения а [12], описывающий степень равномерности распределения трития между анализируемым соединением и спиртом. [c.249]

    Триметилхлорсилан реагирует со спиртами или фенолами значительно медленнее, а прп определенных количествах спирта (или фенола) в реакцию вообще не вступает. Метиловый спирт для разделения азеотропной смеси непригоден, так как в этом случае активно протекает побочная реакция между метиловым спиртом и выделяющимся хлористым водородом  [c.52]

    Необходимость определения следов спиртов в гидролизуемых кислотами соединениях обусловила разработку метода анализа, проводимого в щелочной среде. Березин [16] описал метод макроопределения спиртов по реакции с 3,5-динитробензоилхлоридом в пиридине с последующим титрованием избытка реактива раствором щелочи. Ранее было показано, что в пиридине динитробензоилхлорид быстро реагирует с активными атомами водорода, причем в некоторых неводных средах основного характера образуются интенсивно окрашенные ионы хиноидного строения. Этот принцип был положен в основу приведенной ниже методики. [c.59]

    Рассмотрим определение растворимости воды в бензоле и тО лурле с применением в качестве радиоактивного индикатора трития [356, 357]. Бензол насыщается тритированной водой и замораживается жидким воздухом твердый раствор помещается в прибор для удаления паров воды в вакууме. Затем система размораживается и раствор переводится в ловушку, содержащую безводную окись кальция, для поглощения воды, растворенной в бензоле. Бензол удаляется отгонкой и в ловушку добавляется этиловый спирт. В результате изотопного обмена водорода между гидроксильными группами спирта и гидрата окиси кальция практически весь тритий оказывается в составе спирта. Пары спирта в токе аргона переводятся в счетчик Гейгера — Мюллера, где и измеряется их активность. Зная активность определенной массы паров спирта, легко пересчитать ее на общее содержание воды, растворенной в бензоле. [c.188]


    Предпламенный топливный конденсат был исследован на содержание непредельных соединений бромид-броматным методом на приборе БЧ-2. Кроме того, количественно определяли гидроперекиси станнометрическим методом, кислоты — титрованием щелочью, карбонильные соединения — спектрофотометрическим методом и активный водород, дающий возможность определения спиртов и воды. [c.120]

    Литий-алю.минийгидрид пригоден также для определения функциональных групп, способных восстанавливаться. При восстановлении различных групп на 1 моль вещества расходуются следующие количества молей литий-алюминийгидрида кетоны — 0,25 эфиры или лактоны — 0,5 карбоновые кислоты (восстановление группы СО)—0,5 нитрилы — 0,5. Расход литий-алюминийгидрида определяют, анализируя препарат до и после реакции. Определение это основано на разложении препарата анилином или, лучше, н-амиловым спиртом, причем выделяется водород. н-Амиловый спирт реагирует быстрее и пе образует нирастворимого осадка [731]. Следует при этом отметить, что анилин при взаимодействии с реактивом Гриньяра на холоду выделяет 1 атом активного водорода, а с литий-алюминийгидридом — 2 атома активного водорода. [c.176]

    Вант-Гофф начинает с констатации того факта, что современные атомистические формулы неспособны истолковать некоторые случаи изомерия,— это следует приписать, может быть, отсутствию более определенного представления о фактическом положении атомов [там же, стр. 73]. Далее Вант-Гофф показывает, что расположение четырех заместителей водорода в метане (и вообще четырех заместителей, связанных с углеродом) в одной плоскости требовало бы существования такого числа изомеров, которое не соответствует действительности. Наоборот, с последней хорошо согласуется гипотеза, что четыре зал1естителя водорода в метане расположены в вершинах правильного тетраэдра. Атом углерода, соединенный с четырьмя различными заместителями, Вант-Гофф называет асимметрическим и выставляет положение Всякое соединение углерода, которое в растворе отклоняет плоскость поляризации, содержит асимметрический атом углерода [там же, стр. 75]. Это положение можно использовать для установления структурных формул ...оно дает в руки средство предпочесть одну формулу другой, если конституция не известна [там же, стр. 77]. Вант-Гофф показывает, что с этой точки зрения оптически активный амиловый спирт может иметь лишь одну формулу  [c.210]

    Быстрое развитие катализа на цеолитах поставило перед исследователями вопрос о природе активных центров цеолитных катализаторов в различных процессах. Одним из способов решения этой сложной задачи является изучение модельных реакций, селективно проте-каюших на активных центрах определенного типа. К таким реакциям относится диспропорционирование водорода при взаимодействии спирта и кетона. [c.141]

    Меченый изопропиловый спирт дегидратировали над А12О3 при 300° С, а его чистоту (отсутствие пропана и других углеводородов) проверяли хроматографически. Начальная удельная активность пропилена равнялась 260 мккюри/моль. Пропилен разбавляли водородом, 5 мол.% его добавляли в систему. Реагирующую смесь анализировали частично титрованием (оксидиметрический и гидроксиламиновый методы определения спирта и ацетона), а частично хроматографически. Образцы для измерения активности готовили в виде твердого ВаСОд. [c.183]

    В таких количествах, согласно указаниям Рейхштейна, было нецелесообразно заниматься непосредственной энолизацией 2-кетокислоты. При метилировании ее диазометаном мы получили 1.2 г метилового эфира 2-кетогулоновой кислоты, плавяш егося при 152—154° (по Рейхштейну, 155—157° исправлен.). При действии на метиловый эфир метилатом натрия в растворе метилового спирта и последующем подкислении раствором хлористого водорода в метиловом спирте получается аскорбиновая кислота. Отделенная от хлористого натрия и промытая ацетоном, она плавилась при 180—183° (по Рейхштейну, 175—180°, после перекристаллизации 189—190°). Температура плавления аскорбиновой кислоты, как и указано в литературе, зависит от быстроты нагревания. Всего нами получено 0.65 г витамина С пеперекристаллизованного. Полученная нами аскорбиновая кислота давала все реакции, характерные для витамина С. Проба смешения ее с заведомым препаратом плавилась при 183— 185°. Физиологическая активность, определенная на морских свинках в Витаминной лаборатории ВИРа, нормальна и согласуется с имеющимися литературными данными. [c.630]

    Как видно из изложенного, при всех этих реакциях на каждую молекулу спирта или амина образуется 1 молекула метана. Поскольку количество последнего легко измерить объемным путем, этот метод может быть использован для количественного определения активных атомов водорода в ОН- нли NH-rpynnax (способ Церевит.инова — Чугаева). При этом следует учитывать, что первичные амины выделяют одну молекулу метана только на холоду, а при нагревании в большинстве случаев выделяют две молекулы метана  [c.191]

    Цереветинова—Чугаева способ определения активного водорода 191 Церезин 30 Цериловый спирт 141 Церотен 69  [c.1211]

    Напишите общую схему реакции, которая носит имя Чугаева — Церевитинова. Определите процентное содержание гек-силового спирта в смеси его с гексаном, если известно, что ири определении активного водорода ио методу Чугаева—Церевити-нова из навески смеси 0,2020 г образовалось 11,2см метана. [c.49]

    Большая часть алкалоидов — кристаллические вещества с определенной температурой плавления, реже встречаются жидкие алкалоиды, например никотин, анабазин, обладающие летучестью. В виде свободных оснований алкалоиды обычно мало растворимы в воде, но легко растворяются в органических растворителях (спирт, эфир, хлороформ и др.). Почти все алкалоиды не обладают запахом, исключение представляют кониин, никотин, анабазнн и некоторые другие. Многие алкалоиды оптически активны. С кислотами алкалоиды образуют соли, большей частью растворимые в воде. Прн наличии одного атома азота в молекуле они присоединяют одну молекулу одноосновной кислоты при наличии двух атомов азота они способны присоединять одну или две молекулы одноосновной кислоты, образуя кислые и средние соли, что сказывается на константах их диссоциации. Являясь слабыми основаниями, алкалоиды образуют с кислотами легко диссоциирующие соли, разлагающиеся под влиянием едких щелочей, аммиака, а иногда карбонатов и окиси магния при этом выделяются свободные основания. Некоторые алкалоиды, помимо основных свойств, характеризуются реакциями, зависящими от наличия в их молекуле функциональных групп, например фенольной (у морфина, сальсолина), кетонной (у лобелина), ви-нильной (у хгнина) и др., что отражается на нх химических свойствах. Напрнмер, морфин растворяется в растворах едких щелочей, лобелии образует карбонильные производные, хинин присоединяет водород, галогены и др. [c.418]

    Определение активного водорода в спиртах, аминах, амидах, карбоновых и сульфоновых к-тах, меркаптанах и суль-фонамидах основано иа их взаимод. с реактивами Гриньяра (обычно с. метилмагнийиодидом см. Церевитинова метод) илн с LIAIH4 и измерении объема выделившегося метана или водорода соответственно. Активный водород в ацетилене и его гомологах определяют по р-цни С солями Ag(I), Hg (I) или u (I) с нослед. титриметрич. определением выделившихся к-т. [c.402]

    Большая часть меченых соединений, особенно простого строения, была получена синтетически. Из известных синтезов для этих целей выбирают те, которые при простом и безопасном выполнении дают очень чистые или по крайней мере легко изолируемые продукты с высоким выходом. Большое внимание уделяют выбору оптимальных условий реакции, соответствующих методов и реактивов. Тщательно разработана и экспериментальная техника работы с небольшими количествами опасных для здоровья и дорогостоящих веществ. Изотоп вводят в синтез на возможно более поздней стадии в тех случаях, когда это возможно, реакцию проводят без выделения промежуточных продуктов. Маточные растворы и остатки анализируют и перерабатывают повторно. Большую часть вещества, содержащегося в маточном растворе, можно выделить, добавляя в насыщенный при более высокой температуре раствор соответствующее неактивное вещество, которое в маточном растворе будет равномерно перемешано с активным веществом. При пятикратном разбавлении доля неактивного носителя в потерях в маточном растворе при последующей кристаллизации составит Таким образом, из маточного раствора можно извлечь дополнительно 5 первоначально имевшейся в маточном растворе активности однако при этом удельная активность уменьшится в 5 раз. В некоторых случаях реакцию преднамеренно проводят с высокой удельной активностью добавление на определенной стадии очень чистого неактивного носителя позволяет увеличить химический выход и химическую чистоту продукта. Уровень молярных удельных активностей продуктов реакции соответствует удельным активностям исходных веществ и может достигать значительных величин. Большая часть синтезов проводилась с радиоуглеродом и изотопами водорода некоторые типичные случаи будут приведены ниже. Замечательный обзор большинства методов имеется в монографии Меррея и Уильямса [14] и включает синтезы меченых различными изотопами кислот и их производных, аминов, альдегидов, кетонов, простых эфиров, гетероциклических соединений, углеводородов, спиртов, ониевых соединений, сахаров и их производных, стероидов, витаминов и других веществ. Эта книга дает полное представление о синтезах соединений, меченных S Н , и радиогалогенами. Это [c.678]

    Метод с LiA1 H4 имеет некоторые иреимунхества но сравнению с методами изотопного обмена, применяемыми в определениях активного водорода как в низкомолекулярных соединениях, так и в малых количествах соединений. Он применим к анализу как растворимых твердых веществ, так и жидкостей, если последние не слишком сильно улетучиваются за время, требуемое для их разложения под действием реагента. Кроме того, исиользование при анализе этим методом замкнутой системы для проведения реакции и измерения радиоактивности создает благоприятные условия для обнаружения следовых количеств активного водорода. В то же время чувствительность обменных методов уменьшается из-за неполного удаления меченого спирта и, быть может, в еще большей степени, за счет дополнительного обмена трития обработанного образца с атмосферной влагой. Основной недостаток метода с алюмогидридом лития заключается в том, что он не является абсолютным, и это сильно ограничивает возможность его применения в анализе полимерных материалов. При этом в качестве стандартов можно использовать полимеры, проанализированные другими методами, но и тогда часто получаются лишь полуколичественные или относительные результаты. Менее существенным недостатком метода является наличие помех от нитросоединений. [c.254]

    Реактивы Гриньяра реагируют также с соединениями, не со-держаш,ими активного водорода (например, с альдегидами, ке-тонами, с алкил- и ацилгалогенидами, со сложными эфирами и т. д.), однако эти реакции не сопровождаются выделением метана. Солтис [103] применил метод Церевитипова для анализа соединений, содержаш их оба типа реакционноснособных групп. Сначала определяют активный водород, собирая выделившийся метан, после чего разлагают остаток непрореагировавшего реактива Гриньяра добавлением анилина и определяют количество дополнительно выделившегося метана. Вычитая количество разложившегося реагента из исходного количества, можно определить количество реагента, использованное на другие реакционноспособные группы (кроме подвижного водорода). Третичные спирты могут давать завышенные результаты в связи с тем, что вода, образующаяся в результате легко идущей дегидратации, реагирует с метилмагнийгалогенидами обоими атомами водорода, выделяя 2 моль метана на 1 моль дегидратированного спирта. Рекомендуется проводить реакцию с несколькими типами гринь-яровского реактива и растворителей, разлагать продукт при разных температурах и проводить контрольные определения веществ со сходной структурой. [c.38]

    Определение водорода, способногс замещаться на ацил. Многие соединения, содержащие активный водород, могут быть определены путем ацилирования. К ним относятся, в частности, первичные и вторичные спирты, фенолы, меркаптаны, а также первичные и вторичные амины. Для количественного определения применяется ряд методов, например выделение продукта реакции (анализ, определение ацильных групп), разложение избытка ангидрида или хлорангидрида с последующим титрованием, определение хлористого водорода, образующегося в случае применения хлористого ацетила. Характерным примером использования этого метода может служить установление структуры [c.39]

    Взаимодействие с соединениями, имеющими подвижный атом водорода. Вода, спирты, фенолы, енолы, карбоновые кислоты, а также первичные и вторичные амины, т. е. соединения, содержащие кислый атом водорода, отщепляющийся в виде протона, разлагают реактивы Гриньяра с образованием углеводорода. Взаимодействие с метилмаг-нийиодидом служит для количественного определения активного водорода (Церевитинов, 1907 г.) выделяющийся метан определяет волюмо-метрически. В случае первичных аминов при комнатной температуре замещается только один атом водорода, для замены второго атома. необходима повышенная температура. [c.539]

    Наиболее общим методом определения гидроксильной группы является метод, основанный па этерификации. Этот метод пригоден для анализа гидроксильных соединений всех типов. Единственным исключением оказываются третичные спирты R3 OH, которые этерифицируются с трудом, так же как и тризамен енные фенолы и другие соединения с пространственно экранированной гидроксильной группой. Для анализа таких соединений рекомендуется метод инфракрасной спектроскопии. Можно пользоваться также методами определения активного водорода (см. с. 371). [c.16]

    Раствор разбавляют 400 мл воды, нейтрализуют гидроокисью бария и фильтруют. Продукт несколько раз осаждают из воды спиртом В0ДУ-Н2 отгоняют в вакууме, остаток растворяют в 30 мл воды и испаряют досуха. После того как этот процесс будет повторен 6 раз, остаток растворяют в 30 мл воды. Добавлением к раствору МаНСОз устанавливают pH, равным 6, и раствор упаривают досуха. Пролин экстрагируют из остатка горячим спиртом Микрометод определения активного водорода по увеличению веса соединения. По-видимому, обмениваются 3 атома водорода. [c.511]


Смотреть страницы где упоминается термин Водород активный, определение спирте: [c.676]    [c.351]    [c.676]    [c.125]    [c.42]    [c.504]    [c.450]    [c.43]    [c.271]    [c.308]    [c.142]    [c.16]    [c.58]    [c.4]    [c.306]    [c.209]   
Лекционные опыты и демонстрационные материалы по органической химии (1956) -- [ c.118 , c.121 ]




ПОИСК





Смотрите так же термины и статьи:

Активный водород

Водород активность

Водород активный, определение

Водород из спирта

Водород определение

Определение ХПК активного ила



© 2024 chem21.info Реклама на сайте