Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

окись реакции с альдегидами

    Подобное влияние заместителей, повидимому, быстро затухает с увеличением расстояния так, я-нитробензальдегид с диазометаном дает в примерно равных количествах соответствующую й-окись и ацетофенон [40]. Как известно, введение заместителей,, в п-положение обычно оказывает то же влияние, что и введение их в о-положение. Однако в случаях взаимодействия ароматических альдегидов с диазометаном это правило, повидимому, в полной мере не выполняется. Систематическое исследование реакции альдегидов с диазометаном, несомненно, приведет еще к целому ряду интересных результатов. [c.105]


    Вредными компонентами отработанных газов дизельных двигателей являются также окись углерода, альдегиды и окислы азота. Однако содержание окиси углерода имеет значение лишь при работе двигателей в шахтах. Окислы азота (в основном N0 и ЫОг), содержащиеся в отработанных газах в более высоких концентрациях, вызывают больше опасений, чем окись углерода или альдегиды. Известно, что окислы азота под влиянием интенсивного УФ-облучения могут вступать в реакции с несгоревшими углеводо- [c.338]

    Анализ продуктов реакции (альдегиды Сг—Сб, метилэтилкетон, Р-окись ч С-пенте- [c.179]

    Каталитическое окисление в жидкой фазе имеет то преимущество перед газофазным процессом, что позволяет более точно регулировать состав конечных продуктов [60]. Та1 , при окислепии н-бутана в жидкой фазе образуется в первую очередь уксусная кислота при полном отсутствии формальдегида. При окислепии же пропана в газовой фазе, напротив, образуются главным образом пропионовый альдегид, пропиловый спирт, ацетон, уксусный альдегид, уксусная кислота, формальдегид, метиловый спирт, окись пропилена, окись этилена. При окислении н-гексана теоретически можно получить около 60 различных продуктов окисления, не считая вторичных продуктов, образующихся за счет дальнейших реакций кислородсодержащих компонентов. Метан и этан не только содержатся в значительно больших количествах в природном газе, чем пропан или бутан, но они представляют интерес и для применения в качестве исходного сырья, так как нри окислении дают продукты более простого состава. Именно сложный состав продуктов газофазного окисления был причиной того, что внедрение этого процесса в промышленную практику сильно задержалось. [c.151]

    В качестве побочных продуктов образуются пропионовый альдегид, ацетальдегид, формальдегид, ацетон, СО, СОа и вода. Катализаторо.м-для этого процесса служит окись меди, нанесенная на непористый носитель (пемзу или карборунд) в количестве 0,5—1,5% (масс.). Позднее был разработан молибдено-кобальтовый катализатор с висмутом и другими добавками. Окисление ведут при 320—350 °С и времени контакта 0,5—1,0 с в присутствии водяного пара, позволяющего улучшить условия выделения акролеина и подавляющего реакции глубокого окисления. Последний эффект достигается также при добавлении в исходную газовую смесь микроколичеств (0,05% от массы пропилена) бромистых или хлористых алкилов. Состав исходной смеси диктуется пределами взрывоопасных концентраций. Соотношение (мольное) пропилен кнслород водяной пар поддерживают равным 4 1 5 или 1 1,5 3, т. е. выше верхнего или ниже нижнего пределов взрываемости. В зависимости от состава газовой смеси процесс ведут с рециркуляцией пропилена или без нее. Реакцию окисления проводят в многотрубчатых контактных аппаратах с солевым теплоносителем. Реакционные газы проходят водную промывку, при этом получают 1,5—2%-ный раствор акролеина в воде,содержащий также побочные продукты реакции — ацетальдегид, пропионовый альдегид й т. д. Акролеин выделяется из водного раствора, ректификацией очищается от ацетальдегида и экстрактивной дистилляцией с водой — от пропионового альдегида. Выход акролеина составляет 67—70% при степени превращения пропилена 50%. [c.207]


    Как уже упоминалось, окись алюминия часто используется как носитель катализаторов. Она имеет кислые свойства и способна катализировать такую реакцию как дегидратация, если ее не нейтрализовать щелочью. Таким образом, при получении спиртов посредством гидрирования альдегидов или кетонов может произойти дегидратация спиртов, если в катализатор не включить щелочь. Могут добавляться и другие, менее основные окислы (как ZnO), но при этом должна быть принята во внимание возможность их восстановления с образованием менее активного сплава с активным металлом. В зависимости от температуры реакции это может являться достоинством или недостатком. [c.32]

    Механизм действия тетраэтилсвинца на повышение антидетона-ционных свойств бензина по Эгертону сводится к тому, что образующиеся в процессе сжатия горючей смеси перекиси вступают в реакцию с образующимся вследствие термического разложения (при температуре выше 200 С) тетраэтилсвинца атомарным свинцом, переходящим при этО М в двуокись свинца. В. результате взаимодействия двуокиси свинца с органической перекисью последняя уничтожается и превращается в кислородное производное углеводорода (альдегид, спирт и т. п.) двуокись металла переходит в окись. [c.211]

    К совсем иному тину принадлежит реакция деградации альдегида, при которой образуется окись углерода. Авторов, в 1929 г. уже знакомых с общими представлениями цепной теории, поражает и внезапность, с которой эта реакция возникает в случае, например, п. октана при 270°, и резкое уменьшение ее несколько более высоких темпе-пульсаций и холодных пламен [c.36]

    Реакционная смесь содержит альдегид или кетон и а-окись. Простейшие альдегиды и кетоны при взаимодействии с диазометаном образуют а-окиси в незначительных количествах. Наличие в молекуле альдегида или кетона заместителей типа хлора или ни-трогрупиы облегчает реакцию. Следы воды, формальдегида и спирта способствуют образованию а-окисей. При взаимодействии кетонов с диазометаном реакцию проводят при низких температурах ( 0 °С). [c.152]

    Обсуждение. Образование продуктов присоединения с бисульфитом, представляющих собой, как было показано, а-алкансуль-фонаты, является общей реакцией альдегидов. Подобным же образом ведет себя большинство метилкетонов, циклических кетонов низкой молекулярной массы (до циклооктанона) и ряд других соединений, содержащих очень активную карбонильную группу. Однако некоторые метилкетоны образуют такие соединения очень медленно или не образуют их вообще. Примером могут служить арилметилкетоны, пинаколин и окись мезитила. С другой стороны, коричный альдегид образует продукт присоединения, содержащий две молекулы бисульфита. [c.190]

    Каталитическое окисление углеводородов — сложный химический процесс, в результате которого образуются несколько продуктов реакции (альдегиды, органические кислоты, окись углерода, углекислый газ). В науке прочно утвердилось мнение, что образующиеся во время оки слепня углеводородов кислородсодержащие соединения являются промежуточными продуктами реакций образования окиси углерода и углекислого газа [1]. Стадийные схемы окисления углеводородов на различных катализаторах строились на взаимодействии молекул углеводорода с атомарным кислородом, появляющимся на поверхности катализатора прн адсорбции [2]. В последнее время в литературе начали появляться работы, в которых приводятся стад1п 1ные схемы окисления углеводородов, где в качестве промежуточных активных продуктов фигурируют радикалы [3]. Все эти схемы имеют существенные недостатки, так как в них механически перенесены радикальные механизмы гохмогенного окисления без учета влияния, которое оказывает твердое тело на протекание таких реакций. Ряд активных промежуточных форм, ведущих процессы в объеме, не может существовать на поверхности твердого тела. [c.410]

    Функциональный анализ. Одним из необходимых шагов в структурном анализе органических соединений является определение природы и числа функциональных групп. На функциональные группы обращали внимание уже сторонники теории радикалов и теории типов. Поэтому и до появления теории химического строения было известно немало реакций для открытия функциональных групп. Б Введении к полному изучению органической химии Бутлеров упоминает о таких реакциях, например, на гидроксильную группу (в спиртах) с металлическим натрием образование алкоголята с хлорокисью фосфора продукта замещения гидроксильной группы на хлор с кислотами сложных эфиров, особенно характеристический и свойственный собственно алкоголям случай замещения водорода водяного остатка [25, с. 133]. Те же реагенты могут действовать и на гидроксильную группу кислот, однако при этом образуются соли, галогенангидриды кислот, которые в отличие от га-логенпроизводных алкогольных радикалов легко разлагаются водой. Подобный анализ имеет не только качественный, но и количественный характер, так как по числу атомов замещенного водорода в гидроксильных группах или самих этих групп можно судить, например, об атомности и основности оксикислот. К характерным реакциям альдегидов, открытым ранее, относится их легкая способность окисляться до кислот, восстанавливая окись серебра (Либих, 1835), а также способность к прямому соединению с аммиаком (Деберейнер, 1832). Кетоны резко отличаются от альдегидов тем, что не присоединяют кислород, а при действии окисляющих веществ, в отличие от альдегидов, распадаются. Бутлеров упоминает также о бисульфитной реакции на альдегиды и кетоны (Бертаньини, 1853). Были известны также реакции не только на аминогруппы, но и для [c.298]


    Алюминийорганические соединения оказывают общее раздражающее действие на организм человека. При горении или при взаимодействии алюминийалкилов с влагой воздуха в производственных помещениях образуется сложная смесь продуктов окисления, распада, гидролиза и реакций карбоксилирования с двуокисью углерода [1, с. 201 5]. Основными из них являются аэрозоли алюминия, окиси и гидроокиси алюминия, предельные и непредельные углеводороды, водород, органические кислоты и спирты, окись углерода, альдегиды, а также галогенводороды и алкилгалогениды (в случае разложения алкилалюминийгалогенидов). Отмечается, что значительная часть образующихся яродуктов гидролиза находится в воздухе не в свободном состоянии, а в адсорбционной связи с аэрозолями [1, с. 201]. Из всех образующихся соединений при разложении алюминийалкилов наиболее опасными для человека являются аэрозоли алюминия, его окислов и хлористого водорода. Токсические свойства продуктов разложения низших алюминийалкилов представлены ниже [5]  [c.204]

    Высокая реакционная способность глицидных групп, обусловливающая возможность модификации пленкообразователя и его сшивание при термоотверждении, одновременно снижает его стабильность при хранении. Так, жизнеспособность растворов сополимеров, содержащих 20% (мол.), глицидилметакрилата с добавкой алифатических аминов, составляет 4—6 ч [86] (рис. 1.9, 1.10). Для повышения стабильности проводят обработку глицидиловых групп сополимера фосфорной кислотой в присутствии карбонилсодержащих соединений. При этом стабильность повышается в результате перевода глицидных групп в эфирные, ацетальные и кетальные. Механизм реакции а-ок-сидных групп с фосфорной кислотой и альдегидами связан с образованием ацеталей путем замены эфира фосфата на альдегид или с реакцией альдегида с гликолем, полученным при гидроли-зе фосфата по следующей схеме  [c.55]

    Важное значение получила также открытая Реппе реакция, ок-сосинтеза альдегидов, по которой на олефин под давлением в присутствии карбонила кобальта как катализатора действуют смесью окиси углерода и водорода (стр. 127)  [c.254]

    Оксйреакция представляет собой каталитическое присоединение окиси углерода и водорода к олефину с образованием альдегидов, содер кащих па один углеродный атом больше, чем исходный олефин, т. е. в молекулу соединения вводят оксогруппу >С0. Во второй стадии реакции альдегиды обычно восстанавливаются водородом до первичных спиртов. Такой двухступенчатый процесс и известен под названием оксосинтез . Наибо.лее эффективным катализатором для этой реакции является активная форма кобальта, например восстановленная окись, карбонат или ацетат. [c.380]

    Окись углерода. В присутствии безводного хлористого алюминия (или лучше бромистого алюминия) при давлениях от 100 до 150 ат и при низких температурах окись углерода реагирует с простыми парафинами, давая кетоны. Как и в приведенных выше примерах реакций с хлористым алюминием, w-парафины дают разветвленные кетоны. Так, я-бутан и изобутап дают метилизопропилкетон, а пентан и изопентан — этилизо-пропилкетон, причем, по-видимому, группа СО сама внедряется в углеродную цепь. Высказано предположение (1936 г.), что окись углерода может реагировать в виде комплекса СО и НС1 с хлористым алюминием, образуя сначала альдегид, который затем изомеризуется в кетон. В подтверждение этого предположения указывалось, что триметилацетальдегид изомеризуется хлористым алюминием в метилизопропилкетон, следовательно, реакция изобутана с СО может быть эмпирически представлена как [c.95]

    Гидрирование и дегидрирование. Катализаторы этих реакций образуют нестойкие поверхностные гидриды. Металлы переходной и платиновой групп (Ni, Fe, Со и Pt) могут ок азаться пригодными аналогично окислам или сульфидам металлов переходной группы. Данный тип реакций является чрезвычайно важным он включает такие процессы, как синтез аммиака и метанола, реакцию Фишера—Тропша, оксо-синтез, синтол-прбцесс, а также получение спиртов, альдегидов, кетонов, аминов и пищевых жиров. [c.313]

    Для получения высших спиртов существует, однако, несколько методов один из них — метод альдольной конденсации, другой — так называемая реакция оксосинтеза. Последняя заключается в непосредственном присоединении окиси углерода и атома водорода по месту двойно1 1 связи олефина, в результате чего образуется альдегид, который затем восстанавливается в спирт. Гидро-формилирование (оксосинтез) осуществляется путем контактирования олефина в смеси с синтез-газом (окись углерода — водород в соотношении 1 1) при температуре 75—200° С и давлении 100— 300 атм над металлическим катализатором (обычно кобальтом). Активной формой катализатора, но-видимому, является гидрокарбонил кобальта НСо(СО)4, образующийся в результате воздействия водорода на дикобальтокарбонил. Более детальное описание процесса оксосинтеза см. [252—257]. [c.579]

    Полимеры с концевыми гидроксильными группами получаются при реакции живых полимеров с окисями алкиленов, альдегидами, кетонами [7—И]. Окись этилена и формальдегид образуют первичные гидроксильные группы, при реакции с окисью пропилена и альдегидами (гомологи выше формальдегида) получаются вторичные гидроксильные группы, а с кетонами —третичные гидроксильные группы. [c.419]

    Альдольные конденсации под действием гидроксида натрия ускоряются в условиях межфазного катализа. Например, масляный альдегид в присутствии аликвата 336 дает (после дегидратации) 2-этилгексен-2-аль с выходом 90%, а в отсутствие межфазного катализатора выход продукта составляет лишь 14% [1714]. В присутствии ТЭБА порядок реакции конденсации ацетона меняется со второго на третий (относительно ацетона), и в результате образуется диацетоновый спирт, который далее превращается в окись мезитила и форон [1547].  [c.228]

    Стадия гидрирования. Из газоотделителя 1о продукты реакции гидроформилирования вместе со взвептепным в пих катализатором нагнетаются пасосом 20 в печь гидрирования 21, где при 200" и 200 ат альдегиды восстанавливаются водородом в первичные спирты. Поосольку кобальт пе обладает большой активностью как катализатор гидрирования, реакция продолжается око по 2 час. и тепла выделяется в единицу времени относительно немного. Водород ноступает п печи гидрирования 21 и 22 по штуцерам 23 и 24, пройдя предварительно подогреватель 25. Насос 26 обеспечивает рециркуляцию водорода п системе. Вместо прореагировавшего водорода в цикл вводят свежий газ, прошедший очистку от сернистых соедипепий в аппарате 27. [c.548]

    В своей работе по окислению пропилена кислородом Ленер [I] выделил только ацетальдегид, формальдегид и муравьиную кислоту. Однако Ньюитт и Мен, работавшие с избытком пропилена, получили при 215—280" и 12—18 ата окись пропилена, пропиленгликоль и глицерин наряду с различными кислотами и альдегидами [2]. Установлено, что в начальных стадиях окисления образуются аллиловый спирт и пропионовый альдегид. Можно сказать почти определенно, что аллиловый спирт и глицерин получаются в результате атаки кислородом метильной группы. Лукас исследовал окисление бутилена-2 кислородом при 350—500° [3]. Основными продуктами реакции являются ацетальдегид и дивинил. Установлено также присутствие глиоксаля, окиси олефина, кислоты и перекисей метилэтилкетон не обнаружен. Дивинил, по-видимому, получается в результате дегидратации 2,3-бутандиола или окиси бутилена, а окисление его по двойным связям приводит к глиоксалю  [c.158]

    Как видно из этих данных, масляный альдегид восстанавливался до спирта только тогда, когда окнсь углерода или совсем не вводилась в реакцию, или ее да вление составляло 72 атм., ио не тогда, когда она находилась под давлением 21,6 атм. В отсутствие окиси углерода восстановление катализировалось металлическим кобальтом. В том случае, когда давление ок1+си углерода составляло 72 атм, реакция была, по-видимому, гомогенной и катализировалась растворенным дикобальтоктакарбо-нилом или гидрокарбонилом кобальта. Известно, что для предотвращения распада [Со(СО) 42 на металлический кобальт и окись углерода при 150° давление окиси углерода должно быть не ниже 43,2 атм. Поэтому в том о иыте, в котором давление окиси углерода было равно 21,6 атм, металлический кобальт, ио-видимому, присутствовал в неактивном состоянии вследствие отравления окисью углерода. [c.206]

    Как видно из таблицы, продуктами реакции являются непредельные углеводороды, метан, водород, формальдегид, высшие альдегиды, метиловый и этиловый спирты, окись и двуокись углерода и вода, т. е. в основном те же продукты, какие были найдены при окислении пропана и Пизом. Непредельные углеводороды состоят из пропилена и этилена, а под высшими альдегидами следует понимать ацетальдегид. Данные таблицы приводят авторов к выводу о слабом влиянии природы поверхности на химизм окисления пропана. Важным результатом этих опытов, проведенных в статических условиях, явился факт полного [c.141]

    Из данных табл. 28 следует, что 1) количества альдегпдов и перекисей быстро нарастают в течение первых 30 мм прироста давлеиия в реагирующей смеси, а затем начинают уменьшаться, причем перекиси быстрее, чем альдегиды, 2) двуокись углерода появляется и начинает накапливаться только после увеличения начального давления сыеси на 20 мм рт. ст., в то время как окись углерода впервые возникает на более ранней стадии реакции и ее концентрационная кривая имеет более выраженный -образный вид, чем кривая двуокиси углерода, 3) спирты накапливаются с приблизительно постоянной скоростью вплоть до прироста начального давления смеси на 40 мм рт.ст., затем со все уменьшающейся скоростью до конца реакции, кислоты и вода накапливаются с постоянной скоростью на протяжении всей реакции и, наконец, 4) расходование бутаиа и кислорода происходит в приблизительно эквимолекулярных количествах, пока прирост давления в смеси не достигает 20 мм рт. ст., после чего расход кислорода становится значительно более быстрым, чем бутана. [c.146]

    Анализы реагирующей смеси по ходу холоднопламенной реакции (рис. 46) проводились, кончая моментом угасания второго холодного пламени. В конце периода индукции высшие альдегиды, пропилен, кислоты п окись углерода имеются уже в измеримых количествах, перекиси же, формальдегид и двуокись углерода еще отсутствуют. Через 45 сек. после начала периода реакции возникает первое холодное пламя, и к этому моменту выход высших альдегидов достигает своего первого максимума. В промежуток времени, в течение которого холодное пламя возникает, распространяется и гаснет, скорость окисления пропана растет, и процент высших альдегидов уменьшается, зато впервые появляются и начинают расти количества перекисей и формальдегида. Вскоре после угасания холодного пламени содержание перекисей в смеси достигает первого своего максимума, а высших альдегидов падает до минимума. Вслед за этим содержание высших альдегидов в смеси снова нарастает до второго максимума, большего, чем первый, содержание же перекисе падает. Возникает второе холодное пламя, сопровождаемое таким же изменением в продуктах реакции, как и первое холодное пламя. [c.157]

    В чем заключается оксинитрильный синтез а-ок-сикислот Напишите уравнения последовательных реакций получения оксикислот по этому методу, взяв в качестве исходного а ) уксусный альдегид б) бутанал  [c.59]


Смотреть страницы где упоминается термин окись реакции с альдегидами: [c.274]    [c.104]    [c.52]    [c.192]    [c.86]    [c.332]    [c.95]    [c.267]    [c.344]    [c.218]    [c.198]    [c.231]    [c.252]    [c.262]    [c.329]    [c.514]    [c.471]    [c.172]    [c.372]    [c.533]    [c.533]    [c.120]   
Органическая химия нуклеиновых кислот (1970) -- [ c.414 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние типа соли на скорость реакции (ПО). — Влияние парциального давления окиси углерода и температуры (Ш). — Влияние альдегидов, кетонов, спиртов, аминов на скорость реакции

Окись углерода, влияние на скорость гидрирования альдегидов влияние на состав продуктов реакции

Окись углерода, влияние на скорость гидрирования альдегидов замедление реакции при карбонилировании

Опыт 49. Окисление альдегидов аммиачным раствором окиси серебра (реакция серебряного зеркала)

Реакции к окиси углерода альдегидов или непредельных соединений совместно с другими органическими молекулами

Реакции образования спиртов, альдегидов, кислот из водорода, окиси углерода и олефинов

Реакции этинилвиниловых.соединений с альдегидами, кетонами, окисью этилена и двуокисью углерода

Этилен, окись его, нитрация реакция с альдегидами



© 2025 chem21.info Реклама на сайте