Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Паули теория

    В молекуле два электрона. Согласно принципу наименьшей энергии и принципу Паули, эти два электрона с противоположными спинами также заселяют ст Чз-орбиталь. Реакцию образования молекулы водорода из атомов в системе обозначений теории молекулярных орбиталей можно записать [c.50]

    Что касается уравнения Паули, то оно может быть получено двумя способами 1) на основе общих положений теории вероятностей, 2) на основе уравнения Лиувилля. [c.39]


    При обычном обосновании уравнения Паули, впервые данном самим Паули [363], подразумевается, что приближение к равновесию вызывается возмущающим членом ЗС] в гамильтониане системы, причем ЗС, настолько мал, что вероятности перехода Рц можно вычислять в первом приближении нестационарной теории возмущений. При этом вывод уравнения Паули опирается на статистическую гипотезу, что фазы волновых функций, принадлежащих различным собственным значениям Ж, распределены беспорядочно, т.е. что матрица плотности считается диагональной в представлении невозмущенного гамильтониана. Эта гипотеза беспорядочных фаз относится не только к начальному состоянию, но многократно используется после каждого из таких интервалов времени, для которых невозмущенная энергия зе при переходе сохраняется. Аналогичная (и глубоко неудовлетворительная) ситуация имеет место при допущении молекулярного хаоса в выводе кинетического уравнения Больцмана. Этот вопрос связан с тем, что надо получить необратимость во времени, хотя исходные уравнения динамики обратимы [75,119, 163, 445]. [c.41]

    По квантовой теории возможны лишь те изменения между энергетическими уровнями, которые удовлетворяют правилам отбора Паули. Последние устанавливают наибольшую вероятность определенных переходов по сравнению с другими. [c.65]

    Разбавленные дисперсные системы сферических частиц, покрытых оболочками (теория Паули и Швана) [c.351]

    К представлениям об одноэлектронных орбиталях с определенной симметрией (так называемая модель отталкивания пар электронов). Здесь эта теория не рассматривается, так как попытки ее вывода и интерпретации (с помощью принципа Паули) внесли бы известное замешательство в наши представления. Следует, однако, указать на то, что уменьшение угла связи по сравнению с теоретическим значением в ряду соединений [c.92]

    Советские ученые А. В. Думанский, Н. Н. Песков, С. М. Липатов, Л, Н, Фрумкин, а также зарубежные ученые Веймарн, Паули, Фаянс, Кройт на основе теории двойного электрического слоя создали так называемую мицеллярную теорию строения коллоидных частиц. Первоначально представление о мицеллярном строении частиц распространялось на все системы, изучаемые коллоидной химией, в том числе и на лиофильные золи. Однако последующие исследования показали, что лиофильные золи, или, точнее, [c.317]

    Таким образом, проведенное исследование позволило сделать вывод, что химическая связь в молекуле водорода осуществляется путем образования пары электронов с противоположно направленными спинами, принадлежащей обоим атомам. Разработанная на этой основе теория химической связи и для более сложных молекул получила название метода валентных связей. Важным положением является то, что всякий раз, когда химическая связь образуется, спины пары электронов должны быть антипараллельными. Это находится в соответствии с принципом Паули и подчеркивает, что при образовании химической связи электроны переходят в новое квантовое состояние. [c.103]


    При описании молекулы водорода по теории молекулярных орбит мы должны поступать аналогично тому, как мы строили функции атомов при обсуждении периодической системы. Будем, как и всегда, одевать электронами голые , локализованные в определенных местах пространства ядра, занимая поочередно различные состояния, учитывая их энергии и выполняя запрет Паули. Роль водородных функций будут играть функции, описывающие состояние электронов в Н . [c.483]

    Для описания металлической связи как единого коллектива взаимодействующих частиц в твердом теле применяют зонную теорию кристаллов. В основу зонной теории проводимости металлов, а также других кристаллических тел (см, 5.10) положены по существу два принципиальных вывода из квантово-мехаиических представлений энергия электронов в металле (твердом теле) может принимать только дискретные значения распределение электронов по уровням энергии подчиняется квантовой статистике Ферми — Дирака, удовлетворяющей принципу Паули. [c.122]

    Построение системы энергетических уровней завершается размещением на них соответствующего числа электронов. В нашем случае на двух молекулярных орбиталях можно разместить четыре электрона, которые соответствуют образованию различных молекул и ионов. Это достигается следующим образом. Один электрон в системе из двух орбиталей а и а выбирает а как имеющую наиболее низкую энергию. Такое состояние отвечает образованию простейшей молекулы — молекулярного иона водорода HJ. Этот ион в теории молекул играет такую же роль, как атом водорода в теории строения атомов. В частности, принципиально важным является существование химической связи, образованной одним электроном. Второй электрон также направится на орбиталь а, и в соответствии с принципом Паули спины этих двух электронов должны быть спарены. [c.186]

    Таким образом, с точки зрения современной теории необходимо всегда учитывать принцип запрета Паули наряду с обычными межэлектронными силами и взаимодействиями атомных ядер. [c.200]

    При рассмотрении геометрического строения молекулы наиболее важным фактором являются углы между связями. Теория валентной связи гибридизованных орбиталей дает удовлетворительные величины многих из наблюдаемых углов между связями особенно тогда, когда можно сделать определенный выбор участвующих в связи орбиталей. Однако эта теория не всегда дает объяснения наблюдаемым углам. Когда же предсказываемые углы между связями отличаются от экспериментально найденных, то обычно применяют довольно искусственный прием определения степени гибридизации, т, е. относительного вклада в гибридизацию 5-, р- и -составляющих связи . Ниже будет показано, что этим было, по крайней мере, положено начало лучшему пониманию и объяснению различия углов между связями которое наблюдается во многих формально аналогичных молекулах, И модель, которая будет использована, по-прежнему базируется, в основном, п пространственной корреляции электронных пар валентного уровня, возникающей из принципа запрета Паули, [c.223]

    Новый этап (начало XX в.) в развитии физической химии связан с созданием квантовой теории и волновой механики (Бор, Планк, Шредингер, Паули). Используя квантово-механический метод, физики и физико-химики добились больших успехов в изучении строения молекул, кристаллов и в познании природы химической связи. [c.7]

    Согласно химической теории коагуляции, выдвигавшейся Паули. Дюкло и другими исследователями, коагуляция рассматривается как результат образования в двойном электрическом слое неионизированного соединения (нерастворимой соли). Эта теория, однако, не может объяснить отсутствия специфичности в коагулирующем действии нонов. [c.90]

    Дальнейшее развитие квантовой теории позволило решить вопрос об электронной структуре атомов различных элементов, привести ее в полное соответствие с периодической системой элементов Д. И. Менделеева и раскрыть причины периодичности свойств элементов. Распределение электронов на свободных энергетических уровнях (оболочках) атомов происходит так, что в нормальном состоянии атома в первую очередь заполняются наиболее низкие энергетические уровни в порядке последовательного формирования электронных оболочек К, L, М и т. д. В соответствии с принципом Паули максимальное число электронов на какой-либо оболочке выражается формулой N = 2п , где п — главное квантовое число. [c.16]

    Решение задачи было достигнуто в 1926 г., когда Ферми и Дирак предложили зонную теорию (см., например, [1]). Согласно этой теории, в соответствии с принципом Паули весь электронный газ не может быть на одинаково низком энергетическом уровне. Образуются зоны с несколько различающимися энергетическими состояниями электронов. Удельная теплоемкость электронов равна нулю, и только 2 электрона на самом верхнем уровне вносят в нее вклад. Поэтому теплоемкость металла определяется в основном тепловыми колебаниями атомов, а не свободными электронами. [c.253]


    Но, конечно, наиболее важным выводом из общих принципов новой механики надо признать принцип Паули. Открытие спина электрона и возможность с помощью принципа Паули построить периодическую систему Д. И. Менделеева и заложить фундамент теории химической связи представляет собой триумф квантовой механики. [c.76]

    Теоретическое обоснование гипотезы электронного газа в металле дала квантовая теория твердого тела (зонная теория). Квантово-механическое рассмотрение показывает, что при сближении атомов вследствие взаимодействия между ними электронные энергетические уровни смещаются (проявляется принцип Паули), причем это смещение в наибольшей степени затрагивает внешние, валентные электроны. В результате из одинаковых уровней далеко отстоящих атомов образуется энергетическая зона близко расположенных уровней (рис. IV. 10). [c.178]

    Современная теория строения атома прежде всего исходит из представлений о корпускулярно-волновом дуализме электрона и описывает его состояние четырьмя параметрами — квантовыми числами. Предельное число электронов, которое может заселять одну орбиталь, равно двум, что соответствует принципу Паули. Электроны располагаются на одинаковых орбиталях так, чтобы суммарный спин был максимален. [c.60]

    Недостатком ТКП является полное игнорирование ковалентного вклада в образование координационных соединений. Поэтому наиболее эффективным подходом к описанию свойств комплексных соединений является учитывающий одновременно ионный и ковалентный вклад в, образование связи метод молекулярных орбиталей (ММО). Согласно этой теории химическая связь в комплексных соединениях осуществляется электронами, находящимися не на АО, локализованных только около центрального атома и данной рассматриваемой группы, а комплексообразование происходит в результате образования новых молекулярных орбиталей (МО), каждая из которых простирается на все ядра системы. Форма и энергия этих новых МО, каждая из которых может содержать не более двух электронов в соответствии принципом Паули, зависит от характера взаимодействующих АО. [c.384]

    Ферми Энрико (1901—1954)—итальянский физик. Разработал статистику частиц, подчиняющихся принципу Паули, создал теорию радиоактивного р-распада. [c.48]

    Поведение электронов проводимости правильно описывается квантовой теорией металлов, которая представляет собой приложение квантовой статистики к металлам. Ее исходные представления 1) электроны системы неразличимы 2) обязательное выполнение принципа Паули, т. е. в любой системе в данном квантовом состоянии не может находиться более одного электрона с данной ориентацией спина 3) изменение состояния электронов определяется изменением хотя бы одного из четырех квантовых чисел. Расчеты, проведенные с учетом основных положений квантовой статистики применительно к металлам, позволяют вывести уравнение [c.130]

    Друде Пауль (1863—1906) — немецкий физик. Основные труды по приложениям классической электронной теории к металлам. Лоренц Хендрик Антон (1853—1928) —нидерландский физик, создатель электронной теории. Основные работы в области электромагнитных явлений, отражения и преломления света. Ввел пространственно-временные преобразования (преобразования Лоренца). Член многих академий и научных обществ мира. [c.130]

    На основе зонной теории легко объяснима электропроводность твердого тела. Чем, например, объясняется электропроводность лития и других щелочных металлов У них валентная зона занята только наполовину, так как N атомов имеют N валентных электронов (по одному я-электрону на атом), а число мест в 5-зоне 2 N. Незаполнен-ность верхней (валентной) зоны порождает электронную проводимость, характерную для металла. Действительно, под влиянием электрического поля валентные электроны должны начать движение к положительному полюсу, т. е. приобретать дополнительную энергию. Такое наращивание этой энергии очень малыми порциями (почти непрерывное) возможно, если в зоне валентных состояний есть уровни, свободные от электронов. Если зона валентных состояний полностью заполнена электронами, то проводимость должна отсутствовать, т. е. тело должно иметь свойства диэлектрика. В полностью заполненной зоне электроны не могут наращивать энергию малыми порциями, так как принцип Паули запрещает переходы внутри заполненной зоны. [c.234]

    Квантовая теория и эмпирический запрет Паули дают сведения о числе возможных наборов электронных состояний в нормальном атоме, но этого недостаточно для того, чтобы определить порядок заполнения электронных вакансий, а значит и длины последовательных периодов Системы. Начало каждого из них характеризуется появлением нового поверхностного слоя электронов в атоме, но порядковый номер элемента, возглавляющего период, зависит от ряда факторов, не принимавшихся во внимание в самой элементарной теории построения Системы. В результате вместо простейшей последовательности длин пяти периодов 2, 8, 18, 32, 50, которая бы отвечала за- [c.7]

    Ярким примером является теория валентной связи Гайтлера-Лондона. Согласно этой теории валентная связь создается двумя электронами в синглетном спиновом состоянии. Электрон имеет спин 5" = 1/2. Суммарный спин двух электронов может равняться нулю или единице (5" = О, 1). Состояние с суммарным спином нуль (5" - 0) называется синглетным, в этом состоянии спины двух электронов ориентированы в противоположные стороны. Состояние с суммарным спином единица (5" = 1) называется триплетным, в этом состоянии спршы двух электронов одинаково ориентированы. Суммарный спин двух валентных электронов жестко связан с пространственным распределением электронов. Действительно, согласно принципу Паули, в одной точке пространства не могут находиться одновременно два электрона в одинаковом спиновом состоянии. Это означает, что в синглетном состоянии два валентных электрона могут одновременно находиться в пространстве между двумя атомами, а в триплет-ном состоянии это запрещено принципом Паули. Теория валентной связи Гайтлера-Лондона продемонстрировала важную роль спина электронов в понимании природы химической связи, валентности. [c.2]

    В книге рассмотрены прямая и обратная задачи химической кинетики, решение жестких систем нелинейных обыкновенных дифференциальных уравнений, уравнение Паули (управляющее уравнение), метод классических траекторий, расчеты по теории Райса—Рамспергера—Касселя—Маркуса (РРКМ) и некоторые специальные физико-химические и вычислительные проблемы химической кинетики, связанные с новыми задачами, воз- [c.3]

    В 1926 г. Гейзенберг и Шредингер создали механику атомных и молекулярных систем, которая получила широкое применение в атомной и молекулярной физике. Необходимое дополнение в квантовую механику внес Паули, разработавший теорию электронных спинов. Это явилось фундаментом, на котором с учетом известного правила несовместимости (запрет Паули в атоме не может быть двух электронов, обладающих 4 одинаковыми квантовыми числами) было построено учение о химических силах, в принципе позволяющее понять и описать образование химических соединений. Сначала удалось интерп )етировать устойчивость электронных оболочек атомов инертных газов, благодаря чему нашло исчерпывающее объяснение понятие электровалентной связи, лежащее в основе теории Косселя. Затем получила квантово-механическое истолкование и ковалентная связь. Гейтлером и Лондоном было показано, что связь двух атомов в молекуле водорода может быть объяснена чисто электростатическими силами, если для этого использовать квантовую механику. Силы, связывающие два атома и два электрона, возникают благодаря тому, что оба электрона имеют антипараллельные спины и с большой степенью вероятности находятся между двумя атомными ядрами насыщаемость химических связей объясняется принципом Паули. Таким образом, представления Льюиса получили исчерпывающее физическое обоснование. [c.24]

    При формировании качественных представлений об электронном строении атомов важная роль принадлежит приближению центральносимметричного потенциала, на основе которого атомную орбиталь записывают в виде произведений радиальной и сферической функций. Принцип Паули и приближение центрально-симметричного поля позволяют понять оболочечное строение атома и установить конфигурацию основного состояния. В тех случаях, когда можно ожидать несколько конкурирующих конфигураций, вопрос их выбора рещается либо экспериментально, либо численными расчетами в приближении Хартри — Фока. Лишь в исключительных случаях для установления терма основного состояния (см. гл. 3, 7) требуется построение более сложной, по сравнению с методом Хартри — Фока, волновой функции в форме наложения конфигураций. Эту логику рассуждений переносят и на теорию злектрон-ного строения молекул, однако здесь возникают новые вопросы. [c.187]

    Паули расширил представления Иордиса и Дюкло. Он тоже считал, что мицелла состоит из сравнительно инертного ядра и способной к ионизации активной ч сти. Эту способную к ионизации часть мицеллы он назвал ионогенным комплексом. Паули рассматривал этот комплекс как настоящее комплексное соединение по теории Вернера и поэтому выражал строение мицеллы, например золя сульфида мышьяка, следующей формулой  [c.241]

    Основные закономерности коагуляции под действием электролитов. Изменение устойчивости золей при изменении содержания в них электролитов было известно уже первым исследователям коллоидных систем (Ф. Сельми, Т. Грэм, М. Фарадей, Г. И. Борщов). В дальнейшем благодаря работам Г. Шульца, У. Гарди, Г. Пиктона, О. Линдера, Г. Фрейндлиха, В. Паули, Г. Кройта, Н. П. Пескова, А. В. Думанского и других был накоплен обширный экспериментальный материал и сделаны основные теоретические обобщения. Огромный вклад в развитие теории электролитной коагуляции внесли советские ученые Б. В. Дерягин с сотр., П. А. Ребиндер и его школа. Экспериментально установленные закономерности при коагуляции электролитами известны под названием правил коагуляции  [c.105]

    В течение последнего десятилетия Леннард-Джонс, Попл, Лин-нетт, Уолш и др. рассматривали проблемы геометрических форм молекул, пользуясь новым теоретическим подходом. Их метод, хотя и использует в некоторой мере тот же математический аппарат и те же основные идеи, что и в теориях валентной связи и локализованных молекулярных орбиталей, но обращает основное внимание на число электронов в валентном уровне и на свойства этих электронов. Все электронные системы (атомы, молекулы или твердые тела) обладают одним свойством — электроны с одним и тем же спином не могут одновременно находиться % одной и той же области пространства. Так как все электроны заряжены отрицательно, они будут взаимно отталкиваться в соответствии с законом Кулона. Однако даже более важным в определении форм и свойств молекул является то, что электроны с одним и тем же спином, как оказалось, имеют очень малую вероятность нахождения близко один от другого из-за жестких требований принципа запрета Паули . Вообще говоря, только из рассмотрения спинового взаимодействия, не принимая во внимание возмущения, возникающего из-за электронного отталкивания, стало возможным установление геометрического расположения электронов, которое было выше описано для 2, 3, 4, 5 и 6 электронных пар. [c.199]

    Другое проткЕоречис, заложенное в протон-электронной модели, можно обнаружить при рассмотрении статистики ядер изотопа N. Макроскопические сеойстез, такие как распределение энергии по молекулам газа, описываются классической статистикой Больцмана, но для ядер и элементарных частиц оказалось необходимым ввести новый статистический подход. На основе квантовой теории были разработаны два типа статистики. Если координаты двух идентичных частиц в системе можно взаимно переставить без изменения знака волновой функции, описывающей систему, то она подчиняется статистике Бозе—Эйнштейна. Однако, если волновая функция антисимметрична, другими словами, если знак волновой функции меняется при перестановке координат, то система подчиняется статистике Ферми —Дирака, причем различие состоит в том, что принцип запрета Паули [c.392]

    К разрешению этой дилеммы можно подойти двумя путями. Во-первых, можно предположить, что законы сохранения, такие, как, например закон сохранения количества движения, недействительны для микротел (для ядра). Во-вторых, можно предположить, что распад в действительности включает третью, пока еще не названную частицу, способную уносить оставшуюся энергию. Эта последняя идея была выдвинута в 1927 г. Паули и в дальнейшем использована Ферми в его формулировке теории бета-распада. Эта новая частица была названа нейтрино, и, для того чтобы удовлетворить известные законы сохранения и объяснить еще не исследованную природу частицы, необходимо было приписать ей отсутствие заряда, очень малый магнитный момент, очень близкую к нулю массу покоя, спин, равный половине, и соответствие статистике Ферми — Дирака. Вероятность взаимодействия с веществом частицы без заряда, магнитного момента или массы покоя практически равна нулю. Действительно, было подсчитано, что если единственной реакцией нейтрино является процесс [c.403]

    Разработка моделей строения атома. В 1911 г. Э. Резерфорд предложил ядерную планетарную модель, иа основе которой Н. Бор в 1913 г. создал первую к >.антовую теорию строения атома, которая затем совершенствовалась в работа.х А. Зоммерфельда, П. Дебая, Л, Ланды, Е. Стонера, В, Паули, Г. Уленбека и С. Гоудсмнта. [c.51]

    Согласно теории, щелочноземельные металлы, в наружном слое которых только два электрона и у которых по принципу Паули антипараллель- [c.109]

    Остается ли знак неизменным или изменяется при перестановке неразличимых частиц, зависит от их природы. Частицы, имеющие целый спин,— бозоны (фотоны, H, Не и т. п.) характеризуются неизменностью знака функции при перестановке частиц. Если одна такая частица (1) находится в состоянии г )о, а другая (2)—в состоянии 1 ), то двухчастичная волновая функция будет иметь вид яра (1)г1)ь(2)+г1)а(2)г1зь(1). Если = т. е. частицы находятся в одинаковых состояниях, то эта функция в нуль не обращается. На бозоны запрет не действует и заданное состояние можно заполнять многократно (можно, например, получить пучок фотонов любой интенсивности). Частицы, имеющие полуцелый спин,— фермионы (электроны, протоны, нейтроны, ядра типа Не и т. п.) согласно принципу Паули должны характеризоваться функцией, которая изменяет знак при перестановке тождественных частиц (антисимметричной). Функция 5й(l) J5 (2) — фа(2)ф (1) подходит для этого, так как если оба электрона находятся в одинаковых состояниях, т. е. г )и = 1 ь, то функция обращается в нуль. Иными словами, такой пары электронов в атоме быть не может. Принцип, запрещающий двум электронам иметь одинаковые наборы квантовых чисел — частное выражение общего принципа Паули —играет в химии фундаментальную роль. Он тесно связан с периодическим законом Д. И. Менделеева и служит основой при обсуждении теорий химической связи (см. ниже). [c.74]

    Тем не менее даже на этом этапе развнтия периодического закона оставался неясным физический смысл явления периодичности, т. е. констатировался сам факт периодического изменения свойств элементов, но не было понятно, почему при монотонном возрастании атомного номера свойства элементов меняются не монотонно, а периодически. И только на третье.м этапе, с развитием квантово-механической теории электронного строения атома, стало возможным вскрыть физический смысл периодического закона. Выяснилось, что сущность периодичности заключается в существовании предельной емкости электронных слоев и в периодическом возобновлении сходных валентных электронных конфигураций на все более высоком энергетическом уровне в результате наложения квантово-механического принципа Паули на классический принцип наименьшей энергии в атомной системе. [c.7]

    Окончательно сформулировать основные гипотезы теории БКШ можно таким образом при О К сверхпроводящее основное состояние представляет собой сильно коррелированное состояние, когда в пространстве импульсов нормальные электроны в тонком слое вблизи поверхности Ферми по возможности плотно заполняют парные состояния с противоположными спином и импульсом . Указанная корреляция меж у парами почти целиком обусловлена принципом Паули, а не истинным динамическим взаимодействием между парами. Это предположение позволило вычислить энергию сверхпроводящего основного состояния, которое полностью определяется корреляцией между куперовскими парами элек- тронов с противоположными спином и импульсом. Взаимодействие, приводящее [c.269]

    Возникновение парамагнетизма электронов проводимости наиболее просто объяснить (Паули, 1927 г.) с точки зрения зонной теории (см. гл. 11). Металлы содержат зону проводимости, лишь частично занятую электронами. На каждом занятом уровне размещается по два электрона с противоположно направленными спинами. Поэтому зону проводимости удобно представить в виде двух полузон (рис. 129, / и //) одна из них содержит электроны со спинами, направленными вверх, другая — со спинами, направ- [c.303]


Смотреть страницы где упоминается термин Паули теория: [c.76]    [c.37]    [c.129]   
Физико-химия коллоидов (1948) -- [ c.192 , c.194 ]




ПОИСК





Смотрите так же термины и статьи:

Паули



© 2025 chem21.info Реклама на сайте