Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сольватация оболочка

    Вытеснение воды с поверхности металла может происходить в результате ее связывания за счет сольватации катионами металлов, включения в состав гидратных оболочек гидрофильных составляющих присадок, а также за счет солюбилизации или эмульгирования и стабилизации в виде эмульсий вода — нефтепродукт. [c.293]

    Знание теплоты растворения соли в воде (или другом растворителе) и энергии кристаллической решетки той же соли дает возможность вычислить теплоту сольватации соли, т. е. теплоту образования сольватных оболочек вокруг ионов соли при их взаимодействии с растворителем. Например, теплота сольватации хлористого натрия соответствует процессу  [c.71]


    Положение существенно изменяется при переходе к растворам, в которых электростатическое взаимодействие между ионами значительно ослабевает в результате сольватации ионов молекулами растворителя, т. е. образования вокруг каждого растворенного иона оболочки из молекул растворителя. Сольватная оболочка образуется в результате ориентации дипольных моментов молекул по направлению поля, создаваемого ионами, а также в результате поляризации молекул растворителя полем центрального иона (образования у них наведенного дипольного момента, также ориентированного по направлению электростатического поля иона). [c.30]

    В соответствии с законом Ламберта - Бера увеличение оптической плотности нефти после растворения в ней оптически менее плотных ПАВ происходит из-за увеличения дисперсности частиц основного красящего вещества нефти - асфальтенов. Молекулы введенных в нефть ПАВ адсорбируются на поверхности частиц асфальтенов, образуя сильно развитые сольватные оболочки. Адсорбция ПАВ частицами асфальтенов сопровождается разрушением агрегатов частиц, т.е. пептизацией асфальтенов. Увеличение сольватации асфальтеновых частиц, как известно, обусловливает ослабление взаимодействия между ними, т.е. уменьшение структурообразования в нефти. [c.19]

    В соответствии с современными представлениями о растворах в окрестности сольватированного иона, молекулы, ассоциата, комплекса или другой подобной частицы структура растворителя меняется по мере удаления от центра сольватируемой частицы (ядра) [183,184]. Это экспериментально подтвержденное положение находит отражение в том, что различают молекулы растворителя ближнего (первичная сольватация) и частично дальнего (вторичная сольватация) и дальнего (среда) окружения сольватируемой частицы [18,183]. Применительно к растворам электролитов введено понятие о "границе полной сольватации", весьма важное для выяснения строения концентрированных растворов электролитов. При достижении границы полной сольватации все молекулы растворителя распределяются между сольватными оболочками ионов, которые с этого момента "ведут борьбу" за растворитель, молекулы которого перераспределяются в зависимости от сольватационной способности ионов [184]. [c.92]

    Под процессом сольватации будем понимать процесс перехода иона из вакуума в раствор. Этот процесс аналогичен процессу растворения газа в жидкости. Под энергией сольватации понимают изменение энергии Гиббса в процессе сольватации. Одно из наиболее простых, хотя и не очень точных выражений для энергии сольватации, дает формула Борна. Представим ион в виде сферической, равномерно заряженной оболочки радиуса г. Энергия образования этого иона в вакууме [c.227]


    Сольватация вносит значительный вклад в свободную энтальпию процесса растворения. Наблюдаются существенные различия в специфическом взаимодействии растворителя и растворенной частицы. Электрофильные частицы, например катионы, сольватируются преимущественно ДПЭ-растворителями. Вследствие присоединения молекул растворителя значительно увеличивается эффективный ионный радиус. Так, например, в диметилсульфоксиде размеры сольватированного иона лития. достигают размеров иона тетрабутиламмония. Основные центры молекул растворителя (атомы О, N или 5) в сольватной оболочке ориентированы к иону металла. Связь имеет характер [c.448]

    В ДПЭ-растворителях, напротив, сольватация анионов выражена очень слабо. Причиной этого является отталкивание отрицательных основных центров аниона и молекул растворителя. В соответствии с теорией жестких и мягких кислот образование сольватной оболочки около больших поляризуемых анионов (1 , 5СН-, 5 ) возможно только под действием дисперсионных сил (разд. 33.4.3.4). Жесткие же анионы (Р , ОН , ЫН -) в таких средах совершенно обнажены и поэтому проявляют высокую активность в реакциях с нуклеофильными заместителями. Предпочтительная сольватация катионов, вследствие чего образуются сольватные комплексы большого размера, снижает электростатическое притяжение между сольватирован-ными катионами и анионами, у которых практически не имеется сольватной оболочки. Такое состояние ионов в растворе способствует увеличению реакционной способности анионов, которая увеличивается еще и за счет высокой диэлектрической проницаемости растворителя. [c.449]

    ДПЭ-растворителя, а анионы — молекулами АПЭ-растворите-ля. Это явление называют селективной сольватацией. Так, например, в водном ацетонитриле А ЫОз образует катионы состава [Ад СНзСЫ)4-п]г ( = 0, 1, 2) и анионы [Ы0з(Н20)ж] . Однако часто молекулы обоих растворителей входят в состав сольватной оболочки. [c.450]

    Для решения некоторых задач неорганического синтеза большое значение имеют среды с сильноосновными свойствами. В водной среде невозможно создать основность большую, чем та, которую имеют гидратированные ионы 0Н , —/Сь = 55,3 (разд. 33.4.1.5). Гидратированные ионы 0Н сильно отличаются по степени основности от свободных ионов ОН . Стабилизированная водородными мостиками гидратная оболочка экранирует свободную пару электронов гидроксид-иона, в то же время для свободного иона ОН" (/Сь 10 ) способность к присоединению протона возрастает на несколько порядков. Применение в качестве среды дипольных апротонных растворителей, в которых невозможна сольватация анионов, позволяет проявиться сильноосновным свойствам свободного иона 0Н . [c.458]

    Влияние неводных растворителей на растворимость. При добавлении к водному раствору соли смешивающегося с водой неэлектролита, например ацетона, спирта и др., растворимость соли уменьшается. Это можно объяснить тем, что молекулы неэлектролита гидратируются, причем с увеличением количества неэлектролита гидратная оболочка ионов разрушается, и в итоге соль выпадает в осадок. Однако некоторые соли растворимы и в органических растворителях. Это происходит в том случае, когда силы межатомных взаимодействий в твердых веществах невелики и преодолеваются даже небольшими энергиями сольватации органического растворителя (например, при растворении перхлората бария в ацетоне) или если ионы твердых веществ особенно легко сольватируются (например, при растворении солей Ы+ или перхлората натрия в спирте). [c.197]

    Б. П. Дерягин (1945) разработал теорию устойчивости и коагуляции лиофобных (гидрофобных) золей, согласно которой сольватные (гидратные) оболочки вокруг ядра коллоидных мицелл, обусловленные сольватацией (гидратацией) ионов в диффузном слое, обладают упругими свойствами. Упругие силы жидких сольватных оболочек, препятствующие слипанию частиц, получили, по Б. П. Дерягину, название расклинивающего давления. Это название подчеркивает, что упругие сольватные прослойки между сближенными твердыми поверхностями действуют механически, как бы расклинивая поверхности. [c.325]

    Сам процесс пептизации в основном обусловливается адсорбционными явлениями, в результате которых происходит не только повышение дзета-потенциала дисперсных частиц, но и увеличение степени их сольватации (гидратации). Сообщение скоагулированным частицам дисперсной фазы золя заряда способствует, с одной стороны, общему разрыхлению осадка, с другой — переводу этих частиц во взвешенное состояние благодаря броуновскому движению. При этом происходит образование вокруг диспергируемых частиц сольватных (гидратных) оболочек, производящих свое расклинивающее действие. Ниже сопоставлены процессы пептизации и коагуляции. [c.376]


    Образование достаточно развитых сольватных оболочек маловероятно для коллоидных систем с лиофобной дисперсной фазой вследствие слабого энергетического взаимодействия среды с дисперсной фазой. Сольватация может иметь место только в том случае, когда поверхностные молекулы дисперсной фазы достаточно сильно взаимодействуют с молекулами дисперсионной среды за счет химических сил или, по крайней мере, прочных водородных мостиков. [c.281]

    Механизм защитного действия сводится, как мы уже указывали, к образованию вокруг коллоидной частицы адсорбционной оболочки из высокомолекулярного вещества. Электронномикроскопические снимки непосредственно доказали наличие таких защитных оболочек. Например, адсорбционные слои из метилцеллюлозы на частицах полистирола имеют толщину 70—100 А. Защитный слой, если он образован из макромолекул, имеющих полярные или ионогенные группы, может обеспечивать индуцированную сольватацию частица и достаточно высокий -потенциал, что обусловливает повышенную устойчивость системы. Кроме того, согласно новейшим представлениям, стабилизация коллоидных частиц может происходить вследствие теплового движения и взаимного отталкивания гибких макромолекул, только частично связанных с частицами золя в результате адсорбции отдельных их участков (энтропийный фактор устойчивости). [c.305]

    В результате процесса сольватации в растворе должны присутствовать не свободные иопы, а ионы с сольватной оболочкой. Как уже отмечалось, Бокрис и Конвеи различают первичную и вторичную сольватную оболочки. Для понимания многих электрохимических процессов важно знать, сколько молекул раствортеля входит во внутреннюю сольват11ую оболочку. Это количество молекул называется числом сольватации п,., или, в случае водных растворов, числом гидратации ионов Пу. Они имеют относительное значение и дают ориентировочные сведения о ч теле молекул растворителя, входящих во внутренний слой. Различные методы определения чисел сольватации приводят к значениям, существенно отличающимся друг от друга. В методе Улиха предполагается, что образование внутреннего гидратного слоя подобно замерзанию воды. Такое представление разделяют и многие другие авторы, Эли и Эванс, например, сравнивают сольватный слой с микроскопическим айсбергом, сформировавшимся вокруг частицы растворенного вещества. Так как уменьшение энтропии при замерзании воды составляет 25,08 Дж/моль град, то число гидратации [c.66]

    Растворители представляют собой однородные структурированные субстанции. При контакте между молекулами растворителя и растворенного вещества имеют место ион-дипольные взаимодействия. Степень сольватации указывает на количество таких взаимодействий. Взаимодействие тем больше, чем ближе контакт между растворимым веществом и растворителем. Дипольные, дисперсионные и индукционные взаимодействия, а также водородные связи действуют совместно с кулоновскими силами, и все вместе определяют стабильность и свойства ионных пар. Поэтому большое значение имеет природа" как растворенного вещества, так и растворителя. Сольватная оболочка уменьшает подвижность и коэффициенты диффузии как ионов, так и ионных пар. Способность апротонного растворителя к сольватированию не зависит от диэлектрической проницаемости, но в значительной степени определяется его элект-ронодонорными или электроноакцепторными свойствами. Рол  [c.17]

    С возрастанием концентрации электролита зона неискаженной и частично искаженной структуры воды сокращается. При концентрации, отвечающей связыванию всех молекул растворителя в первичные сольватные оболочки, достигается граница полной сольватации. Понятие об этой грагшце было введено К- П. Мищенко и А. М. Сухотиным. Ей отвечает такая концентрация раствора, которой соответствует сумма координационных чисел катионов и анионов, т. е. отсутствие свободного растворителя и наиболь- [c.171]

    Под сольватацией понимают совокупность энергетических и структурных изменений, происходящих в растворе при взаимодействии частиц растворенного вещества с молекулами растворителя. Обычно рассматривают два вида такого взаимодействия взаимодействие за счет короткодействующих сил (близкодействие) и за счет дальнодей-ствующих сил (дальнодействие). Близкодействие относят к сильному взаимодействию, дальнодействие —к слабому. В связи с этим принято считать, что вокруг частицы растворенного вещества расположены две сольватные оболочки — первичная и вторичная. В первичную сольватную оболочку входят молекулы растворителя, находящиеся в непосредственной близости от частицы растворенного вещества и совершающие движение в растворе вместе с ней. Число молекул растворителя в первичной сольватной оболочке называется координационным числом сольватации данной частицы, значение которого зависит от природы растворенного вещества и растворителя. Во вторичную сольватную оболочку входят молекулы растворителя, находящиеся от частицы растворенного вещества на больших расстояниях. Молекулы растворителя вторичной сольватной оболочки влияют на протекающие в растворе процессы за счет взаимодействия их с первично сольватированной частицей. Сольватация частиц растворенного вещества оказывает влияние как на тепловое движение молекул растворителя, так и на обмен между частицами растворителя, находящимися вблизи частиц растворенного вещества, и частицами растворителя более удаленными. Сольватация очень сильно проявляется в водных растворах гидратация) и особенно в водных растворах электролитов благодаря взаимодействию заряженных ионов с поляр- [c.342]

    Уравнение (165.10) хорошо согласуется с экспериментальными данными для разбавленных растворов (до 2 10 г-экв/л). При больших концентрациях это согласование нарушается, что связано с влиянием на электрическую проводимость сольватации и ассоциации ионов —эффектов, усиливающихся с ростом концентрации раствора, которые не учитываются электростатической теорией растворов. Увеличение размеров сольватной оболочки сопровождается снижением скорости движения иона в электрическом поле. Образование ассоциатов — ионных пар и тройников (см. 158) —приводит к тому, что часть ионов не участвует в переносе электричества. Для расчета электрической проводимости концентрированных растворов используют полуэмпирические уравнения, например уравнение Шидлов-ского  [c.462]

    При Л =0 сольватация также равна нулю. В частности, это имеет место для любой границы раздела внутри фазы. Введение указанной терминологии согласуется с развитыми Дерягиным представлениями о сольватации пограничных слоев жидкости, а также со взглядами П. А. Ребиндера [34] и других авторов. Положительное расклинивающее давление препят- гтвует сближению поверхностей (Дерягин), но наряду с этим существует отрицательное расклинивающее давление, которое представляет собой силы молекулярного притяжения поверхностей, лишенных сольватной оболочки (Ребиндер). [c.8]

    Представления, подобные рассмотренным, распространяются и на лгтексные системы при этом следует отметить ограниченность конкретных данных о сольватации латексных частиц. Обнаружив резкое падение вязкости дивинилстирольных латексов при введении электролита и основываясь на представлениях о желатинировании лиофильных дисперсных систем в результате соприкосновения и перекрытия поверхностных слоев, Фрайлинг прищел к выводу о существовании на латексных частицах полимолекулярных гидратных оболочек, обладающих повышенной вязкостью и уменьшающих свою толщину под действием электролита. Значения / о, вычисленные из данных по размерам частиц и объемной доли полимера, колеблются в пределах 7,5—26,5 нм. Аналогичные расчеты для частиц суспензий политрифторхлорэтилсна в различных органических жидкостях показали, что в этих случаях превышает 15,0 нм. [c.11]

    Другим внешним фактором, тг1кн е играющим сущест-вепную роль в стабилизации органических ионов, является природа растворителя. Многостороннее по своему характеру влияние растворителя можно схематически свести к двум аспектам. С одной стороны, полярный растворитель, т. е. жидкость с высокой диэлектрической постоянной, чисто физически снижает кулоновское взаимодействие зарядов. Этот эффект может быть значительным например, переход от неполярного растворителя (гексана) к полярному (ацетонитрилу) уменьшает кулоновские силы в 21 раз. С другой стороны, нековалентные взаимодействия молекул растворителя с ионами обоих знаков, такие, как заряд-динолг.ное взаимодействие, образование водородных связей, комплексов разного типа — все то, что обобщенно обо. шачают термином сольватация , приводят к значительному экранированию центров заряда молекулами растворителя и одновременно — к дальнейшей делокализации заряда, распределению его между ионом и сольватной оболочкой. [c.75]

    Кажущиеся моляльиые объемы Фу и теплоемкости Фс глицина, аланина, -аланина и их нейтральных аналогов ясно указывают иа существование более плотной и более упорядоченной упаковки молекул воды (гидратной оболочки) вокруг заряженных частиц. Метильная группа аланина — вот причина стериче-ского отталкивания, которое мешает сольватированию. Однако, как показывают данные для -аланина, сольватация нарушается при разделении зарядов, т. е. при ослаблении взаимного притяжения зарядов в цвиттер-ионе. Значения Фс согласуются с этим объяснением меньшие значения отрал<ают существование более упорядоченной системы или меньшую степень свободы, а следовательно, меньшую способность поглощать тепло при увеличении температуры. [c.44]

    Коагуляцию могут вызвать все факторы, которые способствуют понижению величины алектрокинегического потенциала частиц и сольватации (дегидратации) ионов диффузного слоя, что приводит к сжатию диффузной части двойного слоя и к понижению механической прочности сольватных оболочек, разъединяющих частицн. [c.33]

    Процессы сольватации происходят в любой нефтяной дисперсной системе, однако в этих случаях они имеют некоторые особенности и понятие сольватации приобретает несколько иной смысл. В отличие от истиных растворов нефтяные дисперсные системы гетерогенны, то есть характеризуются наличием поверхности ра,здела частиц дисперсной фазы с дисперсионной средой. В этих случаях на поверхности частиц дисперсной фазы образуются сорбционно-сольватные слои или сольватные оболочки, включающие молекулы дисперсионной среды. Между сольватными оболочками и дисперсионной средой практически отсутствует граница раздела, вследствие того ч то межмолекулярные взаимодействия молекул в сольватном слое и дисперсионной, сво [c.39]

    Известно, что молекулярная масса характеризует степень ассоциации асфальтенов в растворах, поэтому становится понятным, почему точка минимума теплоты плавления лежит в области более низких значений концентрации асфальтенов в смеси в случае первичных асфальтенов. Исходя из значений молекулярной массы асфальтенов, выделенных из сырой нефти, можно предположить, что на первом этапе (до точки первичного минимума) формирование надмолекулярных структур первичных асфальтенов идет гораздо быстрее, чем вторичных. Однако сильная сОу ьватирующая способность вторичных асфальтенов вследствие их большей ароматичности выше, чем первичных. При этом теплота сольватации первичных асфальтенов меньше, чем для вторичных. Вторичные асфальтены формируют более плотные сольватные оболочки, и, следовательно, более интенсивно должны разрушать кристаллическую решетку нафталина. Также за счет более плотной сольватной оболочки и, очевидно, интенсивного сближения структурных образований возникает сильное коагуляционное взаимодействие между их внутренними областями [168], приводящее к появлению коагуляционного каркаса и дальнейшей аморфизации смеси. Таким образом, точка первичного минимума теплоты плавления характеризует активность асфальтенов или их склонность к структурообразованию. [c.151]

    В нефтяных системах, кроме взаимодействия растворенных веществ с растворителем большую роль играет взаимодействие между различными молекулами многокомпонентного растворителя. Это ведет к большим отклонениям их поведения от поведения идеальных смесей. Так, соотношение компонентов бинарного растворителя в сольватной оболочке растворенной частицы иное, чем в массе раствора, так как частица сольватируется преимущественно тем компонентом растворителя, для которого свободная энтальпия сольватации наиболее отрицательна (селективная или избирательная сольватация [167]). Известно, что многие ВМС растворяются лучше в смесях, чем в чистых растворителях, и наоборот [167]. Это связано с селективной сольватацией отдельных звеньев (например, полярной и неполярной) макромолекул компонентами бинарн010 растворителя. В этом аспекте явление селективной сольватации должно иметь широкое распространение в нефтяных системах, отличающихся разнозвенностью молекул компонентов. [c.71]

    Оценка имеющегося экспериментального материала показывает, что координационные свойства растворителя можно количественно описать и предсказать с определенной степенью точности на основе донорных и акцепторных чисел. Это касается прежде всего ряда свойств, связанных с сольватацией растворенных частиц. Если доминируют нуклеофильные свойства растворителя (большое )лг, малое Лдг), то достаточно учитывать донорные числа. Так, при полярографическом осаждении катионов из таких растворителей установлена связь между потенциалом полуволны окислительно-восстановительной системы, например Ма++е Ка, и донорным числом ДПЭ-растворителя, что позволяет заранее оценить неизвестное значение потенциала полуволны при заданном донорнрм числе. Потенциал полуволны оказывается тем более отрицательным, чем прочнее сольватная оболочка, т. е. чем больше донорное число Оц. В то же время в случае преобладания электрофильных свойств. растворителя можно ограничиться рассмотрением акцепторных чисел. Они особенно удобны для выявления различий сольвати-рующей способности растворителей при взаимодействии с анионами. Если же одновременно проявляются ДПЭ- и АПЭ-свой- ства растворителя, то необходимо привлекать оба числа — дозорное и акцепторное, так как наиболее полная характеристика координационной способности растворителя становится возможной лишь в рамках модели двух параметров. [c.448]

    Аналогичным образом степень сольватации нуклеофильных частиц, например анионов, в АПЭ-растворителях пропорциональна акцепторному числу А . Частицы, имеющие в своем составе сильноотрицательные атомы, например Р, О, Ы, в большей степени сольватируются протонными АПЭ-растворителями. Эти растворители являются донорами протонов и на основе механизма образования водородных мостиков создают стабильную структурированную сольватную оболочку, в которой протон находится в потенциальном поле двух электроотрицательных атомов. Особенно прочные водородные мостики образуются с группами О—Н---Р, О—Н---0, О—Н---Ы и N—Н---0. Впрочем, способность к Образованию водородных мостиков, а следовательно, и способность к сольватации резко снижается при увеличении размеров и поляризуемости анионов. [c.449]

    Легко видеть слабые стороны такого объяснения агрегативной устойчивости. Весьма трудно представить себе возникновение в результате сольватации противоионов вокруг лиофобных частиц сплошных сольватных оболочек, препятствующих слипанию частиц прн их сближении. В самом деле, сольватные йболочки из полярных молекул среды образуются отдельно вокруг каждого противоиона двойного слоя. Это должно приводить к тому, что на границе, разделяющей оболочки двух соседних одноименно заряженных противоионов, молекулы среды, представляющие собой диполи, будут обращены друг к другу одноименно заряженными концами и< следовательно, будут испытывать взаимное отталкивание. Кроме того, следует помнить, что микроструктура окружающего частицы слоя непрерывно меняется в результате теплового движения ионов. Понятно, > то при таких условиях говорить о создании в результате притяжения и ориентации диполей какого-то синюшного слоя из сцепленных друг с другом ионов и молекул среды, нужного для обеспечения положительного раскли-яивающего давления или упругости сольватной оболочки, просто невозможно. Положительное расклинивающее давление, обусловливающее агрегативную устойчивость лиофобных коллоидов, может возникать лишь в результате деформации ионных атмосфер, т. е. может определяться только электростатическими силами. [c.282]

    Однако представление о каком-то особом сродстве полимеров к растворителям не имеет достаточных оснований. Еще в 1932 г. Маринеско, определяя количество воды, энергетически связываемой крахмалом, путем сравнения значений диэлектрической проницаемости раствора со значениями диэлектрических проницаемостей его компонентов получил данные, указывающие, что это количество воды незначительно и приблизительно соответствует образованию мономолекулярного слоя. А. В. Думанский, а также С. М. Липатов в результате калориметрических исследований пришли к такому же выводу Наконец, к аналогичным выводам прищел и А. Г. Пасынский, определявший сольватацию по сжимаемой части растворителя. Этот метод основан на том, что в сольватной оболочке растворитель находится под большим внутренним давлением сжимаемость он определял по скорости распространения ультразвука в растворах. Ниже приведены обобщенные результаты исследований А. Г. Пасынского по гидратации различных полярных групп ряда органических соединений  [c.433]


Смотреть страницы где упоминается термин Сольватация оболочка: [c.74]    [c.106]    [c.57]    [c.128]    [c.418]    [c.519]    [c.343]    [c.471]    [c.109]    [c.71]    [c.84]    [c.15]    [c.343]   
Вода в полимерах (1984) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Оболочка

Сольватация



© 2025 chem21.info Реклама на сайте