Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алифатические соединения, спектры

    Ни одно физическое свойство не дает более точной информации о химическом строении углеводородов, чем спектр поглощения в инфракрасной области, особенно для простых алифатических соединений. Большинство полос поглощения возникает при резонансных вибрациях валентных связей и поэтому зависит от действительной инерции атомов и атомных групп в молекуле и сил между ними. В этой же области наблюдаются вращательные и вращательно-колебательные спектры, но они имеют меньшее значение [185]. Полосы, появляющиеся вследствие алифатических С—Н связей, особенно интересны, так как их частоты зависят от атомных весов атомов, с которыми связаны три другие валентности углерода [186—190]. [c.189]


    Во всех приведенных выше случаях продукты деполимеризации угля содержали фенол. Было показано, что с увеличением глубины деполимеризации интенсивность пиков в ИК-спектре, отвечающих колебаниям фенольных гидроксилов, возрастала. Содержание алифатических соединений в бензольно-спиртовых вытяжках также увеличивалось в ходе последовательных циклов деполимеризации, в то время как нерастворимые остатки содержали все более уплотняющиеся ароматические структуры. Увеличение выхода алифатических соединений доказывает протекание алкилирования [10]. [c.309]

    Спектры поглощения ароматических соединений существенно отличаются от спектров соответствующих алифатических соединений. [c.135]

    Спектр КД другого простого алифатического соединения— 5-(+)-молочной кислоты — имеет отрицательный максимум в области 240—250 нм он связан, по-видимому, с п -> я -пе-реходом в карбоксильной группе, так как исчезает при под-щелачивании [103]. [c.299]

    Инфракрасная спектроскопия. Широкое применение инфракрасной спектроскопии основано на том, что некоторые химические связи и группы атомов дают в инфракрасном спектре полосы поглощения при приблизительно одной и той же частоте независимо от молекулы, в которой имеется данная связь или данная группа. Например, полоса валентных колебаний свободной ОН-группы обычно находится около 3600—3700 см-, полоса валентных колебаний связи N—Н в области 3300—3400 см- , связи С—Н в алифатических соединениях — около 2850—3000 см-, а карбонильные группы в различных соединениях дают обычно интенсивную полосу поглощения вблизи 1700 см-.  [c.177]

    Возможности использования УФ-спектроскопии также весьма ограничены, поскольку для успешного анализа и идентификации спектра необходимо, чтобы пик поглощения примеси обязательно попадал в область остаточного поглощения основного компонента. Однако во многих конкретных системах (например, ароматические примеси в алифатических соединениях или полициклические примеси в моноциклических ароматических соединениях) УФ-спектроскопия всс же позволяет выявить примеси при очень низких концентрациях, [c.171]

    Для всех не полностью замещенных алифатических соединений характерна, например, рамановская линия с частотой около 2924 сж Линия, близкая к 1700 см , неизменно обнаруживается в спектрах комбинационного рассеяния кислот, альдегидов, кетонов, хлорзамещенных кислот и сложных эфиров и, естественно, связывается с присутствием карбонильной группы > С=0. Пределы изменения частоты, обусловленной карбонильной группой в различных сложных эфирах, видны из данных табл. 19 [45]. Такого рода изменения хотя и несомненны, но малы. Некоторые характерные линии спектра комбинационного рассеяния, которые можно приписать парам атомов в много- [c.432]


    В спектрах жидкостей и растворов изменение температуры влияет на положение полосы, ее интенсивность и ширину [129, 240]. Например, частота валентного колебания СН в хлороформе [178] изменяется на 3 см , а интегральная интенсивность — на 32% в интервале от — 58 до + 60 °С. Однако самоассоциация молекул может влиять как на эту полосу, так и в гораздо меньшей степени на интенсивность других полос (17 — 25%). Падение интенсивности происходит линейно с повышением температуры такое влияние объясняется уменьшением индуцированного дипольного взаимодействия с увеличением межмоле-кулярного расстояния. Похожие эффекты были замечены в алифатических соединениях [74]. Как бьшо показано, ширины полос в толуоле, циклогексане и ацетонитриле изменяются в 1,5—4 раза в интервале температур от —60 до - -60°С [223]. Уже отмечалась сильная температурная зависимость в веществах с водородными связями. Подобным же образом температура часто влияет На распределение поворотных [c.183]

    Валентные колебания атомов водорода очень характерны и позволяют определять тип исследуемого соединения. Спектры образцов записывают при стандартном разбавлении, как было рекомендовано ранее, и по интенсивности и положению полос поглощения групп СН выясняют, является ли молекула алифатической, ароматической или той и другой одновременно. Кроме того, по спектру можно оценить количество структур каждого типа. [c.187]

    На вид масс-спектра может оказать заметное влияние и температура в ионизационной камере. Не все молекулы, попавшие в ионный источник, сразу же ионизуются. При большой длине свободного пробега нейтральные молекулы могут многократно сталкиваться с горячими стенками камеры, приобретая до ионизации (дополнительно к уже полученной энергии) большой избыток термической энергии, что приводит к усилению фрагментации. При этом решающее значение имеет природа молекул изучаемого вещества. Характер масс-спектров высокостабильных соединений, например ароматических, практически не зависит от температуры. В случае термически малостабильных алифатических соединений при повышении температуры в ионном источнике от 150 до 250 °С их фрагментация протекает более интенсивно. [c.90]

    В. Следующим шагом при интерпретации масс-спектра является рассмотрение его общего вида. Для этой цели масс-спектр лучше всего иметь в графическом виде. Прежде всего следует обратить внимание на интенсивность пика М . Ароматические соединения, особенно полиядерные, обычно имеют интенсивные пики М" . У алканов и алифатических соединений эти пики малоинтенсивны. Интенсивность М" обычно возрастает с увеличением степени ненасыщенности (особенно степени сопряжения) и числа колец. Масс-спектры ароматических соединений обычно имеют малое количество интенсивных пиков для них также характерно наличие двухзарядных ионов. Спектры алифатических соединений содержат много пиков, интенсивность которых часто возрастает по мере уменьшения массового числа. Это особенно характерно для алканов. [c.204]

    При изучении Раман-спектров [46] не обнаружено никаких необычных эффектов и установлено, что морфолин похож на соответствующие алифатические соединения. [c.415]

    Спектры поглощения ароматических соединений. Спектры поглощения бензола и его производных значительно отличаются от спектров соответствующих алифатических соединений. [c.112]

    В исследованиях [122] хемосорбированных алифатических соединений, проведенных авторами данной статьи, не были получены длинноволновые полосы вышеописанным способом. Ультрафиолетовый спектр, наблюдаемый при обработке алюмосиликата [c.86]

    Спектры в далекой инфракрасной области состоят из сравнительно узких и интенсивных полос. Различные молекулы имеют разные спектры поглощения. Цис- и транс-изомеры можно отличить по особенностям их спектров. Отдельные типичные связи, как О—Н, С = О, С = С и другие, имеют свои характеристические частоты. Связь С—Н обладает различными частотами в ароматических и алифатических соединениях. Указанные особенности позволяют по спектрам поглощения определять индивидуальный состав углеводородов в сравнительно сложных смесях. [c.11]

    Алифатические эфиры представляют собой класс простых летучих кислородных соединений, спектрам и структуре которых уделено мало внимания в литературе [1П0]. Однако в каталоге масс-спектров Американского нефтяного института [45] имеется ряд масс-спектров этих эфиров. Пики молекулярных ионов в спектрах эфиров слабы, и, вероятно, лучше начать изучение с эфиров ароматических кислот, так как в этом случае вероятность отрыва одной из углеводородных групп сильно понижена, что облегчает интерпретацию. Величина пиков молекулярных ионов повышена по сравнению со спектрами других эфиров, что также облегчает решение проблемы идентификации. Этери-фикация ароматических двухосновных кислот является обычным приемом подготовки этих соединений к масс-спектрометрическому исследованию. Синтезируют метиловые или этиловые эфиры. Так как эти эфиры распадаются иначе, чем эфиры с более длинной спиртовой цепью, то они будут рассмотрены в первую очередь. [c.384]


    Еще в XIX столетии было признано, что ароматические соединения [34] сильно отличаются от ненасыщенных алифатических соединений [35], но в течение многих лет химикам не удавалось прийти к взаимно приемлемому удовлетворительному определению ароматического характера [36]. В качественном отношении серьезных разногласий никогда не существовало, и определение сводилось к следующей форме ароматические соединения характеризуются особой устойчивостью и легче вступают в реакции замещения, а не в реакции присоединения. Трудность состояла в том, что такое определение было не слишком ясным и не подходило для пограничных случаев [37]. В 1925 г. Армит и Робинсон [38] установили, что ароматические свойства бензольного ядра связаны с наличием замкнутого кольца электронов, ароматического секстета (ароматические соединения, таким образом, являются своеобразными примерами делокализованной связи), но в то время еще нельзя было определить, обладают ли другие циклы, отличные от бензола, таким электронным кольцом. С развитием магнитных методов исследования, главным образом ядерного магнитного резонанса, появилась возможность экспериментально определять наличие или отсутствие в молекуле замкнутого электронного кольца, и теперь ароматичность можно охарактеризовать как способность удерживать индуцированный кольцевой ток. Соединения, обладающие такой способностью, называют д агро/г-ными. Сегодня это определение является общепринятым, хотя оно не лишено недостатков [39]. Существует несколько методов, позволяющих установить, способно ли соединение удерживать кольцевой ток, но наиболее важный из этих методов основан на химических сдвигах в спектрах ЯМР [40]. Чтобы это понять, необходимо вспомнить следующее как правило, величина химического сдвига протона в ЯМР-спектре зависит от электронной плотности его связи, и чем выше плотность электронного облака, окружающего или частично окружающего протон, тем в более сильное поле смещается его химический сдвиг (т. е. тем меньше величина б). Однако из этого правила имеется несколько исключений, и одно из них касается протонов, расположенных вблизи ароматического цикла. При наложении внешнего магнитного поля (как в спектрометре ЯМР) в ароматических молекулах возникают кольцевые токи л-электронов, которые (при расположении плоскости ароматического [c.63]

    При титровании ЛСР узких фракций кислородсодержащих соединений были получены данные о структуре составляющих их фрагментов [139]. Несколько сложнее обстоит дело при титровании концентратов АС. Проводилось титрование ЛСР концентрата АО самотлорской нефти [139]. Не обнаружено значительных изменений в его спектре Н ЯМР. По мере увеличения концентрации ЛСР интегральная интенсивность ароматической части спектра несколько уменьшается, что свидетельствует о сдвиге сигналов ряда групп из области ареновых структур. Ка кдая средняя молекула концентрата состоит из ароматического ядра, содержащего в среднем три ароматических кольца, сконденсированных с нафтеновым циклом, атома азота основного характера и алкильного заместителя длиной j. Отсутствие сдвигающегося сигнала связано, ио-види-мому, с тем, что предельные сдвиги ароматических протонов в различных положениях молекул АО значительно различаются (см. табл. 108). Поэтому происходит лишь общее уменьшение интегральной интенсивности ароматической части спектра. Отсутствие изменений в алифатической области спектра мо/кет характеризовать положение атома азота в конденсированной системе. По видимому, он находится в положении, удаленном от нафтенового цикла и алкильной цепи. Для получения более полных данных о структуре АО необходимо совершенствовать методики их выделения и разделения, так как метод титрования ЛСР (как и ЯМР на любых ядрах) может быть эффективен при исследовании только очень узких концентратов. [c.167]

    Более поздние исследования инфракрасных спектров некоторых производных фурана, в частности, полиеновых альдегидов и азинов (198), позволили авторам констатировать, что фурановый цикл в этих соединениях обнаруживает наличие двойных связей и что взнос фурильной группы... эквивалентен приблизительно одной двойной связи . Было отмечено при этом, что инфракрасный спектр фурил полиеновых альдегидов был очень подобен их алифатическим аналогам и характеризовался той же самой системой полос. Следует, в связи с этим, отметить, что в колебательном спектре бензол не обнаруживает характерных частот колебаний ординарных и двойных связей алифатических соединений (199). [c.25]

    Область двойной связи 1430-1950 см (5,1-7 мкм). Самыми распространенными и характеристичными группами с двойной связью являются карбонильные. Вероятно, они наиболее изученный класс групп, поглощающих в ИК-области. В то время как некоторые структуры можно отличить просто по положению полосы валентного колебания С=0, другие в силу совпадения частот однозначно можно отнести, только прибегая к помощи других областей спектра. Как уже отмечалось, органические кислоты и обычно альдегиды легко идентифицируются по полосе поглощения карбонильной группы и по поглощению групп ОН или СН. Сложные эфиры кроме полосы валентных колебаний С=0 имеют сильное поглощение С—О—Я около 1200 СМ . В кетонах также проявляются полосы средней интенсивности около 1000-1370 см . Сильное поглощение в интервале 1540-1650 см (6,1—6,5 мкм) может указьшать на ионизированную карбонильную группу (например, в металлосодержащих солях органических кислот), на плоскостные деформационные колебания НН в аминах, валентные колебания N=0 в нитратах или валентные колебания С=0 в амидах. Для определения природы поглощения здесь опять необходимо рассмотреть другие спектральные области. Поглощение, обусловленное валентными колебаниями С=С в алифатических соединениях, находится в области 1630—1690 см (5,9 —6,1 мкм), если только к одному или обоим атомам углерода не присоединен атом фтора. В этом случае поглощение смещается в область более высоких частот и число атомов фтора коррелирует с положением полосы. Более тяжелые галогены понижают эту частоту, так как в валентном колебании С = С участвует также некоторая доля деформационного колебания СН. Ценная структурная информация может бьггь получена из положения этой полосы и полосы внеплоскостных деформационных колебаний в области 800-1000 см (10-12,5 мкм) [217]. В ароматических соединениях с малой степенью замещения наблюдаются три (а при лучшем разрешении четыре) резкие полосы в области 1450 — 1650 см (6—7 мкм). Этим полосам сопутствует более слабое поглощение около 1000 — 1200 см (8,3 — 10 мкм) и характеристические внеплоскостные деформационные колебания С—И около 670-900 см (11-15 мкм). Высокозамещенные ароматические соединения имеют [c.188]

    Какую же информацию можно получить из инфракрасного спектра углеводорода Для начала довольно легко можно определить, является ли соединение ароматическим или чисто алифатическим. Спектры на рис. 13.2 показывают характерное различие поглощение алифатического соединения, наибольшее при более высоких частотах, существенно уменьшается ниже 900 см-- ароматическое поглощение сильно при низких частотах (внеплос-костные С—Н-колебания) между 650 и 900 см . Кроме того, ароматическое кольцо дает С—Н-поглощение при 3000—3100 см часто наблюдается поглощение углерод-углеродных связей при 1500 и 1600 см" и плоскостное С—Н-колебание в области 1000—1100 см . [c.435]

    Вообще говоря, рассмотренные выше эмпирические правила могут быть результатом простого совпадшия и не иметь под собой какой-ли физической основы, поэтому к ним следует относиться с осторожностью. Более надежную иш юрмацию дают электронные спектры ароматических альдегидов, кетонов, кислот и сложных иров, для которых (как и для аналогичных алифатических соединений) характерны переходы п- п соответствующие слабые полосы поглощения ароматических соединений смещены в длинноволновую область 320-350 нм. Что еще более важно, эти полосы поглощения обусловлены электронными переходами с переносом заряда, [c.31]

    Для идентификации отдельных аминов могут служить их соли с галогеноводородами или пикриновой кислотой. Первичные и вторичные амины часто превращают в амиды ацилированием уксусным ангидридом, бензоилхлоридом или 4-нитробензоилхлоридом. Из третичных аминов и иодистого метила получают четвертичные иодиды аммония, так называемые иодметилаты (метоиодиды). В ИК-спектрах аминов наблюдаются полосы поглощения валентных колебаний С—N в области 1020—1220 см- (алифатические соединения) или 1250—1360 см- (ароматические амины). У первичных и вторичных аминов проявляются полосы свободных валентных колебаний Ы—-И в области 3300—3500 см > (положение сильно зависит от степени ассоциации) и деформационных колебаний Ы—И в области 1550—1650 см . [c.492]

    В спектрах Н -ЯМР сигналы протонов амино- или иминогрупп в большинстве случаев проявляются в виде синглета при 1—2млн (алифатические соединения) или 2,6—4,7 млн- (ароматические соединения). [c.492]

    Метод классификации по расстоянию от средних спектров применим, когда каждый класс соединений может быть пред ставлен одной точкой в пространстве или набором точек во круг которых группируются все точки соответствующие соеди нениям этого класса, образуя кластер Классификация произ водится по минимальному расстоянию до центра (или грани цы) соответствующего кластера точки, отвечающей анализиру емому спектру Эффективность этого метода зависит от плот ности группировки точек в пространстве вокруг среднего поло жения кластера и степени перекрывания разных кластеров Многие кластеры простых алифатических соединений, содержа щих функциональные группы, например кето группу, хорошо определены и четко отделены от других кластеров во многих других случаях кластеризация намечается слабо, в этих случа ях лучше использовать другие методы распознавания образов, например метод обучающихся машин или метод К ближайших соседей (КБС) [c.122]

    Это понижает двоесвязность связи СО по сравнению с обычным алифатическим сопряженным кетоном, что проявляется в понижении частоты С—О. Отсутствие обертона полосы группы О—Н, связанной водородной связью примерно при 7000 см , и низкое значение частоты основного поглощения О—Н показывают, что в соединении III имеется водородная связь, гораздо более прочная, чем обычная связь О—Н...0, чему способствует делокализация двойных связей в цикле. Наличие полосы приблизительно при 1720 подтверждает наличие небольшого количества таутомера I с нормальными карбонильными группами. Форма II менее вероятна, на что указывает отсутствие полосы примерно при 1675 см , характерной для сопряженных алифатических кетонов. Спектр протонного резонанса чистой жидкости, исследованный Джарреттом, Садлером и Шулери [92], полностью согласуется с интерпретацией инфракрасного спектра. [c.352]

    На рис. 51 приведены типичные ИК-спектры осадков, образовавшихся при окислении смесей алканов и цикланов с алифатическими сераорганическими соединениями и тиофанами. Из приведенных данных видно, что спектры осадков имеют много общих полос поглощения, свидетельствующих о присутствии одинаковых структурных групп и связей. Имеются интенсивные полосы поглощения связей С—Н, относящихся к СНа- и СНз-грунпам (2960, 2920, 2850, 1460, 1380 и 720 алифатических соединений. [c.103]

    В этом исследовании было отмечено также, что а-бромироиз-водное в противоположность поведению алифатических соединений дает тот же сигнал при более слабом поле, чем хлорнроизвод-ное. Спектр а,а -дибромкамфоры показывает, что экзо-атом брома может дезэкранировать ближайшую к нему метильную группу геж-диметильной группировки так, что три С-метильных пика отчетливо разрешаются. В монобромпроизводных такое взаимодействие отсутствует. [c.260]

    Из материала, изложенного выше, очевидно, что масс-спектрометрия является превосходным методом идентификации структурных изомеров алифатических соединений. Отмечалось также, что этим методом значительно труднее идентифицируются некоторые изомеры, отличающиеся только положением двойной связи. Еще труднее дифференцировать ароматические изомеры типичный пример представляют собой весьма сходные между собой спектры трех ксилолов. Здесь вновь наиболее запутанная ситуация создается в случае углеводородов, тогда как введение в молекулу гетероатома создает элемент асимметрии, который часто находит свое отражение в масс-спектре. Для этилпиридипов, например, относительная интенсивность пика с массой 92 (потеря Hg) заметно уменьшается в последовательности 3-этил-, 4-этил-, 2-этилпиридин [16] — в согласии с ожидаемым порядком устойчивости ионов Vni, IX и X  [c.323]


Смотреть страницы где упоминается термин Алифатические соединения, спектры: [c.661]    [c.279]    [c.165]    [c.470]    [c.79]    [c.195]    [c.145]    [c.200]    [c.165]    [c.149]    [c.454]    [c.132]    [c.64]    [c.111]   
Теоретические основы органической химии Том 2 (1958) -- [ c.127 ]




ПОИСК





Смотрите так же термины и статьи:

Алифатические соединения

Электронные спектры поглощения основных классов органических соединений Спектры поглощения алифатических соединений

спектры соединения



© 2024 chem21.info Реклама на сайте