Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микроэлектроды в полярографии

    Одним из основных требований полярографии является большое различие в плотностях тока на используемых электродах. Этого достигают использованием электродов, существенно различающихся величиной поверхности. Электрод, на котором протекает электрохимическая реакция определяемого вещества (индикаторный электрод), должен иметь небольшую поверхность. В большинстве случаев для этого используют ртутный капающий электрод, а также твердые микроэлектроды — платиновый или графитовый. Второй электрод (электрод сравнения) должен иметь большую поверхность, им может быть, например, насыщенный каломельный электрод или ртуть на дне электролизера. Электроды присоединяются к соответствующим клеммам полярографа. Полярограф позволяет накладывать на электроды ячейки напряжение, меняющееся во времени по линейному или другому законам, и регистрировать ток электролиза. [c.153]


    В качестве поляризующегося микроэлектрода часто применяют ртутный капающий электрод, а сам метод называют в этом случае полярографией, следуя термину, который предложил Я. Гейровский, разработавший этот метод в 1922 г. [c.269]

    Установка для амперометрического титрования может быть собрана на основе любого полярографа. Обычно для этой цели используется самая простая полярографическая установка. При этом рабочим может быть как ртутный капающий, так и твердый микроэлектрод. В качестве источников тока могут применяться аккумуляторные батареи и различные выпрямительные устройства. Сила тока измеряется гальванометром с ценой деления порядка 10 А или еще более чувствительным (М-21, М-25). В комплект установки для титрования входят также микробюретка и магнитная мешалка. Общий вид установки с твердым микроэлектродом приведен на рис. 22.5. [c.274]

    Зачем в ртутной полярографии ячейку с анализируемым раствором перед измерением продувают инертным газом Почему это не всегда делают при работе с твердыми микроэлектродами  [c.281]

    Вольтамперометрия (полярография) с линейной разверткой потенциала — метод анализа, при котором микроэлектрод поляризуется напряжением, изменяющимся с большой скоростью (до 100 В/с) по определенному закону, и вольтамперная кривая регистрируется электронно-лучевой трубкой (осциллографом). Значительно большие, чем в классическом методе скорости изменения поляризующего напряжения приводят к изменению формы вольтамперной кривой вместо плавной волны наблюдается кривая с четко выраженным максимумом — пиком. Причина этого в том, что при увеличении накладываемого напряжения скорость диффузии деполяризатора в приэлектродный слой становится меньше скорости электрохимического процесса — приэлектродный слой истощается, ток уменьшается (рис. 2.20). Потенциал пика служит качественной характеристикой деполяризатора, ток пика (высота пика) —количественной, зависящей также от скорости изменения поляризующего напряжения v  [c.143]

    Полярографический метод, разработанный Я- Гейровским, состоит в том, что раствор исследуемого вещества подвергают электролизу. При этом изучают зависимость силы тока, протекающего через раствор, от величины приложенного напряжения. Исследованию могут подлежать соединения, восстанавливающиеся на катоде (ионы металлов), или вещества, окисляющиеся на аноде (гидрохинон или другие органические вещества). Принципиальная схема полярографа дана на рис. 48. При исследовании соединений, восстанавливающихся на катоде, катодом обычно служит капельный ртутный электрод, представляющий собой ре- зервуар со ртутью, из которого периодически через капилляр капает ртуть. Возможно также применение микроэлектродов из других каких-нибудь металлов (платина и т. п.). На ртути может происходить выделение металла, образующего или не образующего с ней амальгаму. Восстановление металла может идти либо через стадию промежуточного состояния окисления, либо минуя ее. Полярограммы (кривые зависимости силы тока, протекающего через раствор, от величины приложенного к раствору напряжения) в каждом из перечисленных случаев имеют вид, представленный на рис. 49. [c.291]


    В настоящее время в полярографии наиболее широко применяются вращающиеся игольчатые микроэлектроды из платины, амальгамы серебра, графита, конструкция которых приведена на рис. 137. [c.203]

    Полярография — электрохимический метод анализа, основанный на измерении силы тока, возникающего при электролизе раствора анализируемого вещества на микроэлектроде. [c.154]

    Содержание рения в породах и метеоритах определяют методом осциллографической полярографии с накоплением рения в виде его двуокиси на стационарном ртутном микроэлектроде, В навеске [c.243]

    В роли микроэлектрода в полярографии применяют капельный ртутный электрод, в котором из тонкой стеклянной трубки (капилляра) ртуть вытекает мелкими каплями, непрерывно обновляя свою поверхность. [c.266]

    Амальгамная полярография с накоплением часто используется для определения субмикрограммовых количеств кадмия, особенно — в материалах высокой чистоты. Она основана на электролизе анализируемого раствора со стационарным ртутным микроэлектродом (в частности — с лежаш,ей каплей ртути) и последующем анодном полярографировании — растворении металла из по-лученной амальгамы. Положение пиков на такой полярограмме характеризует определяемый ион, а их глубина — его содержание в растворе [69, 204] [c.109]

    В подавляющем большинстве случаев электролиз с контролируемым потенциалом проводится с использованием ртутного или платинового рабочего электрода. Высокое перенапряжение водорода на ртути является важным преимуществом при использовании ее в качестве катода, однако анодное растворение ртути ограничивает ее применение в качестве электрода в анодной области для кулонометрии точно так же, как и для полярографии. Ртутные катоды, кроме того, обладают такими полезными характеристиками, как легко определяемая истинная площадь, обновляющаяся поверхность и относительная легкость очистки. Однако самое большое значение для химика-аналитика имеет тот факт, что полярографические данные о потенциалах полуволн, о продуктах восстановления и т. п. могут во многих простых случаях непосредственно применяться для выбора условий электролиза при кулонометрии на ртутных катодах. Однако здесь необходима известная осторожность многие процессы, которые кажутся простыми на микроэлектродах ввиду пренебрежимо малого накопления продуктов электролиза, оказываются гораздо более сложными, когда проводятся на больших ртутных катодах. Следует также иметь в виду, что сама ртуть может действовать как химический восстановитель следовательно, легко восстанавливаемые вещества должны приводиться в контакт с ртутными катодами только в том случае, когда к ячейке приложен нужный потенциал электролиза для предупреждения возможности предварительного химического восстановления. [c.36]

    Форма полярографической волны. Уравнение зависимости тока от потенциала можно вывести из уравнения Нернста при условии, что реакции, происходящие на микроэлектроде, взаимно обратимы. Выведем это уравнение для важного случая восстановления простого катиона до металла, растворимого в ртути. Поскольку растворы, изучаемые в полярографии, почти всегда сильно разбавлены, то можно считать, что [c.168]

    Полярографы. Полярографом называется прибор, с помощью которого можно проследить за поляризацией ртутного капельного или любого другого микроэлектрода и получить данные для построения полярограммы. [c.265]

    Приведенная на рис. 126 схема может быть названа принципиальной схемой классического полярографа — прибора, предназначенного для снятия поляризационных кривых ртутного капельного микроэлектрода — полярограмм. [c.234]

    Увеличения скорости поляризации микроэлектрода добиваются, обеспечивая резкое нарастание поляризующего напряжения, приложенного к электролитической ячейке. Это и составляет основную особенность осциллографической полярографии, обеспечивающую ей более высокую чувствительность по сравнению с обычными методами. [c.255]

    Эти приборы обладают весьма совершенной автоматикой, но устройство их значительно сложнее, чем устройство фоторегистрирующих приборов. В электронных самопишущих полярографах изменение силы тока фиксируется с помощью электронно-следящих систем и полярограмма вычерчивается пером самописца на специальной бумажной ленте. Перемещением самой ленты фиксируются изменения потенциала микроэлектрода. Перемещение же пера поперек ленты соответствует изменению силы тока. В результате сложения движений ленты и самописца вычерчивается полярограмма. Плавное увеличение подаваемого на электролитическую ячейку напряжения осуществляется с помощью подвижного контакта, скользящего вдоль реохорда. Перемещение этого контакта осуществляется электроприводом. Этот же синхронный двигатель приводит в движение и барабан, подающий бумажную ленту. [c.262]

    Универсальность полярографа определяется возможностью его применения в различных режимах, в том числе и в режиме регистрации средней величины тока (за время жизни капли), проходящего через ячейку при данном потенциале микроэлектрода (классическая полярография), и в качестве осциллографического прибора. В последнем случае чувствительность составляет 5-10 моль л. [c.264]


    Таким образом, осциллографический полярограф (например, модель ОП-2) представляет собой совокупность электронного полярографа и осциллографа постоянного тока. Качественные и количественные определения производятся здесь путем анализа характера осцилло-полярограммы (см. выше), которая в виде светящейся кривой возникает на экране электроннолучевой трубки. Длительное послесвечение экрана позволяет наблюдать и фотографировать кривые. Прибор дает возможность работать не только с ртутным капельным, но и с твердым микроэлектродом. [c.264]

    В настоящее время налаживается серийный выпуск установок для амперометрического титрования АУ-4М. Питание установки производится от сети переменного тока через стабилизатор напряжения и выпрямительный (полупроводниковый) мост. Титрование можно производить, пользуясь как ртутным капельным, так и платиновым вращающимся микроэлектродом. Вращение осуществляется с помощью описанного уже привода от электродвигателя ЭДГ-1-18. Для регистрации силы тока применяется гальванометр типа М-198/2 или М-198/1. Изменение чувствительности производится с помощью специального переключателя. Микробюретка крепится на штативе в специальном зажиме. Стоимость такой установки значительно ниже стоимости полярографа. [c.268]

    Если сравнить полярографический анализ с электровесовым с точки зрения процесса поляризации электродов, то необходимо указать на следующее. В полярографии создают условия для отчетливой концентрационной поляризации микроэлектрода. Поляризация второго электрода практически сводится к нулю. Изменения потенциала электрода, связанные с изменением природы его поверхности (электродная поляризация), в этом случае совершенно нежелательны. При электроанализе поляризуются оба электрода электроаналитической ячейки. Так как выделение определяемого вещества на поверхности электрода является здесь целью операции, то и электродная поляризация неизбежна. [c.275]

    Вышеизложенное позволяет дать и более точное определение полярографии как метода, основанного на использовании кривых ток — напряжение, полученных с помощью микроэлектрода в условиях, когда протекание электродных процессов вблизи него определяется диффузией .  [c.319]

    Амперометрическое титрование — метод определения точки эквивалентности в основе его лежат принципы полярографии. В этом случае на микроэлектрод подают постоянный по знаку потенциал, достаточный для того, чтобы вызвать электрохимическое изменение по меньшей мере одного из участников реакции. Когда этот потенциал находится в области потенциалов, соответствующих полярографическому сдвигу, диффузионный ток согласно уравнению Ильковича пропорционален концентрации деполяризатора в растворе. Следовательно, если в ходе титрования следить за изменениями диффузионного тока, то они будут отражать изменения концентрации деполяризатора и, та  [c.344]

    В полярографии и вольтамперометрии с линейной и треугольной разверткой напряжения используется несколько видов полярографических ячеек. Простейший вариант— ячейка с донной ртутью. Обычно измерения проводят относительно вынесенного электрода сравнения — насьщенного каломельного или хлорсеребряного электродов. Для точных измерений предпочитают трехэлектродную ячейку. Рабочим электродом может служить ртутный капельный электрод (РКЭ), струйчатый электрод, стационарный ртутный электрод (РСЭ) — висящая капля , твердые микроэлектроды (платиновый, серебряный, золотой, графитовый, стеклографитовый, пастовый графитовый и т. п.). Кажущаяся площадь электрода должна быть известна, а чистота поверхности гарантирована. Очистку ртути производят, как и для обычных полярографических измерений. Независимо от того, какой электрод поляризуется, капающий ртутный или стационарный ртутный, при больших скоростях развертки напряжения измерения производят практически на стационарной поверхности электрода, так как время измерения меньше, чем время жизни капли. Стационарные электроды получили большее применение в методах с использованием развертки напряжения, нежели в постоянно-токовой полярографии. Электрохимическую очистку осуществляют при обратной поляризации электрода. Особенно удобно применение твердых электродов при изучении редокс-процес-сов. Полярограммы 10 —10 М растворов d + и У0 + на амальгамированном платиновом электроде имеют почти такую же форму, как на ртутном. [c.134]

    Полярография является электрохимическим методом, применимым для анализа растворимых полимеров. Этот метод, разработанный Гейровским [95] в Карловом университете в Праге около 1922 г., состоит в измерении токов, протекающих при известной разности потенциалов через ячейку, содержащую раствор электроактивных веществ. Электродами в этой ячейке служат большая неполяризующаяся поверхность ртути на дне и какой-либо микроэлектрод, обычно капельный ртутный электрод (КРЭ). Нанося на график силу тока в зависимости от соответствующего напряжения, получают кривую сила тока — напряжение. С помощью этой кривой можно производить одновременно качественный и количественный анализы материалов в водных и неводных растворах, если исследуемые вещества способны претерпевать катодное восстановление или анодное окисление. Поскольку концентрация анализируемых веществ очень мала (обычно 10 —10 М), полярография является одним из наиболее чувствительных методов химического анализа. [c.343]

    На рис. 166 показана типичная кривая сила тока — напряжение (полярограмма). Средняя точка 8-образной полярографической кривой характеризует имеющуюся систему. В полярографии соотношение присутствующих на границе раздела микроэлектрода окислителя и восстановителя изменяется под действием электрического тока, т. е. в результате прямого присоединения или отнятия электронов. Происходящее изменение измеряют путем наблюдения потенциала, приобретаемого электродом. Необходимо отметить, что равновесие переноса электронов от электрода к границе раздела устанавливается мгновенно. Однако для установления равновесия между границей раздела и остальным раствором, связанного с миграцией и дис узией ионов, атомов и молекул, требуется сравнительно длительное время. [c.344]

    Основная аппаратура для полярографического анализа очень проста. Вполне пригоден любой прибор, позволяющий поляризовать микроэлектрод до желаемого потенциала и измерять ток при данном потенциале. Основные узлы полярографа показаны на рис. 169. Он состоит из капельного ртутного электрода и электрода сравнения, чувствительного индикатора тока, потенциометра, реохорда со скользящим контактом и реостата. С помощью реостата устанавливают желаемое падение напряжения на реохорде, которое измеряют потенциометром. Для изменения приложенной к электродам [c.353]

    В этой книге термин вольтамперометрия принят для методов, в которых на микроэлектрод накладывается потенциал и измеряется протекающий ток. Полярография, согласно этой классификации, представляет вид вольтамперометрии с использованием ртутного капельного электрода в качестве рабочего. Область положительных потенциалов, в которой можно работать с ртутным электродом, ограничена, поэтому иногда для изучения анодных реакций используют другие материалы платину, пирографит, стеклоуглерод и угольные пасты. Полярографические эксперименты со стационарными электродами дают значительно более неопределенные результаты, чем эксперименты с капельным ртутным электродом. Это объясняется целым рядом причин. Поверхность ртутной капли непрерывно обновляется, поэтому адсорбция оказывает меньшее влияние на результаты измерений, чем при работе со стационарным электродом. Падающие из капилляра капли слегка перемешивают раствор, в результате чего каждая новая капля образуется в свежей порции раствора, и, следовательно, состав раствора однороден во всем объеме. Поэтому при использовании капельного ртутного электрода условия диффузии вблизи электрода должны сохраняться всего несколько секунд (время образования одной капли), тогда как при использовании стационарного электрода — в течение всего времени эксперимента. [c.16]

    На основе полярографии разработана схема группового анализа сернистых соединений непосредственно в нефти (рис. 5) [27]. Вначале образец нефти разбавляют бензолом. Содержание сероводородной, элементарной и меркаптановой серы устанавливают на ртутном капельном электроде с помощью калибровочных графиков, а сульфидной — на. платиновом микроэлектроде (насыщенный каломельный электрод — электрод сравнения) методом добавок. [c.88]

    Полярография является электрохимическим методом, основанным на измерении токов, протекающих при известной разности потенциалов через ячейку, содержащую раствор электррактивных веществ. Одним из электродов этой ячейки в полярографическом эксперименте является какой-либо микроэлектрод, обычно ртутный капельный электрод, вторым электродом служит слой донной ртути ячейки либо внешний стандартный электрод (чаще всего насыщенный каломельный электрод). В процессе электролиза макроэлектрод вследствие своей большой поверхности не поляризуется из-за малой плотности тока на нем. Поляризация под влиянием приложенной внешней электродвижущей силы происходит практически исключительно на микроэлектроде. [c.233]

    Метанол широко используется в препаративной электрохимии, например для проведения реакции анодного декарбоксилирования и анодного метоксили-рования. Эпизодически растворитель применялся также при полярографии на КРЭ. Метанол не пригоден в качестве растворителя для вольтамперометрии на платиновом микроэлектроде или кулонометрии при контролируемом потенциале на том же электроде. Метанол находится в жидком состоянии в удобной для работы области температур (от -98 до +64 °С). Имеет весьма высокое давление паров и достаточно высокую диэлектрическую постоянную (33). Максимальная допустимая концентрация составляет 2 10 %. Хотя по своему поведению метанол похож на воду, он сильнее растворяет различные органические соединения. Метанол подходит как растворитель для ультрафиолетовой спектроскопии поглощение наблюдается при 210 нм. Главное применение метанола связано с тем, что он хорошо растворяет сильноосновные электролиты КОН, NaOH, КОМе и NaOMe. Для растворения очень неполярных соединений используются смеси метанола с бензолом. [c.37]

    В кач-ве индикаторных микроэлектродов используют стационарные и вращающиеся-из металла (ртуть, серебро, золото, платина), углеродных материалов (напр., графит), а также капающие электроды (из ртути, амальгам, галлия Последние представляют собой капилляры, из к-рых по каплям вытекает жидкий металл. В. с использованием капающих электродов, потешщал к-рых меняется медленно и линейно, наз. полярографией (метод предложен Я. Гейровским в 1922). Электродами сравнения служат обычно электроды второго рода, напр, каломельный или хлоросеребряный (см. Электроды сравнения). Кривые зависимости I = f(E) или 1 =/(U) (вольтамперограммы) регистрируют спец. приборами-полярографами разных конструкций. [c.416]

    ПОЛЯРОГРАФИЯ, разновидность вольтамперометрии с использованием индикаторного микроэлектрода из жидкого металла, пов-сть к-рого периодически или непрерывно обновляется. При этом не происходит длительного накопления продуктов электролиза на пов-сти раздела электрод-раствор в электролитич. ячейке. Индикаторным электродом в П. служит чаще всего ртутный капающий электрод. Используют также капающие электроды из жидких амальгам и расплавов, струйчатые электроды из жидких металлов, многокапельные электроды, в к-рьгх жидкий металл или расплав продавливают через диски из пористого стекла, и др. [c.68]

    В классической полярографии индикаторным электродом является ртутный капающий микроэлектрод. Ртутная капля образуется на конце стеклянного капилляра (длиной 10-20 см, внутренним диаметром 0,05 мм), соединенного гибкой трубкой с резервуаром со ртутью. Ртутные капли имеют воспроизводимый диаметр и время жизии от 2 до 6 с. Время жизни капли зависит от высоты столба ртути над капилляром, т. е. гидростатического давления ртути. Иногда используют механический молоточек, контролирующий время жизни капель. Ртутный капающий электрод обладает следующими преимущества-вли 1) постоянное обновление поверхности электрода предотвращает загрязнение поверхности электрода, что выражается в высокой воспроизводимости зависимостей ток — потенциал 2) перенапряжение водорода на ртути в водных раствору велико, позтоко можно изучать процессы восстановления элек-троактивных веществ с более отрицательными потенциалами, чем обратимый потенциал разряда ионов водорода. В кислом растворе, например, 0,1 М H l вьаделение газообразного водорода наблюдается при потенциалах отрицательнее —1,2 В 3) ртуть образует амальгамы со многими металлами, понижая их потенциал восстановления. [c.413]

    Другим чувствительным методом является инверсионно-вольт-амперометрический метод определения рения на фоне 4 М Н3РО4 с применением осциллографического полярографа и ртутного стационарного микроэлектрода [153]. Определение рения проводят по инверсионному анодному пику с i = —0,7 в. Определению не мешают 20 000-кратные количества молибдена и 25 000-кратные Си и РЬ, а также щелочные и щелочноземельные элементы, элементы подгруппы железа, Сг, Se, W и Мн. Трехкратный избыток Te(IV) оказывает влияние па величину пика. Мешает присутствие нитрат- и перхлорат-ионов. Метод использован для определения рения в природных материалах и в чистых веществах (окиси молибдена и вольфрама, монокристаллы металлического молиб- [c.157]

    Метод вольтамперометрии с медленным наложением потенциалов на микроэлектрод, в частности классическая полярография, способен дать довольно полную характеристику электродного процесса и молекулярного состояния электролита. Из вольтамперо-грамм (полярограмм) можно сделать заключение об обратимости или необратимости электродных процессов, о наличии процессов комплексообразования в электролитах, определить число электронов, принимающих участие в электродном процессе, рассчитать нормальные потенциалы, коэффициенты диффузии, кинетические константы, а также коэффициенты активности. [c.74]

    Для предварительного накопления кадмия использованы и другие электроды золотой стационарный микроэлектрод (0,3— 30 Л1кз С(1/л1л определяют разностной осциллографией на фоне 1М раствора КаСЮ4) [550] и графитовый, пропитанный под вакуумом смесью парафина с полиэтиленом. Применение для анодного процесса вектор-полярографа позволяет определить 0,01 мкг СА/мл [353]. [c.111]

    Такого рода концентрирование (накопление) определяемого элемента на стационарной капле ртути имеет место в методе амальгамной полярографии. Сущность метода заключается в том, что путем электролиза в течение некоторого времени при потенциале предельного тока определяемого металла проводится его концентрирование в виде амальгамы из разбавленного раствора на стационарной капле ртути, которая выполняет роль ртутного микроэлектрода. Затем при линейно изменяющемся напряжении пегистрируется кривая анодного растворения амальгамы. При этом на [c.358]

    Полярография. В основе полярографического метода лежат катодные процессы (присоединение электрона к веществу на ртутном капающем электроде). Полярографический метод создал чешский химик Я. Гейровекий (1922), за что был удостоен Нобелевской премии (1959). Принципиальная схема полярографа очень проста (рис. 26). Он состоит из капающего ртутного микроэлектрода с непрерывно обновляющейся поверхностью и электрода сравнения (ртутный или другой нормальный электрод). Площадь катода значительно меньше площади анода, поэтому решающими в этом случае являются процессы поляризации катода. Органиче- [c.46]

    Количественное определение цинка проводилось методом амперометрического титрования на ручном полярографе. Сила тока измерялась милливольтмикроамперметром. В качестве анода использовался вращающийся платиновый микроэлектрод длиной 15 мм, диаметром 0,6 мм. Скорость вращения электрода 640 об/мин. Катодом служил . к. э. [c.141]

    Обычно анализируемый раствор наливают в ячейку полярографа, снабженного капельным ртутным микроэлектродом и электродом сравнения устанавливают напряжение между электродами, требуемое для выделения на катоде того или иного металла, после чего анализируемый раствор титруют реактивом В ходе титрования отмечают микроамперметром изменение диффузного тока по мере прибавления реактива. Строят кривую амперометрического титрования, откладывая по оси ординат показания микроампермегра, а по оси абсцисс — объем стандартного раствора реактива в миллилитрах. По кривой амперомет рического титрования находят точку эквивалентности, которой соответствует минимальный ток. [c.253]

    Ним. граница концентраций Ся исследуемого в-ва, определяемых (юычвыми методами В., составляет 10 —10" М. Она лимитируется остаточным током, состоящим из тока заряжения двойного электрич. слоя у пов-сти микроэлектрода и тока, обусловленного электрохим. р-циями присутствующих в р-ре примесей. Снижение Са до 10 —10 М возможно при использ. усовершенствованных инструментальных ва" риантов — переменнотоковой и дифференциальной импульсной В., прн к-рых напряжение поляризации изменяется сложным образом и имеет, помимо постоянной, переменную или импульсную составляющую. В этих вариантах регистрируют зависимости переменной составлр-ощей / от Я или Ф с такой фазовой иля временной селекцией, при к-рой вклад тока заряжения в измеряемый аналитич. сигнал минимален. Эти зависимости имеют вид второй или след, производных обычней полярографич. волны, что способствует увеличению разрешающй способности В. Для всех вариантов Б. возможен и методич. способ снижения С , основанный на предварит, электрохим. или хим. концентрировании определяемого в-ва на пов-сти или в объеме стационарного микроэлектрода с послед, регистрацией т. н. инверсионной вольтамперограммы. Инверсионную В. со стационарным ртутным микроэлектродом наз. также амальгамной полярографией с накоплением . В инверсионных вариантах В. значение Ся достигает 10 —10- М. [c.106]

    Тогда, когда необходимо работать с потенциалами ниже 4-0,4 В, можно использовать платиновые или серебряные микроэлектроды, применимые до -1-0,9 В. В этом случае, однако, диффузионный ток устанавливается очень медленно, полученная полярографическая волна не является обратимой (при обратном уменьшении приложенного напряжения получаются различные значения тока), воспроизводимость очень плохая и сильно зависит от состояния поверхности электрода и его предварительной обработки. При использовании вращающегося микроэлектрода установление диффузионного тока ус1 оряется, но воспроизводимость ухудшается" еще больше. Изложенные причйны сильно ограничивают употребление подобных электродов, которые сравнительно редко применяются в практике полярографии. [c.323]

    В практике полярографии, как уже упоминалось, применяются твердые платиновые микроэлектроды и вращающиеся платиновые электроды. С помощью пары—платиновой микрокатод и платиновый анод большой поверхности—можно получить такие же вольт-амперные кривые, как и на капельном ртутном электроде. На этих вольт-алшерных кривых каждому иону соответствует определенный потенциал восстановления и между высотой волны и концентрацией существует прямая пропорциональность. [c.466]


Смотреть страницы где упоминается термин Микроэлектроды в полярографии: [c.408]    [c.5]    [c.316]    [c.317]    [c.143]    [c.417]   
Основы аналитической химии Часть 2 (1979) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Микроэлектроды

Полярограф

Полярография



© 2025 chem21.info Реклама на сайте