Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Червяк плавления

    Расчет длины зоны плавления по приведенным зависимостям дает завышенные результаты вследствие неучета теплоты, возникающей от внутреннего трения и теплопередачи через границу фронтального раздела фаз в канале червяка. Плавление можно считать практически законченным, когда объем пробки сократится на 90 %. [c.348]

    Метод расчета основан на определении изменения ширины твердой пробки в канале червяка по длине зоны плавления. [c.348]


    Радиальный зазор между гребнем червяка и цилиндром принимаем б = 0,27 мм. Согласно табл. 12.3 назначаем следуюш,ий температурный режим переработки полиэтилена температура расплава на выходе из зоны дозирования / = 190 °С температура в формующей головке = 190 °С температура загружаемых гранул == 60 °С температура цилиндра в зоне загрузки = = 95 °С температура цилиндра в зоне плавления 2 = 240 °С. [c.352]

    Длину зоны плавления найдем последовательно рассчитав изменение ширины пробки по длине участков червяка с различной геометрией, [c.357]

    Длина зоны плавления на первом участке червяка с постоянной глубиной нарезки = 19,2 мм равна [c.358]

    Длину окончания зоны плавления на участке дозирования червяка находим по формуле (12.40)  [c.358]

    Таким образом, объем твердой фазы в конце первого участка уменьшился на 90 %. Учитывая, что формула (12.38) дает завышенные результаты, будем считать плавление материала законченным на длине червяка до зоны дозирования. Тогда [c.359]

    После застывания впуска червяк вновь начинает вращаться. Расплав полимера собирается в полости, образующейся перед червяком вследствие его осевого смещения назад. Величина объемного расхода расплава в процессе пластикации регулируется противодавлением (т. е. действующим на червяк гидравлическим давлением), которое определяет также давление, возникающее в расплаве на выходе из червяка. После того как перед червяком собралась порция расплава, необходимая для следующего впрыска, вращение червяка прекращается. Плавление полимера, находящегося в неподвижном червяке, продолжается за счет тепла, подводимого вследствие теплопроводности от горячего корпуса. Поэтому этот период времени называют временем окончательного прогрева. Тем временем отвердевшее изделие выталкивается из формы, которую закрывают и готовят к впрыску следующей порции расплава. [c.22]

    Другой метод реализации описанного способа плавления осуществлен в одночервячных экструдерах и других машинах подобной конфигурации, в которых деформация материала является следствием напряжений сдвига, вызванных движением стенок. В частности, в червячных экструдерах, которые спроектированы и работают таким образом, что в зонах питания червяка (см. разд. 12.1) развиваются очень высокие давления, наблюдаются более высокие скорости плавления, чем те, которые предсказываются моделями плавления, основанными на анализе плавления по механизму теплопроводности с принудительным удалением расплава за счет движения стенок. [c.298]


    Хорошее ламинарное смешение достигается лишь тогда, когда в смесителе расплав полимера подвергается большой суммарной деформации. При зтом удается существенно уменьшить композиционную неоднородность материала по сечению канала. Однако особенность профиля скоростей в экструдере заключается в том, что суммарная деформация, накопленная частицами жидкости, зависит от местоположения частиц. Следовательно, степень смешения по сечению канала неодинакова. А значит, и по сечению экструдата следует ожидать определенную композиционную неоднородность. Количественной мерой этой неоднородности могут быть функции распределения деформаций Р (у) и f (у) йу. Проанализируем эти функции для экструдера с постоянной глубиной винтового канала червяка, используя простую изотермическую модель, описанную в разд. 10.2 и 10.3. В гл. 12 рассмотрен процесс смешения в пласти-цирующем экструдере, в котором плавление полимера влияет на вид функций распределения. [c.406]

    Заканчивая анализ поперечных срезов (рис. 12.8), рассмотрим другие детали физических процессов, протекающих в винтовом канале червяка. Относительное движение поверхности цилиндра, направленное поперек винтового канала, увлекает за собой расплав и перемещает его к заполненному расплавом участку канала,находящемуся у толкающей стенки, одновременно создавая поперечный градиент давления и циркуляционное течение. Это гидродинамическое давление несомненно способствует дроблению твердой пробки полимера, расположенной у передней стенки винтового канала. А так как расплавленный полимер непрерывно удаляется из пленки расплава за счет относительного движения цилиндра, то твердый слой должен начать двигаться по направлению к поверхности цилиндра. В то же время нерасплавленный полимер скользит по витку вследствие этого ширина пробки, движущейся по каналу, непрерывно уменьшается до тех пор, пока пробка, наконец, полностью не исчезнет. С другой стороны, в данном сечении винтового канала размеры пробки остаются во времени неизменными. Таким образом, налицо все элементы установившегося процесса плавления, сопровождающегося удалением расплава вследствие вынужденного течения (см. разд. 9.8). Более того, подобный механизм плавления может существовать только в тонкой пленке расплава у поверхности цилиндра. Учитывая также существенное различие между интенсивностью плавления без и с удалением образовавшегося расплава, мы приходим к выводу, что плавление на сердечнике червяка (даже при проникновении расплава под твердый слой) так же, как взаимодействие между слоями расплав- [c.430]

    Попав в область расплава, жидкая частица начинает участвовать в циркуляционном течении, перемещаясь между двумя положениями в верхней части канала она относительно быстро движется по направлению к толкающей стенке канала червяка и вниз вдоль канала, в то время как в нижней части канала она сравнительно медленно движется по направлению к пробке (которая также скользит по каналу) или к передней стенке канала (если плавление закончилось полностью). Это продолжается до тех пор, пока частица расплавленного полимера не покинет канал червяка. Температура и давление полимера, находящегося в области расплава, обычно повышаются. Участок червяка, на котором происходит плавление, называют зоной плавления. Этот участок граничит с зоной дозирования, простирающейся до конца червяка. Очевидно в зоне плавления все элементарные стадии протекают одновременно, в то время как в зоне дозирования (транспортировки расплава) происходит только перекачивание и перемешивание расплава. [c.432]

    Как отмечалось ранее, между сечением, в котором начинается формирование пленки расплава на поверхности цилиндра (в результате нагрева цилиндра либо за счет тепла, выделяющегося при совершении работы против сил трения), и сечением, в котором у толкающей стенки канала образуется слой расплава, расположена зона задержки. Зона задержки плавления начинается в точке на оси червяка, где Ть превышает (образование пленки расплава) и распространяется до точки, в которой слой расплава начинает скапливаться у толкающей стенки канала. Силы, вызывающие транспортировку материала в этой зоне, складываются из увлекающей силы, возникающей из-за вязкостных напряжений на поверхности цилиндра, создаваемых деформацией сдвига в пленке расплава, и обычного фрикционного торможения, создаваемого силами трения, действующими на поверхностях сердечника и стенках канала [14, 21]. Толщина пленки расплава увеличивается вдоль оси винтового канала и в конце зоны в несколько раз превышает величину зазора между гребнем червяка и цилиндром. В настоящее время не существует математической модели, пригодной для расчета длины зоны задержки. На рис. 12.14 графически представлена зависимость (основанная на ограниченном числе экспериментальных данных) длины зоны, выраженной числом витков червяка, от величины (связь которой со скоростью плавления будет обсуждаться ниже). Соотношение не учитывает механических свойств твердого слоя, которые, вероятно, также оказывают влияние на длину зоны задержки. [c.441]


    Основное допущение, на котором основан вывод модели, заключается в предположении о существовании установившегося режима. Далее предполагается, что плавление происходит только на поверхности цилиндра, а образующийся расплав удаляется вследствие существования вынужденного течения твердая пробка однородна, деформируема и непрерывна. Локальные значения скорости движения твердой пробки по винтовому каналу червяка постоянны. Медленные изменения этой скорости, так же как и изменения физических свойств (т. е. плотности пробки), условий процесса (т. е. температуры цилиндра) и размеров (глубины канала), могут быть учтены процедурой счета, который последовательно проводится для участков червяка небольшой длины, расположенных друг за другом. Предполагается также, что физические и теплофизические свойства полимера постоянны, а поверхность раздела пленка расплава — твердая пробка имеет температуру плавления и явно выражена. [c.442]

    Изменение размеров твердой пробки в пределах шага расчета зависит от скорости плавления на поверхности раздела пробка— пленка расплава. Рассмотрим элементарный объем расположенной перпендикулярно поверхности раздела пробка—пленка расплава (рис. 12.15). Материал пробки движется с локальной скоростью направленной вдоль канала червяка, и локальной скоростью У х, направленной к пленке расплава. Оптимальную скорость движения поверхности цилиндра Уь можно разложить на две компоненты Уь , направленную вдоль канала червяка, и Уъх, направленную поперек канала. Скорость твердой пробки относительно поверхности цилиндра находится из выражения [c.442]

    В частности, можно воспользоваться уравнением (9.8-36), заменив в нем W на X, а на Vg на Уьх в первом члене и Vo на Vj во втором члене. Тогда получим выражение интенсивности плавления на единице длины (по оси z) канала червяка  [c.443]

    Из уравнения (12.2-27) видно, что профиль пробки в канале постоянной глубины имеет параболическую форму. Общая длина зоны плавления вдоль оси канала червяка может быть получена из уравнения (12.2-27) при X = 0  [c.445]

    Отметим, что длина зоны плавления обратно пропорциональна величине ф, т. е. она пропорциональна массовому расходу и обратно пропорциональна интенсивности плавления. Ясно, что влияние условий работы (технологических параметров) на длину зоны плавления можно оценить через параметр Ф из (12.2-20). Таким образом, увеличение частоты вращения червяка при постоянном расходе приводит к увеличению интенсивности плавления, так как оба эти фактора (скорость вращения и интенсивность плавления) улучшают условия отвода расплава Уъх увеличивается), а тепловыделения за счет работы сил вязкого трения увеличиваются. При повышении температуры цилиндра первоначально происходит увеличение интенсивности плавления, так как количество тепла, подводимого за счет теплопроводности, пропорциональное выражению кт Тъ — Т ), возрастает, Однако в связи с тем что дальнейшее увеличение температуры цилиндра сопровождается уменьшением вязкости пленки расплава и уменьшением тепловыделений за счет работы сил вязкого трения, существует оптимальная температура, при которой достигается максимальная интенсивность плавления. Итак, повышение температуры нерасплавленного материала Тю, поступающего из зоны питания, увеличивает интенсивность плавления и снижает 2г. [c.445]

    Из сравнения выражений (12.2-31) и (12.2-29) видно, что протяженность зоны плавления в червяке с коническим сердечником всегда меньше, чем в червяке с каналом постоянной глубины. Более того, чем больше конусность, тем короче зона плавления, однако существует предельное значение конусности, превышение которого может привести к тому, что ширина твердого слоя будет иметь тенденцию к увеличению, а не к уменьшению (площадь поперечного сечения, разумеется, всегда уменьшается), что может вызвать закупорку винтового канала червяка, увеличение скорости движения пробки и возникновение автоколебаний. Обычно участки червяков с коническим сердечником характеризуют степенью сжатия, т. е. отношением глубины канала в зоне питания к глубине канала в зоне дозирования, хотя из изложенного выше ясно, что зону плавления следует характеризовать именно конусностью червяка, а не степенью сжатия. На рис. 12.16 показано влияние конусности сердечника на форму рассчитанного профиля твердой пробки. Ширина твердой пробки уменьшается, если Л/ф < 1, остается постоянной, если ЛАр = 1, и увеличивается при А > 1. Все эти случаи наблюдались экспериментально. Увеличение ширины твердой пробки означает, что уменьшение глубины канала оказывает большее влияние, чем интенсивность плавления. Такая ситуация часто возникает на участках червяка с коническим сердечником, следующим за зоной питания с постоянной глубиной канала. Таким образом, в начале конического участка X < Ш, и увеличение X не вызывает колебаний производительности и не нарушает механизм плавления с принудительным удалением расплава. Если же плавление начинается на участке червяка с коническим сердечником и Л/г15 > 1, то может оказаться, что устойчивое плавление по указанному механизму не удастся реализовать. В этих условиях плавление может происходить по другому, упоминавшемуся ранее механизму, например за счет диссипативного плавления—смешения, К сожалению, до настоящего времени отсутствует исчерпывающая информация по этим альтернативным механизмам плавления, а теоретические методы, позволяющие предсказать тот или иной механизм плавления в каждом отдельном случае, пока не разработаны. [c.446]

    Лучшими условиями для плавления на участке червяка с коническим сердечником являются такие, при которых ширина твердой пробки остается примерно постоянной. Вполне допустимо также и умеренное увеличение ширины пробки. Результаты экспериментов по исследованию профиля пробки показаны на рис. 12,17—12,19, Как это следует из модели, во всех случаях ширина пробки в зоне питания (вплоть до 12 витка) непрерывно уменьшается изменение наклона происходит в начале участка червяка с коническим сердечником (зона сжатия) при этом для полиамида наблюдались случаи закупорки, для ПЭВД — устойчивая и постоянная ширина пробки, [c.446]

    В зоне дозирования экспериментальные наблюдения неточны вследствие слишком малой ширины твердого слоя или в результате его разрушения. Эти особые условия плавления зависят от режима работы, конструкции червяка и свойств полимера. Профили пробки, показанные на рис. 12.17—12.19, рассчитаны с помощью модели, отличающейся от обсуждавшейся ранее только исключением некоторых упрощающих допущений. В частности, предположение о том, что расплав является ньютоновской жидкостью с постоянной вязкостью, заменено степенным законом, в который введен метод учета влияния температуры. Учтено также влияние радиального зазора между гребнем червяка и цилиндра и влияние кривизны винтового канала. Рис. 12.19 показывает, что в отдельных случаях простая ньютонов- [c.447]

    Модификации этой модели, учитывающие нелинейный температурный профиль в пленке расплава, влияние кривизны канала и зазора между гребнем червяка и цилиндра, представлены в работе [21 вместе с выражениями для расчета потребляемой мощности. Усовершенствованием модели плавления занимались авторы многочисленных работ [13, 23—28], однако их детальное обсуждение выходит за рамки настоящей книги. [c.448]

    Литье под давлением разделяется на два четко определяемых процесса. Первый включает в себя плавление, перемешивание, сжатие и течение расплава, осуществляемые в пластикаторе литьевой машины, а второй — собственно оформление изделия в полости формы. Большинство литьевых машин снабжено червячными пласти-каторами с осевым перемещением червяка и имеет горизонтальную линейную компоновку, как показано в гл, I на рис. Ь7, [c.517]

    Плавление материала в червяке в условиях скольжения пробки по корпусу Диссипативный механизм плавления и смешения [c.614]

    Реализация теплового удара в данном случае способствует замене внешнего трения гранул внутренним сдвигом. При этом возникают интересные теоретические задачи исследование неизотермического процесса плавления с учетом градиента давления в зонах действия энергетического парадокса , а также разработка и решение математической модели неизотермического напорного течения расплава полимера в дисковой части комбинированных экструдеров, где действует не только градиент давления, развиваемый червяком, но и нормальные напряжения в дисковом рабочем зазоре. Ожидает своего решения также неизотермический процесс плавления и образования расплава в чисто дисковых экструдерах, хотя нам и представляются более перспективными комбинированные экструдеры, которые могут обеспечить стабильный режим переработки термопластов. [c.107]

    Внутри любой 100-килограммовой порции существуют местные неоднородности состава отдельная гранула полимера может отличаться от соседней гранулы. Эти различия могут быть уменьшены интенсивным смешением. В интенсивном смесителе происходит плавление гранул и гомогенизация вплоть до исчезновения различий, обнаруживаемых невооруженным глазом. Закрытые смесители типа Бенбери или вальцы способны производить экстенсивное смешение в объеме нескольких сот килограммов материала. Смешение подобного типа в экструдере происходит только в объеме винтового канала червяка, куда даже у крупных машин вмещается всего лишь несколько килограммов материала. Поэтому необходимая степень смешения композиции в этом случае зависит от эффективности экстенсивного смешения на стадии подготовки композиции. [c.111]

    В новейших типах литьевых машин используются червячные и дисковые пластикаторы материала. В последнем случае плавление полимера осуществляется за счет тепла, выделяющегося при трепии полимера между вращающейся и неподвижной плитами. Эти материалы перерабатываются при более низкой температуре, которая при этом регулируется. Такие машины могут применяться для формования жесткого поливинилхлорида, каучука и реактопластов. Литьевое оборудование с программированным управлением включает в себя счетнорешающее устройство, которое регулирует такие параметры, как температуру зон обогрева цилиндра, продолжительность впрыска и охлаж-де1шя, давление впрыска, скорость вращения червяка-плунжера. Автоматический контроль качества отливок не предусмотрен. [c.174]

    Этот метод пригоден также для анализа пластицирующего экструдера. Результаты таких расчетов приведены на рис. 11.28. При больших скоростях вращения червяка происходит быстрое плавление полимера, и распределение деформаций оказывается подобным тому, какое наблюдается в экструзионном насосе. Увеличение скорости вращения червяка при постоянном объемном расходе приводит к увеличению противодавления. При этом происходит заметный сдвиг функции распределения деформаций в область более высоких значений деформации. И снова мы видим, что распределение деформаций в червячном экструдере довольно узкое. Следовательно, среднее значение деформации у [46] может служить критерием смесительного воздействия. Средняя деформация пропорциональна величинам ПН, QpIQd и 6. Рис. 11.29 иллюстрирует зависимость Y от угла винтовой нарезки червяка при различных значениях Qp/Qd- Пропорциональность средней деформации величине 1/Н установлена экспериментально, как было показано нами ранее при рассмотрении ФРД для случая течения между параллельными пластинами. Точно так же экспериментально было установлено, что средняя деформация возрастает при увеличении противодавления. Аналогичным образом установлены предельные значения угла нарезки червяка, [c.413]

    Большинство одночервячных экструдеров, применяемых в промышленности переработки пластмасс, является пластицирующими, т. е. полимер загружают в них преимущественно в виде твердых частиц (гранул). Гранулы перемещаются в загрузочной воронке под действием сил тяжести и заполняют канал червяка, в котором они транспортируются и сжимаются за счет сил трения, затем плавятся или пластицируются под действием сил трения. Наряду с плавлением происходят процессы генерирования давления и смешения полимера. Таким образом, процесс пластнцирующей экструзии (рис. 12.7) включает все четыре элементарные стадии транспортировку твердых частиц в зонах 1, 2 я 3 плавление, перекачивание и смешение в зоне 4. Удаление летучих может происходить в зонах 3 и 4 благодаря особой конструкции червяка. [c.428]

    Процесс пластицирующей экструзии довольно сложен и отличается от процесса экструзии расплава протекающими физическими процессами, и в частности наличием стадии плавления. Его нелегко предсказать и смоделировать на основе известных принципов, не-прибегая к экспериментальным исследованиям. Качественное понимание процесса плавления стало возможным только после того, как Мэддок [9] и Стрит [10] разработали простой и остроумный экспериментальный метод визуального исследования процесса. Методика эксперимента заключалась в следующем. Экструдер, работающий в установившемся режиме, резко останавливали, охлаждали цилиндр до температуры, при которой расплав затвердевал в канале червяка, а затем быстро нагревали цилиндр, выталкивая червяк из цилиндра. [c.428]

    В результате экспериментов установлено, что на большей части червяка экструдера сосуш,ествуют твердая и жидкая фазы, однако разделение их приводит к образованию слоя расплава у толкающего гребня червяка и твердой полимерной пробки у тянущего гребня. Ширина слоя расплава постепенно увеличивается в направлении вдоль винтового канала, в то время как ширина твердой пробки умень -шается. Твердая пробка, имеющая форму непрерывной винтовой ленты изменяющейся ширины и высоты, медленно движется по каналу (аналогично гайке по червяку), скользя по направлению к выходу и постепенно расплавляясь. Все поперечное сечение канала червяка от точки начала плавления до загрузочной воронки заполнено нерасплавленным полимером, который по мере приближения к загрузочному отверстию становится все более рыхлым. Уплотнение твердого полимера позволяет получать экструдат, не содержащий воздушных включений пустоты между частицами (гранулами) твердого полимера обеспечивают беспрепятственный проход воздушных пузырьков из глубины экструдера к загрузочной воронке. Причем частицы твердого полимера движутся по каналу червяка к головке, а воздушные пузырьки остаются неподвижными. Хотя описанное выше поведение расплава в экструдерах является достаточно общим как для аморфных, так и для кристаллических полимеров, малых и больших экструдеров и разнообразных условий работы, оказалось, что при переработке некоторых композиционных материалов на основе ПВХ слой расплава скапливается у передней стенки канала червяка [12]. Кроме того, в больших экструдерах отсутствует отдельный слой расплава на боковой поверхности канала червяка, чаще наблюдается увеличение толщины слоя расплава на поверхности цилиндра [131. Как отмечалось в разд. 9.10, диссипативное плавление — смешение возможно в червячных экструдерах в условиях, которые приводят к возникновению высокого давления в зоне питания. В данном разделе будет рассмотрен процесс плавления, протекающий по обычному механизму. Отметим, что на большей части длины экструдера [c.429]

    В загрузочной воронке мы начинаем медленное и в некоторой степени неустойчивое движение вниз, которое сопровождается многократно повторяющимися столкновениями с соседними гранулами и кратковременными зависаниями в своде. Это продолжается до тех пор, пока мы не достигнем зоны сужения — горловины питающего отверстия. Здесь винтовой гребень подхватывает гранулы и толкает их вперед. Он мгновенно догоняет нашу гранулу, и она начинает вращаться (при этом изменяется ее система координат). Теперь мы регистрируем свое движение относительно червяка, и поэтому кажется, что цилиндр вращается в противоположном направлении. Мы находимся в мелком канале, ограниченном гребнями червяка, его сердечником и поверхностью цилиндра, и начинаем медленное движение по каналу, сохраняя свое местоположение относительно ограничивающих канал стенок. По мере передвижения соседние гранулы нажимают на нашу гранулу со все возрастающим усилием, причем пространство между гранулами постепенно уменьшается. Большинство гранул испытывает такое же воздействие, за исключением тех, которые контактируют с цилиндром и червяком. Движущаяся поверхность цилиндра оказывает интенсивное тормозящее воздействие, в то время как трение о поверхность червяка приводит к возникновению силы трения, направленной вдоль винтового канала. Из разд. 8.13 известно, что это торможение о поверхность цилиндра является движущей силой, вызывающей перемещение частиц твердого полимера в канале червяка. Оба эти фрикционных процесса приводят к выделению тепла, возрастанию температуры полимера, и в особенности слоя, расположенного у поверхности цилиндра. В каком-то сечении температура слоя может превысить температуру плавления или размягчения полимера, и фрикционное торможение переходит в вязкое трение, т. е. твердый полимер перемещается по каналу червяка за счет напряжений сдвига, генерируемых в пленке расплава. Однако в более общем случае еще до начала сколько-нибудь значительного фрикционного разогрева экстремальные условия достигаются на тех участках, где цилиндр разогрет до температуры, превышающей температуру плавления, что ускоряет появление пленки расплава. Это означает окончание той части процесса транспортировки гранул, которая происходит в зоне питания, когда в экструдере присутствует только твердый нерасплавленный материал. К этому моменту наша гранула оказывается до некоторой степени деформированной соседними гранулами, с которыми она тесно контактирует, образуя вместе с ними достаточно прочный, хотя и деформируемый твердый блок, движущийся подобно пробке по каналу червяка. Тонкая пленка, отделяющая слой нерасплавлениого полимера от цилиндра, подвергается интенсивной деформации сдвига. Разогрев твердой пробки происходит как за счет тепла, генерируе- [c.431]

    Внешняя характеристика червяка пластицируюш,его экструдера обычно имеет нелинейную форму (вид внешней характеристики червяка, нерекачиваюш,его расплав, обсуждался в предыдущем разделе). Пластицирующий червяк выполняет ряд функций, и все реализуемые в нем элементарные стадии, кроме перекачивания и смешения расплава, протекают в изменяющихся условиях. Так, по достижении определенного расхода производительность зоны питания может оказаться недостаточной, что приводит к работе в режиме голодного питания. Изменение расхода вызывает изменение длины зоны плавления следовательно, вдоль кривой внешней характеристики червяка меняется не только температура расплава, как это имело место для экструдера, перекачивающего расплав (см, рис. 12.6), но в экструдате могут появиться нерасплавленные частицы. Более того, средняя температура расплава определяется при этом не только теплом, передаваемым потоку расплава от стенок и за счет вязкого трения в самом расплаве, но также и интенсивностью плавления (т. е. условиями транспортировки расплава из тонкой пленки к слою расплавленного полимера). Наконец, могут изменяться расположение и длина зоны запаздывания, оказывая влияние на положение и длину зон и дозирование. [c.433]

    К аналогичному выводу можно прийти, если рассмотреть процесс плавления в червяке с коническим сердечником с начальной глубиной канала Н и конусностью А =йН1йг. В этом случае выражение (12.2-25) принимает вид [c.445]

Рис. 12.16. Зависимость относительной ширины пробки А/1Г от нормированной длины зоны плавления г11т для однозаходного червяка (цифры на кривых значения Л/1 - ). Рис. 12.16. <a href="/info/40214">Зависимость относительной</a> <a href="/info/318234">ширины пробки</a> А/1Г от нормированной <a href="/info/318042">длины зоны плавления</a> г11т для однозаходного червяка (цифры на кривых значения Л/1 - ).
    Так как плавление начинается в зоне питания, для расчета профиля пробки используют выражение (12.2-21). Плавление начинается у седьмого витка и оканчивается на 12,5 витка в конце участка зоны питания с постоянной глубиной канала. Поскольку Ф зависит от /1, которое в свою очередь является функцией X, расчет проводят плановым методом, В данном примере будем считааь, что один шаг расчета равен шагу червяка, и рассчитываем б, 1 и Ф при условиях, существующих в начале каждого шага. По более точной методике расчета оценку этих переменных производят в середине каждого шага. В данном примере в эти условия входит ширина пробки X, необходимая для расчета б. Поэтому приходится использовать итерационные методы. Такую процедуру можно легко осуществить на ЭВМ. Величину Ч) рассчитывают из уравнения (12.2-22), а значения х и Ф находят интерполяцией данных, представленных выше (для интерполяции используется соотношение 6162 яв I/ Х,/Х-.). Результаты расчетов представлены ниже в табл. 12.1. При расчете профиля пробки по выражению (12.2-21) на первом шаге принимаем, что Х,/ = 1. [c.450]

    В пластицирующем экструдере можно выделить два самостоятель ные участка транспортировки. Первый участок расположен непо средственно за областью плавления здесь можно применять модели описанные в предыдущем разделе, без какой-либо модификации Кроме того, транспортировка расплава происходит в слое расплава который граничит с твердой пробкой. На этом участке ширина слоя по мере продвижения по каналу увеличивается. Более того, непрерывно увеличивается также и массовый расход находящегося перед толкающей стенкой расплава в результате притока расплава из пленки. Обе эти величины, а также средняя температура пленки расплава могут быть рассчитаны на основании модели плавления. Следовательно, модель движения расплава в зоне дозирования можно использовать для приблизительного расчета локального градиента давления и изменения температуры в пределах малых шагов расчета, используя средние значения локального расхода и локальную ширину слоя расплава [2, 27]. На рис. 12.20 представлены результаты таких расчетов. При этом предполагают, что процесс плавления оказывает сильное влияние на процесс нагнетания расплава, а возможное влияние последнего на плавление пренебрежимо мало. В действительности расплав, находящийся перед пробкой, сжимает ее и создает на ее поверхности тангенциальные напряжения, которые наряду с вязким трением в пленке расплава и силами трения, действующими у сердечника червяка и винтового канала, определяют распределение напряжений в твердой пробке передней стенки. Попытки такого анализа взаимодействия двух фаз, которые в принципе могут позволить прогнозировать деформационное поведение пробки, ее ускорение и разрушения, можно найти в работах [13, 28]. [c.452]

    Профиль пробки в червячных экструдерах. Определите профиль пробки и продолжительность плавления ПЭНП, перерабатываемого в экструдере с одно-заходным червяком диаметром 6,35 см (шаг диаметральный), имеющим следующие характеристики, при следующих условиях зона питания состоит из 3,5 витка глубиной 1,27 зона сжатия с постоянной величиной конусности и сердечника состоит из 12 витков зона дозирования состоит из 12 витков глубиной 0,318 см ширина гребня витка 0,635 см зазор между гребнем витка и поверхностью цилиндра незначителен. Параметры процесса частота вращения червяка 82 об/мин, температура цилиндра 150 °С, производительность 54,4 кг/ч. Используйте показатели физических свойств полимера из Примера 12.3 и предположите, что плавление начинается за один виток до конца зоны питания. Отвепг. В конце зоны питания XlW = 0,905, в конце зоны сжатия XlW = 0,023.) [c.459]

    Теоретический анализ литья под давлением включает все элементы анализа установившейся непрерывной пластицируюш,ей экструзии, а кроме того, осложняется анализом неустойчивого течения, обусловленного периодическим враш,ением червяка, на которое накладывается его осевое перемеш,ение. Для управления процессом литья под давлением важной является зона плавления в цилиндре пластикатора. Экспериментально показано, что механизм плавления полимера в цилиндре литьевой машины подобен пластикации в червячном экструдере [1 ]. На этом основана математическая модель процесса плавления в пластикаторе литьевой машины [2]. Расплав полимера скапливается в полости, образующейся в цилиндре перед червяком. Гомогенность расплава, полученного на этой стадии, влияет как на процесс заполнения формы, так и на качество изделий. В настоящем разделе рассматривается только процесс заполнения формы. Предполагается, что качество смешения и температура расплава остаются постоянными на протяжении всего цикла литья и не изменяются от цикла к циклу. [c.518]

    Схема прядильной головки экструзионного типа с горизонтальным червяком приведена на рис. 10.3. Прядильная экструзионная машина представляет собой комбинацию червячного экструдера, широко используемого при переработке пластических масс, II прядильного шестеренчатого насосика. Для плавления полипропилена достаточно одночервячной экструзионной машины с червяком определенной степени сжатия [33]. Отношение длины червяка к диаметру должно составлять (15н-20) 1, а коэффициент сжатия 4, Основную техническую трудность при формовании волокон на прядильных головках экструзионного типа составляет регулировка давления расплава полимера в переходной зоне между червяком и шестеренчатым прядильным насосиком. [c.239]

    При замене перерабатываемого материала необходимо продолжать вращение червяка до полной очистки цилиндра. Температуру по зонам цилиндра снижают, либо уменьшая подвод тепла, либо вуслючив охлаждение. При этом новый материал поступает в цилиндр с более низкой температурой, чем это требуется для нормального ведения процесса. Далее машину постепенно вводят в рабочий режим, соответствующий условиям переработки нового материала. Таким образом устраняют опасность разложения нового перерабатываемого материала. Продолжительность перехода машины на другой режим работы может быть сокращена путем кратковременного пропускания полимера с низкой температурой плавления, например полиолефина или полистирола. Это устраняет возможность холостой работы оборудования. Необходимо не допускать охлаждения полиамида на червяке экструдера ниже температуры его отверждения. Остановка экструдера даже на несколько минут может привести к резкому охлаждению расплава. [c.191]

    ОТ расположенных снаружи цилиндра нагревателей й теплоты внутреннего трения в материале. При плавлении объем полимера уменьшается. Соответственно в этой зоне уменьшается глубина канала червяка. В последней зоне — дозирующей — весь винтовой канал червяка заполнен расплавом. Б винтовом канале червяка в этой зоне выделяют четыре потока расплава прямой (вынужденный), направленный к формующей головке, обратный — уменьшение прямого потока вследствие сопротивления головки и стенок цилиндра, циркуляционный — в плоскости, перпендикулярной оси винтового канала, и поток утечки — в зазоре между червяком и внутренней поверхностью цилиндра, направленный к загрузочному бункеру. Производительность экструдера определяют прямой и обратный потоки. Циркуляционный поток не влияет на производительность, а поток утечки обычно настолько мал, что им часто пренебрегают при расчетах. Соотношение длин зон червяка определяется характером перерабатываемого материала Для переработки аморфных термопластов, плавящихся в широком интервале температур, применяют червяки с длинной зоной сжатия, для кристаллизующихся полимеров —с короткой зоной сжатия (длиной около одного диаметра), а для переработки нетермостойких материалов, например поливинилхлорида,— червяки без зоны сжатия, с постепенным уменьшением глубины канала, чтобы избежать paз ioжeния полимера за счет тепловыделения в зоне сжатия,. Для перемещения материала внутри цилиндра нужно, чтобы коэффициент трения о поверхность червяка был меньше, чем о стенку цилиндра, так как иначе полимерный расплав будет только вращаться с червяком без перемещения в осевом направлении. Чтобы снизить коэффициент трения, червяк охлаждают, подавая воду внутрь полости в его сердечнике. При перемещении расплава внутри цилиндра часть механической энергии переходит в тепловую, тепловыделение увеличивается с повышением частоты вращения червяка. В машинах с быстроходными червяками (частота вращения более 2,5 об/с) тепловыделение настолько велико, что при установившемся режиме работы отпадает надобность в наружном обогреве (адиабатические экструдеры). [c.276]

    Экструзия, так же как и литье иод давлением, наиболее производительный и распространенный способ переработки ТФП. Для экструзии используют червячные экструдеры с отношением длины к диаметру червяка (2025) 1. В длинных цилиндрах создается большая площадь теплопередачи и нагревание полимера происходит равномерно. Отношение длины зоны питания, транспортирования и плавления к длине зоны гомогенизации и сжатия расплава до давления, достаточного для выдавливания его через мундшт к, составляет примерно 3 1. Решетка в головке экструдера способствует переводу вращательного движения расплава в прямолинейное. Необходимо регулирование частоты вращения червяка от 1 до 60 об/мин. Приспособления для приема изделий должны обеспечивать быстрое охлаждение и точную стабилизацию температуры. [c.199]

    Этот метод литья обладает рядом преимуществ. В обычной, поршневой машине в центре массы в зоне плавления создается пробка из нерасплавленных гранул. Поскольку расплав, образующийся в промежутке между стенкой цилиндра и этой пробкой, обладает плохой теплопроводностью, приходится поддерживать на поверхности цилиндра повышенные температуры. Червяк же непрерывно счищает расплавившиеся гранулы с поверхности цилиндра и одновременно приводит в соприкосновение с ней новые порции материала. Кроме того, в обычных литьевых машинах наличие торпеды на Пути движения расплава вызывает увеличение потерь давления. В червяке винтовая нарезка давит на материал по мере продвижения его вдоль цилиндра, вызывая циркуляционное движение в канале червяка и способствуя тем самым лучшему смешению материала. В поршневых машинах поршень давит на расплавленный материал через слой полурасплавленных гранул, тогда как в машинах с червячной пластикацией в. период впрыска червяк давит непосредственно на расплавленную массу. С применением червяка уменьшается продолжительность пребывания материала в машине, что очень важно для материалов, чувствительных к перегреву (например, для поливинилхлорида). К сказанному следует добавить, что эффективность работы иластицирующего устройства и производительность этих машин выше, чем обычных литьевых машин. Дальнейшие усовершенствования несомненно пойдут по пути увеличения скоростей и размеров литьевых машин. [c.136]


Смотреть страницы где упоминается термин Червяк плавления: [c.359]    [c.429]    [c.432]    [c.448]    [c.616]    [c.135]   
Переработка полимеров (1965) -- [ c.308 ]




ПОИСК





Смотрите так же термины и статьи:

Червяк



© 2025 chem21.info Реклама на сайте