Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы определение в воде

    Существуют и другие классификации аналитических методов. Иногда при классификации имеют в виду определенные классы веществ анализ металлов, анализ воды, газовый анализ, сили- [c.13]

    Для определения атомной массы одного из щелочных металлов воспользовались прибором, изображенным на рисунке 17. Масса прибора вместе с налитой в него водой и трубкой — 200 г. Отвесили кусочек щелочного металла в 1,4 г, опустили в воду. Прибор закрыли пробкой с трубкой, содержащей оксид лития (1). Когда реакция между металлом и водой в приборе закончилась, масса прибора была 201,2 г. а) Рассчитайте атомную массу металла и назовите его. б) Какое назначение имеет оксид лития, помещенный в запирающую прибор трубку в) Больше или меньше истинного получится атомная масса металла, если не применять трубку с оксидом лития (1)  [c.116]


    Если погрузить пластинку металла в воду, то под действием полярных молекул воды с поверхности металла отрываются ионы и гидратированными переходят в жидкость. При этом жидкость заряжается положительно, а металл — отрицательно, поскольку на нем появляется избыток электронов. Катионы, перешедшие в жидкость, вследствие притяжения отрицательно заряженным металлом располагаются вблизи его поверхности. В результате образуются два слоя с противоположными зарядами — так называемый двойной электрический слой (рис. 61, а). На границе соприкосновения металла и жидкости возникает определенная разность потенциалов, или скачок потенциала, так как плотную часть двойного электрического слоя с некоторым приближением можно уподобить плоскому конденсатору с определенной разностью потенциалов. [c.228]

    На стадии опытно-промышленных исследований производства стройматериалов с добавками шламов и осадка проведена оценка условий труда, изучен количественный состав отходов очистки производственных сточных вод подшипникового, станкостроительного заводов и осадка иловых карт городских очистных сооружений водоотведения, содержащего соли тяжелых металлов, определен химический состав воздуха рабочей зоны на наличие токсичных соединений по следующей методике [189]. [c.162]

    Для определения области решений уравнения (2.33) были рассчитаны значения его правой части для водяного сфероида в типичных диапазонах изменения температуры стенки и радиуса капли. При расчете (константы ft предполагалось, что приведенный коэффициент теплового излучения системы стенка — основание, сфероида ецр = 1, это, видимо, можно считать справедливым для неполированной иоверхности охлаждаемого металла и воды, обладающей явно выраженным свойством поглощения инфракрасного излучения в тонком поверхностном слое. При учете температурных зависимостей использовались те же предположения, что и при оценке влияния реактивной силы (Г5=100°С, 7 с=150-4-1000°С, 7 оо=150°С, Гпо=125°С). Результаты проведенных расчетов представлены в табл. 2.6 и на рис. 2.7.  [c.72]

    Формамид обладает необычной диэлектрической постоянной (110), существенно превосходящей диэлектрическую постоянную воды. Этот растворитель находится в жидком состоянии в удобной для работы области температур (2,5-193 °С) и имеет низкое давление паров при комнатной температуре. По вязкости он превосходит ДМФ (3,3 сП по сравнению с 0,80 сП для ДМФ). В отличие от ДМФ формамид лишь эпизодически применялся в качестве растворителя электролитов, причем область рабочих потенциалов в формамиде оказалась уже, чем в ДМФ. Более высокая диэлектрическая постоянная вообще не дает особых преимуществ формамиду перед ДМФ, так как диэлектрическая постоянная последнего также достаточно велика, чтобы обеспечить адекватную проводимость растворов. В основном с помощью формамида можно варьировать условия опыта путем изменения определенных свойств растворителя. Формамид - хороший растворитель для различных неорганических соединений, включая хлориды, нитраты и сульфаты ряда переходных и щелочноземельных металлов. Подобно воде, формамид растворяет более полярные органические соединения и смешивается с водой он очень гигроскопичен и легко гидролизуется с образованием уксусной кислоты и аммиака. Формамид использовался и качестве растворителя при полярографии на КРЭ некоторых переходных элементов и ряда органических соединений. [c.21]


    Реакционной А. наз. методы функционального анализа, основанные па определении воды, выделившейся илп поглощенной в результате хим. р-ции с участием анализируемого в-ва в неводной среде. Эти методы примен. для определения неорг. н орг. в-в, в т. ч. оксидов н гидроксидов металлов, спиртов, сложных эфиров, к-т, аминов, элементо-орг. соед. для изучения состояния воды в твердых в-вах (гидратах глинозема, цеолитах, ионообменных смолах и др.), кинетики реакций орг. соед., гидратации биополимеров для установления основности гетерополикислот и др. [c.16]

    Г.-фторирующие агенты в орг. синтезе, при переработке соед. и и Ри реагенты для резки металлов под водой и под землей, в аналит. химии при количеств, определении [c.496]

    Определение щелочных металлов в воде 500 мл исследуемой пробы воды выпаривают досуха, остаток кипятят с раствором Ва(0Н)2 и фильтруют В фильтрате содержатся щелочные металлы, следы кальция и избыток Ва (ОН)2 Ионы бария и кальция осаждают оксалатом аммония при кипячении, осадок отфильтровывают Фильтрат выпаривают, остаток прокаливают для удаления солей аммония, обрабатывают серной кислотой, как указано выше [2831] [c.25]

    В препаратах, содержащих щелочноземельные и тяжелые металлы, определение проводят следующим образом испытуемое вещество растворяют в возможно меньшем количестве воды, прибавляют при охлаждении 2 мл раствора едкого натра и 2 мл раствора карбоната натрия. [c.168]

    Нейтрализованный азотнокислый раствор соли висмута, освобожденный от серебра и свинца добавлением сульфата и хлорида натрия, разбавляют 8—10-кратным количеством воды, перемешивают и всыпают в пробирку около 10 г тонкорастертого хлорида натрия. В присутствии висмута на путях падения порошка хлорида натрия появляются полосы мути, густота которых зависит от количества висмута. При взбалтывании белая муть заполняет весь объем раствора. Испытуемый раствор не должен содержать ЗЬШ и ЗпП. Другие металлы определению не мешают. [c.45]

    Кондуктометрическое титрование [32, 243] для определения кадмия применяется очень редко. Отмечена возможность титрования раствором Кз[Ре(СМ)в , осаждающего (в противоположность К4[Ре(СН)в]) нормальную соль кадмия. Определение можно производить в присутствии РЬ [565, стр. 335]. Другой способ основан на количественном осаждении кадмия (в присутствии до 3-кратного количества цинка) в аммиачной среде анилидом тиогликолевой кислоты. Высокочастотным титрованием определяют 0,1 — 11 мг Сс1 в 20 Л1Л раствора оксалаты, тартраты и цитраты не мешают [173]. Очень разбавленные растворы Сс " (0,02—0,5 мг в 40 мл) предложено титровать сероводородной водой в токе азота [565, стр. 271]. Можно титровать кадмий и роданидом в присутствии пиридина, при этом Си маскируют тиосульфатом, N1 — диметилглиоксимом. Ag, Ли, Со, РЬ и Хп должны быть удалены, а А1, Аз, В1, Сг, Ке, Зп, платиновые и щелочноземельные металлы определению не мешают [707]. Комплексы кадмия с аналогами соли Рейнеке (см. стр. 59, 83) могут быть использованы для его кондуктомет-рического титрования [572]. [c.121]

    Для определения воды в солях щелочных и щелочноземельных металлов можно воспользоваться измерениями поглощения при 1,45 и 1,92 мкм [187]. Образцы для измерений приготовляют в форме прессованных таблеток или в виде суспензии в вазелиновом масле. Для анализа солей тяжелых металлов используют метод дейтерообмена, так как эти соли непрозрачны в используемой спектральной области. [c.403]

    В табл. 11-1 сопоставлены результаты определения воды экстракцией с последующим измерением плотности с результатами высушивания в сушильном шкафу (ПО °С, 24 ч) в первом случае обычно получаются заниженные результаты. По-видимому, часть воды, связанная более прочно, при экстракции не удаляется количественно. Для анализа почв с высоким содержанием солей щелочных металлов метод экстракции неприменим, так как некоторые соли переходят в водно-спиртовый раствор. В щелочных почвах, содержащих хлористый натрий и сульфат натрия, кажущийся выход воды составляет ПО и 107%, соответственно [167]. С другой стороны, из образцов почв с высоким содержанием карбоната натрия не удается полностью регенерировать добавленную воду [167]. [c.545]

    Блок-схема прибора для определения содержания цветных металлов в воде, в котором использован метод амальгамной [c.88]

    Определение влаги производят физическими, химическими и физико-химическими методами. К физическим методам определения воды относятся удаление воды высушиванием, азеотропная дистилляция, определение содержания воды по изменению электропроводности, поглощению инфракрасных лучей. К химическим методам относятся взаимодействие воды с гидридами щелочных и щелочноземельных металлов, карбидом кальция, нитридом магния, уксусным ангидридом, реактивом Фишера. К физико-химическим методам определения воды относят химические методы, в которых конец реакции определяют при помощи ручных или автоматических электрометрических установок. Выбор метода определения влаги в органических веществах зависит от стойкости анализируемого продукта. [c.199]


    Как видно из приведенных данных, прямому фотометрическому определению ртути практически не мешают многие тяжелые, цветные, щелочные и щелочноземельные металлы. Определению мешают серебро, медь, золото, платина и палладий. Такая высокая селективность определения ртути, достигаемая за счет проведения реакции в сильнокислых средах, позволила разработать метод ее прямого определения, который может быть рекомендован для анализа сточных вод. [c.43]

    АТОМНО-АБСОРБЦИОННОЕ ОПРЕДЕЛЕНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ В ВОДАХ ПОСЛЕ СОРБЦИОННОГО КОНЦЕНТРИРОВАНИЯ НА ПОЛИМЕРНОМ ТИОЭФИРЕ В ПРИСУТСТВИИ диэтилдитиокарбамината натрия [c.50]

    Иредноложим, что возраст в системе а точно определен некоторым методом и полученные данные есть функция объемных долей металла и воды, как показано на рис. 7.18. [c.291]

    В табл. 7 2 приведены пределы обнаружения и оптимальные концентрационные диапазоны при определении высокотоксичных металлов в воде методом ААС с атомизацией в пламени (8 Видно, что определение большинства указанных элементов возможно лишь при содержати около 100 мкг/л. Поскольку нормативы ПДК в воде ддя многих из них ниже этой концентрации, обычно проводят их предварительное концентрирование в пробе. Следует заметить, что диапазоны определяемых концентраций и пределы обнаружения во многом швисят от пта прибора и у сло-вий атомизации элементов [c.247]

    Разработан также метод определения инертных форм металлов в воде (711. Их разделяют на три фракции, каждая из которых характеризуется скоростью диссоциации ионов металла, удерживаемых ионообменной колонкой умеренно лабильные, с низкой скоростью диссоциации и инертные Заметим, что анодную ИВА непосредственно можно использовать только для определения очень лабильных форм металлов. К ним, в частности, относится кадмий Свинец попадает в фуппу металлов, характеризующихся низкой скоростью диссотщации ионных образований, или инертных. На рис. 7.5 приведена схема для определения форм сущесгво-вания ионов металлов в природных водах с использованием нонообмен-ников [c.283]

    Проблема детального определения того, какие свойства ацетата меди(1) делают его катализатором реакции гидрирования, до сих нор остается нерешенной. Лимнтнру]ощей стадиен реакции гидрирования является активация водорода. Такая активация возможна в дайной системе, ио-впдимому во-первых, потому что ацетат меди(1) находится в растворе частично в виде димера, а во-вторых, потому что комплекс дпмера с растворителем обладает электронной и геометрической структурой, допус]4ающей одновременное образование двух прочных связей между металлом и водо- [c.191]

    Большинство химических реакций, протекаюи их в приборах, заводских реакторах, живых организмах и в природе, — это реакции окисления-восстановления. Такие реакции широко используются в аналитической химии для открытия, разделения и количественного определения веш,еств. Сущность окислительно-восстановительных реакций заключается в переходе некоторого числа электронов от восстановителя к окислителю. Процессы растворения металлов в воде, растворах кислот, оснований и солей также являются окислительно-восстановительными. [c.90]

    Для сравнения приведем потенциалы металлов, определенные в аэрированной движущейся морской воде, насыщенной воздухом, с помощью насыщенного каломельного электрода (НКЭ) и выраженные в вольтах по отношению к этому электроду (потенциалы отрицательные по отношению к НКЭ hk3 = 0i246 в относительно нормального водородного электрода). [c.37]

    На кафедре проводятся теоретические и экспериментальные исследования по вопросам взаимодействия газов с литейными сплавами. Разработаны теория и методика экспериментального определения водо-родопроницаемости, коэффициентов диффузии и массопереноса водорода в жидких металлах. Помимо расширения представлений о модели жидкого состояния металлов появилась реальная возможность использования явления переноса водорода для практического применения. На основании этих исследований разработаны методика и конструкции установок для экспресс-определения содержания водорода в жидких алюминиевых сплавах непосредственно в плавильных или раздаточных печах. [c.68]

    И. орг. соединений проводят обычно по след, схеме в) исследование внешнего вида, определение осн. физ. юнстант (плотности, Пп, iпл, IKun), регистрация спектров поглощения, испускания и ЯМР, проба на горение и зольность, качеств, обнаружение нек-рых элем. (N, S, Hal, Si, металлов), определение р-римости в воде, в водных р-рах К Т и щелочей, орг. р-рителях б) качеств, функцнональ- анализ в) получение твердых производных (не менее двух) идентифицируемого в-ва и определение их а также ( л их смесей с соответствующими производными швестного соед. отсутствие депрессии г.л смеси — важное доказательство тождества сравниваемых в-в г) сопоставление всех полученных результатов с литературными данны- КЯ для предполагаемого соединения. [c.207]

    К. применяют для анализа мн. неорг. (праггически все металлы, галогены, 8 н др.) н орг. в-в (ароматнч. амины, иитро- и нитрозосоединения, фенолы, азокрасителн, алифатич. амиды и др.) определения воды в орг. в-вах установления толщины н анализа металлич. покрытий изучения процессов коррозии исследования кинетики н механизма хим. р-ций (в т. ч. каталитических) определения констант равновесия р-ций установления числа электронов, участвующих в электрохим. и хим. взаимодействиях, и т.д. Кулонометрич. детекторы широко используются в про-точно-инжекционном анализе и хроматографии (см. Детекторы хроматографические). [c.554]

    Определение следовых и примесных элементов в жидкостях можно проводить напрямую без пробоподготовки. Типичным примером служит определение серы в диапазоне концентраций 1-100 млн в нефтепродуктах. Для более низких концентраций требуется предварительное концентрирование. Ионы переходных металлов в воде могут быть собраны на ионообменной смоле, например Ке1ех-100. Затем смолу можно спрессовать в таблетку и анализировать обычным путем. РФС полного отражения позволяет проводить прямой анализ воды с пределами обнаружения на уровне млрд , просто помещая каплю на отражатель (рис. 8.3-16,6). [c.83]

    При проверке чистоты вещества помимо элементного анализа пользуются определением физических постоянных, если соответствующие величины, а возможно, и их зависимость от температуры точно известны. Наибольшее распространение в лабораторной практике имеют определения температуры плавления, плотности, показателя преломления и давления пара. Если эти методы неприменимы, то можно в качестве испытания на однородность подвергнуть вещество операциям разделения. Для этой цели применяют прежде всего не требующие значительных затрат времени методы газовую, тонкослойную хроматографию нлн хроматографию на бумаге. Высокой чувствительностью по отношению к примесям обладают спектроскопические методы. При этом для характеристики жидкостей (например, растворителей, см. разд. 6) и растворенных веществ наиболее важны электронные спектры. Полезно иметь также инфракрасный и масс-спектр, которые в соответствующем аппаратурном оформлении могут быть сняты для образцов в твердом, жидком н газообразном состоянии. Оба метода дают возможность проводить качественное и полуколнчественное определение примесей, что очень облегчает принятие решения о целесообразности дальнейшей очистки. Например, содержание воды в твердом препарате легко определяется по широким полосам поглощения при 1630 н 3400 см в ИК-спектре. Разумеется, в этом случае следует иметь в виду, что галогениды щелочных металлов, используемые при приготовлении таблеток для ИК-спектроскопии, гигроскопичны. Их применение для съемки гигроскопичных объектов или для определения воды возможно только после нх тщательной осушки и лишь прн полном отсутствии воздуха (отмеривание, растирание с веществом, наполнение пресс-формы проводятся в сухой камере). Другой возможностью является съемка суспензии вещества в сухом нуйоле или в другой подходящей жидкости. Подобные жидкости должны обладать достаточно высокой вязкостью и по возможности малым собственным поглощением в соответствующей области спектра. В качестве материала для изготовления окон кювет для съемки ИК-спектров газов и жидкостей применяют вещества, перечисленные в табл. 26. Если нет необходимости вести съемку в области ниже 600 см , то следует пользоваться сравнительно дешевыми монокристаллами хлорида катрня. Конечно, вещество не должно реагировать с материалом окон (при необходимости предваритель- [c.142]

    МОСТИ перхлората калия в 97%-ном этиловом спирте (или этила-цетате) и растворимости других перхлоратов в этих растворителях. Метод дает точные результаты и в значительной степени вытеснил более дорогой метод определения калия в виде хлорпла-тината. Смит с сотр изучили условия определения калия в виде КС10[ в присутствии натрия и лития и условия отделения перхлората калия, как промежуточного продукта при определении калия хлорплатинатом. Бунге определил калий в виде перхлората во взрывчатых веществах, содержащих азотнокислый аммоний. Смит и Уиллард и Смит также исследовали растворимость перхлоратов щелочных и щелочноземельных металлов в воде и различных органических растворителях—метиловом, этиловом и и-бутиловом спиртах, этилацетате и др. Смит изучил осаждение перхлората калия из теплого водного раствора перхлоратов натрия и калия путем добавления больших количеств н-бутилового спирта. Смит исследовал растворимость перхлоратов щелочных металлов в смеси органических растворителей. [c.120]

    Миллс и сотр. [52] сконструировали электрохимическую ячейку, изолированную от воды и кислорода, для использования в полярографии, циклической вольтамперометрии и кулонометрии. Они описали метод определения от 10 ммоль до 10 мкмоль воды и кислорода в растворителях высокой чистоты. Например, малые количества воды влияют на вольтамперометрическое восстановление 2-метокси-3,8-диметилазоцина на капельном ртутном электроде. Эти исследователи [52] отмечают, что влага заметно влияет на восстановление азоцина до дианиона даже в очищенном диметил-формамиде, содержащем всего 10" моль воды. Пелег [57а] описывает определение воды в плавленых нитридах щелочных металлов вольтамперометрическим методом, который он затем использовал для измерения растворимости воды в нитратах лития, натрия и калия. Серова и сотр. [67а] применили реакцию с нитридом магния [уравнение (2.44)] для косвенного полярографического определения малых количеств воды в газах. Аммиак, образующийся в реакции с водой, поглощался в ловушке 0,01 н. раствором НС1 и анализировался полярографически в интервале от —0,7 [c.66]

    С ПОМОЩЬЮ хроматографического метода было проведено одновременное определение воды и кислорода в галогенидах металлов. Эти вещества переводили в водород и монооксид углерода путем пропускания пробы через слой нагретого угля. Видик [303а] использовал в качестве печи для сжигания угольный тигель при 1500 °С. Разделение образующихся продуктов проводили на хроматографической колонке размером 100x0,3 см из нержавеющей стали, заполненной молекулярным ситом 5А (30—50 меш). Схема установки приведена на рис. 5-18. Выполненная из стекла пирекс и заполненная обрезками серебряной фольги ловушка 8, нагретая [c.305]

    Варшавский [202] проводил реакцию с натрием в вакуумной установке при определении следов воды в галогенидах щелочных металлов. Аналогичная методика применялась автором при исследовании стабильности разбавленного раствора натрия в жидком аммиаке при — 78 °С [201 ]. На стабильность этого раствора непосредственно влияет вода, адсорбированная на поверхностях вакуумной установки, выполненной из стекла типа пирекс. Для полного удаления следов влаги необходимо высушивание при 400 °С в течение 200 ч. Количество влаги находят, определяя количество выделившегося водорода с помощью манометра МакЛеода. Такая же методика использована и для определения воды в галогенидах щелочных металлов. Навеску образца в ампуле помещают в вакумную установку в ампулу при —78 °С перегоняют жидкий аммиак и в полученный насыщенный раствор вводят натрий. Через несколько часов с помощью калиброванного манометра Мак-Леода определяют количество выделившегося водорода. По данным Варшавского, образцы Li l, LiBr, Na l, Nal, K l и KI содержали от 100 до 1000 млн" воды. [c.560]

    В заключение следует упомянуть о том, что амперометрический метод был косвенно применен для определения кислорода, растворенного в металлической меди образец металла нагревают в токе водорода, поглощая образующуюся воду метанолом, и титруют ее затем амп.ерометрически реактивом Фишера, обычно применяемом для определения воды в различных веществах . Поданным, приводимым авторами статьи метод позволяет определять [c.238]

    Сущность этих методов разделения состоит в том, что для эффективного разделения используют большую летучесть одного из компонентов системы — определяемого либо мешающего. Например, малые количества германия в различных материалах определяют после предварительной его дистилляции из солянокислой среды в виде СеС14. Для отделения следов кремния его выделяют в форме летучего 31р4 из сильнокислой среды в присутствии НР. Мышьяк и серу часто определяют в ряде материалов после их предварительного отделения в виде соответ-ствующил водородных соединений — НгЗ и АзНз. Содержание в металлах таких элементов, как углерод, сера, водород, можно найти путем прокаливания раздробленной пробы в атмосфере кислорода, в которой они превращаются соответственно в СОг, 50г и НгО. Определение воды в различных твердых образцах часто сводится к их нагреванию при температуре выше 100 °С, после чего содержание воды находят по разнице в массе пробы до и после нагревания. Используют Также методы непосредственного ее определения после удаления воды в виде водяного пара. [c.401]


Смотреть страницы где упоминается термин Металлы определение в воде: [c.293]    [c.227]    [c.283]    [c.188]    [c.298]    [c.212]    [c.61]    [c.127]    [c.23]    [c.144]    [c.449]    [c.16]    [c.74]   
Методы разложения в аналитической химии (1984) -- [ c.249 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы тяжелые определение в воде

Определение следов металлов в воде

Определение содержания в воде карбонатов щелочных металлов



© 2025 chem21.info Реклама на сайте