Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зарождение давления

    Теоретически можно показать (теория этого вопроса сложна, поэтому останавливаться на ней ие будем), что третий предел как цепной возможен в тех случаях, когда на стенках реакционного сосуда возможна не только гибель свободных радикалов, по и образование новых свободных радикалов в результате реакции свободных радикалов с адсорбированными молекулами, и, кроме того, тогда, когда при высоких давлениях оказываются возможными такие тройные соударения, которые приводят к зарождению цепей. [c.216]


    Эти уравнения приближенно описывают опытные данные только при низких давлениях. В области высоких давлений появляется третий предел, наличие которого не вытекает из рассмотренной теории. При высоких давлениях следует учитывать реакции продолжения цепей через НОг-, а также возможность зарождения активных частиц на стенках реакционного сосуда. [c.220]

    Не существует двух мнений относительно характера и роли этой элементарной реакции. В настоящее время почти все исследователи согласны в том, что это — одна из основных реакций зарождения цепей в объеме, играющая весьма важную роль в области умеренных давлений (0,5—15 ат) и температур (800—1500 К). Правда, чисто формально можно показать, что сумма процессов 3 и 4 или 13 и 25 тождественна реакции 1, поскольку также ведет к образованию двух гидроксилов ОН. Иначе говоря, реакция 1 линейно-зависима по отношению к комбинациям 3—4 и 13—25. Фактически, однако, роль, которую играет реакция 1, отлична от 3—4 или 13—25, поскольку последние становятся важными тогда и только тогда, ког- [c.248]

    Рассмотрим теперь основные особенности процесса, протекаюш его в указанном диапазоне параметров. Поскольку прямая реакция (4.1) невозможна, следует ожидать, что в системе тем или иным образом появляются свободные валентности в виде радикалов Н, О, ОН, HOj, иначе говоря, имеет место зарождение цепей. В качестве реакций зарождения могут выступать либо индивидуальные стадии i, в, 7, 18, либо их комбинации (3 и 4, 13 и 23 н т. д.), либо (особенно в области низких давлений) процессы гетерогенного зарождения цепей на стенках, либо активные центры могут появляться в результате постороннего воздействия на систему (термическая или радиационная накачка , искусственное введение радикалов и т. д.). [c.296]

    Доминирующая гипотеза о зарождении паровых пузырьков состоит в том, что они образуются в результате флуктуаций плотности жидкой фазы. Случайные образования ( зародыши паровой фазы ) получают дальнейшее развитие только в том случае, если удовлетворяется условие равновесия основных сил, действующих на них. К этим силам относятся силы давления окружающей пузырек жидкости и пара внутри пузырька и сила поверхностного натяжения самого пузырька. Если форма пузырька близка к сферической, то равновесие этих сил, определяемое соотношением Гиббса, принимает вид  [c.213]


    Процесс теплообмена поверхности, погруженной в объем первоначально неподвижной жидкости, самоустанавливающийся под влиянием зарождения, роста и отрыва паровых пузырьков, называется обычно кипением в большом объеме. Как отмечалось в предыдущем разделе для кипения жидкости на поверхности теплообмена, необходимо, чтобы температура ее несколько превышала температуру насыщения при существующем давлении в системе. Величину теплового потока, соответствующую началу пузырькового кипения в большом объеме, на горизонтально расположенных трубах, можно вычислить с помощью зависимости, описывающей экспериментальные данные [c.221]

    Прп некоторых значениях параметров в системе (8) и при достаточно малом е в системе (7) возникают автоколебания. Динамическая спстема (8) имеет довольно сложный фазовый портрет, может иметь до пяти стационарных точек, допускает существование устойчивых и неустойчивых периодических решений. Для определения констант предложен следующий метод. Прп некоторых значениях параметров стационарное решение теряет устойчивость, и из него зарождается устойчивое периодическое решение. При дальнейшем изменении парциального давления это решение опять переходит в устойчивую стационарную точку. Таким образом, можно выписать четыре уравнения для определения стационарных точек, два условия на линеаризованную задачу, характеризующие зарождение и исчезновение колебаний, четыре уравнения для скоростей реакции (измеряемых в эксперименте) и их производных, два уравнения для периодов зарождающихся колебаний. Как показывают расчеты, эти уравнения позволяют определить все константы, входящие в уравнения. При [c.88]

    К отказу от укоренившихся воззрений на термический крекинг, как на гомогенный процесс, нас давно уже привели некоторые обстоятельства, связанные с трактовкой кинетического уравнения (3), хорошо описывающего зависимость скорости крекинга алканов от глубины распада [53, 104, 107]. Коэффициент торможения р, входящий в эмпирическое уравнение (3), зависит от размеров и геометрической формы реактора [53], гетерогенного фактора [107,] уменьшаясь с увеличением набивки. Попытки вывести уравнение (3) на основе представления о гомогенном характере радикально-цеп-ного крекинга алканов не привели к успеху, давая неизменно второй порядок реакции распада вместо первого относительно давления алкана [1041. Лишь приняв гипотезу о гетерогенном зарождении радикалов, можно получить правильный порядок. Можно получить также первый порядок реакции относительно алкана, если принять, что реакция зарождения цепей является гомогенной, бимолекулярной, как это было показано для этана [154]. [c.53]

    Уравнение (72) передает кинетику установившегося крекинга при гомогенном или гетерогенном (линейная область адсорбции алкана) зарождении цепей и превалирующем обрыве цепей на стенках. Именно подобного рода эмпирическими уравнениями типа (13) в сравнительно недавних работах английские исследователи стремились охватить экспериментальные данные по скорости крекинга алканов нормального строения (от пропана до декана) при низких давлениях [76, 77]. Из уравнения (72) следует, что распад может происходить по законам реакций первого или второго [c.136]

    Если гетерогенное зарождение радикалов осуществляется в промежуточной области адсорбции или адсорбционного насыщения, то в условиях (73) следует дробный порядок реакции (для промежуточной области), поскольку величина зависит от давления в дробной степени и первый порядок реакции для области насыщения, в которой постояв-2 k [c.137]

    В режиме работы оборудования с одной амплитудой изменения давления число циклов до зарождения трещины [c.8]

    Следует отметить, что, пользуясь этим же методом раздельного калориметрирования, А. М. Маркевич [18] в 1948 г. открыл, что при темновой реакции взаимодействия водорода с хлором, для которой всегда предполагалось зарождение ценей в объеме, оно на самом деле происходит на стенках реакционного сосуда. В 1950 г. гетерогенное образование активных гомогенных частиц показали с помощью этого же метода С. Ю. Ело-вич и П. Ю. Бутягин [19] нри окислении углеводородов при низких давлениях. [c.64]

    Обрыв цепи соответствует исчезновению активных частиц. Потеря активности частицами может происходить при адсорбции частиц стенками сосуда, при столкновении двух активных частиц с третьей, называемой ингибитором, которой активные частицы отдают избыточную энергию. Поэтому для цепных реакций характерна зависимость их скорости от размеров, формы и материала реакционного сосуда от наличия посторонних инертных веществ, от давления или концентрации реагирующих веществ, температуры и других факторов. Скорость цепных реакций определяется скоростью наиболее медленной стадии, т. е. скоростью зарождения цепи. Для неразветвленных цепей, в которых каждая активная частица дает начало одной цепи, остаются справедливыми обычные уравнения химической кинетики с константой скорости, увеличенной в V раз (V—длина цепи). [c.275]


    Интересные колебательные механизмы термобарических взаимодействий в системе океан—континент анализируются в [156]. Северо-Атлантическое колебание (рис. 3.4) связывается с возникновением качелеобразной аномалии повышенного давления в субтропических широтах Атлантики. Эта аномалия связана с зонально ориентированным контрастом зимних температур между Гренландией и Европейским континентом и возникновением положительной тепловой аномалии над Европой, сопряженной с интенсивными осадками. В [156] для северо-атлантического колебания отмечаются двухлетняя и шестилетняя периодичности. Типичным примером проявления Северо-Атлантического колебания явилась аномальная ситуация зимы 1983—1984 г. Заметим, что в условиях аномальности зональной циркуляции над Ньюфаундлендской энергоактивной зоной, определяющей теплоснабжение воздуха, отмечается повышенная повторяемость полярнофронтовых циклонов, впоследствии выходящих на Европейский континент. Имея в момент зарождения давление в центре 995— [c.102]

    С реакциями термодеструкции связано накопление в жидких продуктах ненасыщенных структур и осколков молекул углеводородов, которые склонны к поликонденсащш с аренами или полимеризации, что приводит к коксообразованию [38, 20, 52]. Полное их гидрирование термодинамически возможно при давлениях выше 20 МПа и температурах вьпие 427 °С [40]. Вероятность зарождения и накопления указанных структур в продуктах гидрооблагораживання нефтяных остатков возможно не только на стадии предварительного нагрева, но и при прохождении газопродуктового потока через реактор. Ши могут зародиться в пространстве между гранулами катализатора, в пленках жидкости, стекающей по гранулам, в макропорах катализатора, заполненных жидкостью и в застойных зонах реактора. [c.63]

    Отбрасывая за малостью слагаемое, определяющее скорость зарождения цепей и заменяя давление пропорциональной ему величиной — концентрацией <ислорода, выражения (VIII, 55) и (V111,56) можно записать так  [c.221]

    Попытки реализации каталитического крекипга в лабораторных условиях начинаются с момента промышленного зарождения термического крекинга. Если термическш крекинг рассматривать как совокупность элементарных процессов деструкции, дегидрогенизации, изомеризации, деалкилирования,, алкилирования, циклизации, полимеризации, гидрирования молекул углеводородов и т.,д., то простая регулировка температурой и давлением (в пределах обь(чпых для данной области техники величин) может подавить лишь оди )-два из перечисленных процессов. Проведение крекинга и риформинга 1 присутствии хлорида алюминия дало возможность более надежно регулировать сочетание элементарных нроцессов вплоть до рельефного выделения одного из них и подавления всех остальных. [c.39]

    Например, при окислении декана, тэтралина, циклогексана зарождение цепей осуществляется по тримолекулярной реакции. В случае окисления метилэтилкетона и этилового спирта при 145— 200 °С и давлении 5 МПа зарождение цепей происходит по бимолекулярной реакции, В некоторых случа 1х процесс зарождения цепей оказывается гетерогенным и идет на стенках реакционного сосуда. [c.269]

    Предположим, что реакция зарождения радикалов (0)-является гетерогенной и протекает в условиях насыщенной адсорбции молекул алкана на стенках реактора. В этом случае, как известно, концентрация алкана в поверхностном слое, определяемая из уравнения адсорбционной изотермы для него, будет постоянной и скорость гетерогенного зарождения цепи будет также постоянной в достаточно большом интервале изменения давления или концентрации в газовой фазе. Допустим также, что обрыв цепей в объеме происходит в основном при столкиовениях радикалов R2, развиваю-ш,их цепь, с молекулами некоторого продукта реакции, концентрация (или парциальное давление) которого пропорциональна количеству распавшихся молей М и равна X. [c.111]

    Таким образом, уже упрощенная схема радикальноцепного крекинга алканов, учитывающая лишь процессы гетерогенного зарождения и обрыва цепей при гомогенном развитии цепного процесса, способна объяснить в области низких давлений наблюдаемые кинетические соотношения с единой точки зрения. Однако в этой простой схеме остаето совершенно неучтенным тормозящее действие продуктов крекинга на скорость распада алканов. [c.137]

    Аналогичный расчет кинетики крекинга пропана с учетом одного активного центра (СНз-радикала), проведеный на основе численного интегрирования (82), показывает (рис. 12) хорошее согласие вычисленных и опытных значений констант скорости распада [55, 203] при различных температурах и давлении 10 мм. Вычисленная длина цепи (v= С г) с увеличением температуры уменьшается, что обусловлено уменьшением С вследствие увеличения константы скорости зарождения цепей с ростом температуры. Рассчитанная концентрация радикалов СНз на порядок больше (10 моль[л), чем [c.150]

    Данные табл. 8.3 и 9.2 позволяют определить конкуренцию, которая может иметь место при инициировании радикалов путем реакг ций диссоциации молекул алканов и реакций молекулярного диспропорционирования алканов и алкенов. Впервые на возможность зарождения радикалов в результате реакций молекулярного ди пpot порционирования указал Семенов [76]. Такая возможность зарождения радикалов следует из сопоставления тепловых эффектов реакции диссоциации и молекулярного диспропорционирования. Реакций диссоциации молекул алканов являются более эндотермичными, чем реакции молекулярного диспропорционирования алканов и алкенов (см. табл. 8.3, 9,2). Поскольку обратные реакции протекают с практически нулевой энергией активации, то тепловой эффект реакций молекулярного диспропорционирования и диссоциации совпадает с энергиями активации этих реакций. Поэтому энергетически реакции молекулярного диспропорционирования могут быть выгоднее, чем реакции распада молекул алканов на радикалы. В то же время следует иметь в виду, что определение конкуренции этих реакций требует сравнения их скоростей. Оценим скорости зарождения радикалов по этим двум механизмам [М], м.д = К.А П] [О]. Предположим, что при нормальном давлении число молекул в одн( М литре совпадает с концентрациями исходных молекул и приближенно рачно 10 . Тогда [c.111]

    В ранних опытах было установлено, что усталостная прочность меди в вакууме на 14 % больше, чем в воздухе. Для углеродистой стали это увеличение составило лишь 5 %, а для латуни 70-30 усталостная прочность возросла на 26 % [681. Более поздние исследования [691, показали, что время до разрушения обескислороженной высокоэлектропроводной меди при давлении воздуха 1,3-10 Па в 20 раз больше, чем при атмосферном давлении, от Э( кт приписывают, главным образом, действию кислорода. Кислород незначительно влияет на зарождение трещин, но существенно повышает скорость их распространения. Контакт с воздухом также влияет на предел выносливости чистого алюминия, но в отличие от меди, пары воды влияют на алюминий и в вакууме. Золото, которое не окисляется и не хемосорбирует кислород, имеет одинаковую усталостную прочность на воздухе и в вакууме. [c.157]

    Количественное изучение реакций вырожденного разветвления может проводиться теми же методами, что и изучение скорости зарождения. Например, скорость цепной реакции окисления (для определенности речь будет идти об окислении в жидкой фазе при значительных давлениях кислорода) равна, согласно (VIII.27) [c.331]

    Разрушение участка трубопровода (0168x12 мм) газа раз-газирования на Карачаганакском нефтегазоконденсатиом месторождении произошло в зоне приварки штуцера (060x14 мм). В момент, предшествовавший разрушению, трубопровод находился под давлением 3,5 МПа в отсутствие движения среды. Температура стенки трубы составляла минус 25-минус 27°С. Зарождение и докритический рост трещин происходили из-за наличия непровара на границе сплавления кольцевого шва штуцера и основного металла трубы. После достижения трещиной критической длины (40-42 мм) началось лавинообразное разрушение в обе стороны от штуцера, о чем свидетельствует наличие шевронного излома. Остановка трещин произошла на основном металле трубы в результате их многократного разветвления. Трещины в шве образовались из-за нарушения технологии подготовки изделий под сварку и возникновения остаточных сварочных напряжений. В соответствии с требованиями нормативной документации штуцер должен изготавливаться без отверстия и привариваться к трубе угловым швом с разделкой кромки. Сверление штуцера и трубы должно выполняться после его приварки с одновременным сверлением отверстия в трубе и удалением возможных непроваров в корне шва. Сварное соединение данного штуцера было выполнено с нарушением технологии изготовления и имело непровары и трещины глубиной до 3 мм. Наличие этих характерных дефектов сварных швов свидетельствовало о том, что контроль качества металла неразрушающими методами не проводился. Предусмотренная технологией местная термическая обработка сварного соединения патрубок-труба , проводимая путем нагрева металла пламенем газовой горелки, не привела к существенному снижению напряжений в сварном шве. Разрущение трубопровода газа разгазирования произошло по механизму сероводородного растрескивания в результате развития недопустимых дефектов (трещины, непровары, высокие остаточные напряжения) в сварном соединении штуцер-труба . [c.31]

    В ноябре 1987 г. при остановке технологической линии произошло лавинообразное разрушение корпуса теплообменника, находившегося под действием внутреннего давления. В момент, предшествовавший разрушению, поток среды в межтрубном пространстве аппарата отсутствовал, однако в корпусе сохранялось рабочее давление (вероятнее всего, жидкой фракции). Теплообменник представлял собой горизонтальный цилиндрический аппарат с двумя неподвижными трубными решетками, сферическими днищами и компенсатором на трубной части. Он был рассчитан на эксплуатацию в некоррозионной среде под давлением в корпусе 3 МПа, в трубной части — под давлением 3,8 МПа при температуре минус 18°С. Корпус, днища и трубные решетки аппарата изготовлены из стали 09Г2С. Размеры теплообменника длина (между трубными решетками) 5000 мм диаметр 1200 мм толщина стенки корпуса 20 мм. В соответствии с технологической схемой обвязки Т-231 теплообменник эксплуатировался при температуре минус 36 С. Исследования показали, что зарождение и докритический рост трещины, вызвавшей разрушение корпуса, произошли на оси кольцевого шва обечайки в зоне приварки штуцера входа этано-вой фракции. Трещина развивалась вдоль оси кольцевого шва, и по достижении критической длины (200 мм) произошел переход к лавинообразному разрушению с разветвлением трещины [c.50]

    После 10 лет эксплуатации произошла разгерметизация трубопровода 0720x10 мм Газораспределительная станция-1-Сакмарская ТЭЦ. Трубопровод протяженностью 9,7 км, предназначенный для транспортировки очищенного природного газа под давлением 1,2 МПа, сооружен из труб производства Челябинского трубного завода (сталь ВСт Зсп). Повреждение трубы представляло собой разрыв металла П-образной формы с основанием, располагавшимся почти параллельно (под углом -20 ) оси трубопровода. Общая длина линии разрыва составляла -2700 мм. Вдоль линии разрыва выявлены три характерные зоны металла 1 — зона с первичной продольной трещиной длиной - 1000 мм без явных признаков пластической деформации. Трещина проходила по поверхности трубы с механическими повреждениями (задиры и вмятина) под углом - 20° к оси трубопровода 2 и 3 — зоны с участками долома, располагавшимися под углом 40-50° к поперечному сечению трубы и направленными в одну и ту же сторону относительно первичной трещины. В зоне 1 находились окисленная поверхность шириной от 7,7 до 8,3 мм, то есть до -90% толщины стенки трубы, и поверхность долома шириной 0,9-1,5 мм по всей длине продольной трещины, Отмечено, что увеличение угла между линией разрыва металла и осью трубы произошло в местах локализации концентраторов напряжений, а именно на концах задира, который явился очагом зарождения исходной трещины. На поверхности трубы в области зарождения трещины и вблизи нее зафиксированы многочисленные механические повреждения металла в виде групп задиров (бороздок) и отдельных вмятин. Размеры задиров длина от 48 до - 1000 мм, глубина — от 0,8 до 3,0 мм. Размеры вмятин длина — от 130 до 450 мм, ширина — от 75 до 130 мм, глубина — от 5 до 25 мм. Наиболее протяженные задиры и самая крупная вмятина располагались вдоль предполагаемой линии зарождения разрыва. Характер задиров [c.56]

    Разрушение трубопровода Покровка-ОГПЗ началось в основном металле нижней части трубы после 13 лет эксплуатации и развивалось в обе стороны от места зарождения на длине 8670 мм. Максимальное раскрытие трещины составило 990 мм. Трубопровод был рассчитан на рабочее давление до 2,0 МПа и сооружен из труб 0530x7 мм. В металле поврежденной трубы обнаружены признаки водородного расслоения и сероводородного растрескивания, что свидетельствует о высокой влажности газа и наличии в нем сероводорода. Установлены также недопу- [c.60]

    Весьма обширный обзор случаев разрушения сосудов давления был сделан комитетом британского объединения технических служб и британским комитетом по использованию атомной энергии [40]. Объем выборки составил 12 700 сосудов давления с сумм ным временем работы около 100 тысяч часов. Анализ получетшпс данных подтвердил тот факт, что наиболее вероятными участками зарождения и развития трещин являются зоны сварных 1пвов. [c.25]

    Оборудование предприятий нефтехимии и нефтепереработки рабо-тг1ет в условиях действия механических напряжений, высоких температур, природных и технологических коррозионно-активных сред, инициирующих возникновение и накопление повреждений, приводящих со временем к нарушению его работоспособности. Преобладающая часть парка оборудования нефтепереработки имеет поверхностный контакт с рабочей средой, эксплуатируется в очень жестких режимах -- в условиях действия высоких давлений и температур. Современные технологические процессы ориентированы на углубление переработки нефтяного сырья. Увеличение выхода светлых нефтепродуктов связано с повышением роли деструктивных процессов переработки нефти, что в свою очередь ведет к интенсификации технологических процессов и усложнению конструкции оборудования. В последние годы в переработку вовлекаются все большие объемы нефтей с повьппенным содержанием сероводорода, минеральных солей и газоконденсатов с высоким содержанием агрессивных компонентов. Это обстоятельство значительно усложняет условия эксплуатации оборудования, вызывая интенсивное развитие различных коррозиошак процессов. Коррозионная активность технологических сред является одним из основных факторов, снижающих надежность металлических конструкций и способствующих зарождению трещин [4]. Агрессивное воздействие рабочих сред обусловлено обводненностью нефти, наличием в ней кислых компонентов, сернистых и хлористых соединений, а так же применением в процессе подготовки и переработки коррозионно-активных реагентов. Как показали результаты диагностирования 59 резервуаров для хранения нефти и нефтепродуктов (годы постройки 1975 - 80, объем резервуаров 20 ООО м ), при суммарном содержании в нефти воды, хлора и серы более 3 % коррозионное растрескивание имело место во всех резервуарах, эксплуа-тировавпшхся более 15 лет [3]. Особую опасность представляет разрушение оборудования в условиях действия водородосодержащих и водородо-вьщеляющих сред. [c.7]

    Учет рассмотренных аномалий приобретает исключительную важность при разработке методик для техгюлогических расчетов нефтезаводской аппаратуры. Прежде всего это касается представлений о состоянии системы пар-жидкость, расчетов парциального давления испаряющихся компонентов нефтяной системы в зависимости от ее состава и условий, в которых она находится. При этом, как правило, нефть представляют в виде многокомпонентного молекулярного раствора, границу раздела фаз считают плоской, а давление паров над плоской поверхностью равным давлению в жидкой фазе. Болео того, во многих случаях систему пар-жидкость представляют в виде термодинамически сформировавшейся, не обращая внимания на процессы зарождения и развития паровой фазы отличающиеся, как это показано выше, значительными отклонениями от аддитивности. [c.109]

    Физическое активирование заключается в образований кавитационном воздействии равномерно днспергировапмых пузырьков кислорода в реакционной среде. За счет действия переменного акустического давления и увеличения контакта поверхносчи реагирующих фаз происходит зарождение и пакоплспие радикалов (см.рис.20, I участок, кривые 1 и 2), ответственных за химическое инициирование реакции. [c.56]

    Как уже было показано, кинетическая кривая окислеиия циклопропана подчиняется экспоненциальному закону АР = Если нанести па график зависимость АР от I, то участок, отсекаемый прямой на оси абсцисс, дает значение /V, т. е. величины, пропорциональной скорости инициирования активных центров. Оказалось, что N имеет очень высокий температурный коэффициент, приблизительно равный 225 ккал моль. Это значение, понятно, слишком велико для того, чтобы в изучаемых условиях температур и давлений могло произойти гомогенное зарождение активных центров. По-видимому, зарождение связано с реакциями на етепках сосуда. [c.417]

    На рнс. 184 изображена зависимость выхода гидроперекиси изопронила от времени контакта для смеси СдНд -1- Oj при начальном давлении 50 мм рт. ст. и комнатной температуре. Как видно из рисунка, за прямолинейным участком кривой наступает замедление скорости образования перекиси, а прп еще больших временах контакта скорость реакции остается неизменной. Авторы справедливо предполагают, что область насыщения не может быть связана с разложением перекиси, поскольку при временах контакта, отвечающих этой области, не удается обнаружить никаких продуктов, кроме самой перекиси. По мнению авторов, насыщение связано с уводом ртути (Hg -f- СзН,ООН HgO + СзН,ОН) из зопы реакции и соответственным прекращением зарождения алкильных радикалов. [c.448]

    Скорость зарождения цепи Wi пропорциональна произведению концентраций [На] [Оа], т. е. пропорциональна квадрату давления р . Скорость обрыва цепей сама состоит из двух слагаемых W2 = w где w — скорость обрыва на стенке и ц)" — скорость обрыва в объеме (шр. Первое слагаемое, как это следует из уравнения реакций (За) и (Зв) и как будет показано в следующем параграфе (если лимитирующая стадия — это диффузия к стенке), пропорционально первой степени р. Наконец, скорость обрыва цепи в объеме определяется тройным соударением, реакция (36) поэтому пропорциональна кубу давления р . Подставляя эти зависимости в (VIII.14.8), получим  [c.274]


Смотреть страницы где упоминается термин Зарождение давления: [c.381]    [c.35]    [c.54]    [c.124]    [c.134]    [c.135]    [c.220]    [c.9]    [c.40]    [c.53]    [c.57]    [c.283]    [c.276]   
Основы техники кристаллизации расплавов (1975) -- [ c.61 , c.78 , c.79 ]




ПОИСК







© 2025 chem21.info Реклама на сайте