Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сродство различие

    Имеются определенные правильности, которым подчиняется возникновение этого сродства, а также влияние, которое сродство оказывает на форму решетки здесь имеют значение 1) вандерваальсовские силы притяжения, 2) отношения ХьюМ Розери связанные с числом подвижных электронов и 3) взаимное притяжение ненасыщенных атомных частей. В зависимости от существования этих трех типов сродства различают три группы смешанных металлических кристаллов смешанная группа, группа сплавов Хьюм-Розери и группа сплавов Цинтля. [c.121]


    Кинетический метод использует в качестве меры для определения различия в сродстве различия в скоростях реакций, которые обычно молчаливо признают зависящими от различий в энергии активации (стр. 465, 467). При применении этого метода учитывают, следовательно, только одно направление процесса, отходя от термодинамического определения сродства и понимая под сродством кинетически установленное понятие энергии активации. Сделанные таким образом сравнения приводят к созданию так называемых рядов прочности связи , рассматриваемых как ряды сродства (см. стр. 504), в которых отдельные атомы или группы атомов расположены в порядке скоростей, с которыми они реагируют. [c.444]

    Когда адсорбент приводится в соприкосновение с некоторыми смесями, его поверхность оказывает избирательное действие, в результате чего в слое молекул, прилегающем к поверхности адсорбента, повышается концентрация определенных компонентов смеси. При этом даже ничтожные различия в структуре молекул могут оказывать большое влияние на адсорбционное сродство. Адсорбционное сродство углеводородов возрастает в следующей последовательности предельные углеводороды, олефины, диолефины, моноциклические ароматические углеводороды, полициклические ароматические углеводороды. [c.136]

    Растворители, в которых сглаживаются различия в силе кислот (или оснований), называются нивелирующими. Нивелирующими растворителями для кислот будут вещества с большим сродством к протону — жидкий аммиак и его органические производные, гидразин, вода. [c.282]

    Однако, по мнению автора, обсуждаемые различия в механизмах скорее кажущиеся, чем реальные. Для иллюстрации этого рассмотрим схему механизма, представленную на рис. 19. Поскольку кислород имеет высокое сродство к такому металлу, как железо, вполне вероятно, что в комплексе хемосорбированного на поверхности СО существует связь не только между атомом углерода и активным центром катализатора (S), но также и между атомом кислорода и катализатором (комплекс I на рис. 19). Если связь между С и О в комплексе I очень непрочна, то произойдет полная диссоциация по направлению б в схеме. Атомарный углерод может быть затем прогидрирован (стадия г) в СНа (комплекс III). Если же связь С—О сохраняется, то комплекс I может быть прогидрирован (стадия в) в комплекс II, а последний — в свою очередь в метанол (стадия ж) или в комплекс III (стадия (5). Как показано на рис. 19, комплексы II и III представляют собой два предельных случая, хотя комплекс III является продуктом гидрирования комплекса П. Вопрос о том, существует ли какой-нибудь из этих комплексов [c.205]


    Ионообменная хроматография — сорбционный динамический метод разделения смесей ионов на сорбентах, называемых ионо-обменниками. При пропускании анализируемого раствора электролита через ионообменник в результате гетерогенной химической реакции происходит обратимый стехиометрический эквивалентный обмен ионов раствора на ионы того же знака, входящие в состав ионообменника. Ионообменный цикл состоит из стадии поглощения ионов (сорбции) ионообменником (неподвижной фазой) и стадии извлечения ионов (десорбции) из ионообменника раствором, который проходит через сорбент (подвижная фаза или элюент). Разделение ионов обусловлено их различным сродством к ионообменнику и происходит за счет различия скоростей перемещения компонентов по колонке в соответствии с их значениями коэффициентов распределения. [c.223]

    Разряды статического электричества и их предотвращение. Разряды статического или контактного электричества представляют собой распространенный, трудно регламентируемый и потому наиболее опасный возможный импульс поджигания взрывчатых газовых систем. Статические заряды возникают на границах разнородных сред вследствие различия их электронного сродства, приводящего к перераспределению электронов. При разделении разноименно заряжающихся тел заряды сохраняются и могут накапливаться. Этому способствует трение, измельчение и быстрое движение, заряжающихся тел. [c.93]

    Постоянная К характеризует взаимодействие макромолекул с растворителем. Ее называют вискозиметрической константой Хаггинса. Значение константы К позволяет оцепить степень сродства между полимером и растворителем. Чем больше компоненты раствора различаются по природе, тем больше коэффициент К. Увеличение константы Хаггинса прн ухудшении качества растворителя обусловливается возрастанием числа случайных контактов макромолекул. [c.195]

    Ответ. Различия в значениях коэффициента В объясняются различным термодинамическим сродством растворителя к полимеру (качеством растворителя). [c.109]

    В энантиоморфных формах расстояния между соответствующими атомными группами равны между собой. Поэтому отношения сродства между этими группами в обоих антиподах должны быть одинаковыми. Вследствие этого можно ожидать, что физические и химические свойства, обусловленные отношениями сродства в молекуле, у антиподов также не будут различаться. Это было подтверждено на бесчисленных примерах различных и /-форм, физические и химические свойства которых всегда оказывались идентичными. Различие в свойствах удается обнаружить лишь тогда, когда антиподы вступают во взаимодействие с другими оптически активными системами (стр. 136). [c.133]

    С помощью этой формулы, так же как с помощью представлений Клауса ( диагональная формула) и Армстронга — Байера ( центрическая формула), стремятся показать, что под действием суммарного сродства валентные силы атомов углерода соверщенно единообразно соединяют все СН-группы бензола в шестичленную очень устойчивую кольцевую систему. При этом предполагают, что парциальные валентные силы, которые действуют вне молекулы и поэтому способствуют в первую очередь реакциям присоединения, должны быть невелики и во всяком случае меньше парциальных валентных сил олефинов, так как бензол обладает относительно насыщенным характером. Кроме того, исследования последнего времени на большом числе примеров показали, что различие между степенью насыщенности соединений жир  [c.470]

    В этой формулировке Цвет дал достаточно четкое определение адсорбционного хроматографического метода анализа, основанного на различии адсорбционного сродства анализируемых компонентов смеси к выбранному адсорбенту. Однако Цветом были высказаны идеи о возможности применения для хроматографического разделения смеси веществ различий и в других свойствах, в частности в растворимости труднорастворимых осадков. Последующее развитие хроматографии подтвердило правильность этих идей. [c.10]

    Сущность работы. Если компоненты газовой смеси обладают различным адсорбционным сродством по отношению к выбранному адсорбенту, то при хроматографической десорбции такой смеси, каждый ее компонент будет двигаться вдоль слоя адсор- бента с различной характерной для данного компонента скоростью. Это может привести к разделению смеси. Следовательно, различие величин адсорбции, теплот адсорбции и других характеристик системы адсорбат — адсорбент может быть положено в основу адсорбционного хроматографического разделения и анализа сложных смесей газов. [c.139]

    Ловушками для зарядов в любых органических веществах (в случае РТЛ существенного различия между полимерами и низкомолекулярными органическими соединениями нет) могут быть молекулы или группы атомов, обладающие положительным сродством к электрону, которые присутствуют в веществе еще до облучения. Особую роль при этом обычно играют примесные атомы и молекулы. Б процессе облучения у-излучением или электронами в полимерном веществе образуются новые ловушки, в роли которых выступают стабилизированные радикалы, отличающиеся от исходных молекул большим электронным сродством. Обладая неспаренным спином, такие радикалы являются эффективными центрами захвата как отрицательных, так и положительных зарядов. Сродство к [c.236]


    Процесс хроматографического разделения в этом варианте основан на различии в относительном сродстве компонентов смеси к неподвижной фазе (сорбенту) и осуществляется в результате перемещения подвижной фазы (элюента) под действием капиллярных сил по слою сорбента толщиной 0,1—0,5 мм, нанесенного на стеклянную пластинку. Чтобы избежать испарения элюента с поверхности сорбента, хроматографирование ведут в закрытой камере. [c.55]

    На внешней электронной оболочке атомов галогенов содержатся семь электронов — два на S- и пять на р-орбиталях (ns np ). Галогены обладают значительным сродством к электрону (табл. 19.1) — их атомы легко присоединяют электрон, образуя однозарядные отрицательные ионы, обладающие электронной структурой соответствующего благородного газа (ns np ). Склонность к присоединению электронов характеризует галогены как типичные неметаллы. Аналогичное строение наружной электронной оболочки обусловливает большое сходство галогенов друг с другом, проявляющееся как в их химических свойствах, так и в типах и свойствах образуемых ими соединений. Но, как показывает сопоставление свойств галогенов, между ними имеются и существенные различия. [c.476]

    В общем случае характер связи между атомами элементов определяется различием значений их электроотрицательностн, которая представляет собой сумму энергии ионизации элемента и его сродства к электрону. [c.48]

    Поскольку в водных растворах вода присутствует в большом избытке, любая кислота, сопряженное основание которой слабее, чем HjO (т.е. имеет меньшее сродство к протону, чем HjO), должна быть почти полностью ионизована. По этой причине невозможно установить различие между силой таких кислот, как НС1 и H IO4 (хлорная кислота) в водных растворах. Обе эти кислоты в водном растворе полностью диссоциированы и поэтому являются сильными кислотами. Однако в растворителях, обладающих меньшим сродством к протону, чем вода, можно установить различия между НС1 и H IO4. Если в качестве растворителя используется диэтиловый эфир, хлорная кислота по-прежнему обладает свойствами сильной кислоты, но НС1 ионизуется лишь частично и, следовательно, оказывается слабой кислотой. Диэтиловый эфир не так сильно сольвати-рует протон, как вода (рис. 5-4). (Сольватация-это обобщение понятия гидратации, применяемое к любым, в том числе неводным растворителям.) Положение равновесия в реакции [c.217]

    Для ТОГО чтобы электрохимический элемент давал напряжение, совсем не обязательно, чтобы две протекаюпдие в нем реакции были обратны друг другу. Необходимо лишь наличие двух вешеств с различной способностью приобретать или терять электроны. Такое различие в сродстве к электронам может быть использовано для выполнения полезной работы. [c.164]

    Вода также обладает большим сродством к протону (хотя и меньшим, чем NH3), поэтому в водном растворе также сглаживаются различия между кислотами, правда, в меньшей степени, чем в среде жидкого аммиака. В водном растворе НС1, НВг, HI, H2SO4, HNO3, H IO4 и т. д. — почти одинаково сильные кислоты степень их. диссоциации в разбавленных растворах практически равна 100%. [c.282]

    Значительное выделение тепла АНт С 0) при образовании галидов натрия можно рассматривать как критерий их устойчивости относительно простых веществ, а возрастание этой величины в ряду Nal—NaBr—Na l—NaF — как свидетельство увеличения химического сродства галогенов к натрию с уменьшением их порядкового номера (различие в агрегатном состоянии галогенов не отражается на ходе значений ДЯгэя). Оба вывода отвечают действительности. [c.52]

    Различие в теплотах сольватации (или адсорбции) карбоний-ионов при использовании различных катализаторов должно приводить к существенному изменению соотношения тепловых эффектов реакций данного карбоний-иона и разных карбоний-ионов в данной реакции. Свойства карбоний-иона, находящегося в паре с про-тивоионом, могут, по-видимому, сильно зависеть от свойств аниона. В системе М---Н---А в зависимости от соотношения основностей (сродства к протону) М и А" локализация протона может быть различной, что должно отражаться на свойствах карбоний-иона. [c.171]

    Как видно из табл.1, асфальтиты - как бензиновые, так и бутановые - содержат в основном асфальтосмолистые вещества (67-79 и 57-675 соответственно), остальное - ароматические углеводороды, обладающие высоким сродством к ним. При этом в бензиновых асфальтитах концентрируются преимущественно асфальтены (45-5 ), а в бутановых-смолы (38-4 ),так, что соотношение асфальтенов и смол в составляет примерно (1,5-2) 1, а в А - наоборот. Такое различие в групповом составе асфальтенов определяет и различие в свойствах компаундов на одинаковом разяижителе. Все компаунды, содержащие А , 16 1 [c.16]

    Сераорганические соединения входят в состав большинства нефтей. По содержанию и составу сернистые соединения нефти сильно различаются. В нефтях, кроме элементной серы и сероводорода, присутствуют и органические соединения двухвалентной серы меркаптаны, сульфиды, тиофены, соединения типа бензо- и дибензотиофенов. Поэтому проблема технологии нефтехимической переработки серосодержащих нефтяных фракций требует разработки качественно новых экспрессных методов оценки физико-химических свойств фракций и входящих в них компонентов. В частности, таких важнейших характеристик реакционной способности, как потенциал ионизации (ПИ) и сродство к электрону (СЭ), которые определ пот специфику взаимодействия веществ с растворителями, термостойкость и другие свойства [1]. Чтобы перейти к изучению фракций серосодержащих нефтей целесообразно изучить зависимости изменений физико-химических свойств в гомологических рядах индивидуальных соединений, содержащих серу Определенные перспективы в этом направлении открывает электронная абсорбционная спектроскопия. Целью настоящей работы является установление существования подобных зависимостей между ПИ и СЭ в рядах органических соединений серы и логарифмической функцией интегральной силы осциллятора (ИСО). Основой данной работы явились закономерности [2-4], что ПИ и СЭ для я-электронных органических веществ определяются логарифмической функцией интегральной силы осциллятора по абсорбционным электронным спектрам растворов в видимой и УФ области. Аналогичные результаты получены для инертных газов. Обнаружена корреляция логарифмической функции ИСО в вакуумных ультрафиолетовых спектрах, ПИ и СЭ [3]. [c.124]

    А содержат димерные углеводородные автоассоциаты, стойкость, которых повышается с повышением сродства к электрону акцептора (ангидрида), в поле влияния которого они находятся. Стойкость этих димеров коррелирует как со строением углеводородной молекулы, так и со свойствами растворителя. Для молекул-до-норов, где второй заместитель отсутствует или максимально удален от первого, стойкость коррелирует с такой характеристикой среды, как диэлектрическая постоянная, а у неплоских молекул — с вязкостью, температурой плавления и показателем преломления. Чувствительность димеров к влиянию среды зависит от типа симметрии молекулы исходного углеводорода. Ранее было сделано предположение о параллельном расположении углеводородных молекул, образуюш,их димер [2]. Есть основания предполагать, что в среде УА взаимное расположение нафталиновых молекул соответствует таковому в кристаллах исходных соединений. На примере систем, исследованных в Д, показано различие активности мономерных молекул нафталиновых углеводородов и соответствующих димеров, существующих в поле влияния ПДА [2]. 05 этом же говорит и различие способности их КПЗ к взаимному наложению синглет-триплетной полосы компонентов на синглет-синглетную полосу КПЗ. Большая стойкость КПЗ с димерами, чен с мономерными молекулами, соответствует известному эмпирическому правилу о повышении прочности при увеличении молекулярного веса одного из компонентов. Механизм взаимодействия между углеводородными молекулами в димере не ясен. Известно мнение, что ароматические углеводороды способны выступать как в роли доноров, так и в роли акцепторов л-электронов [22], Явление образования ароматическими л-донорами димеров вереде органических растворителей в поле влияния ПДА было обнаружено [c.136]

    Адсорбция на ровной поверхности зависит в основном от природы адсорбента и адсорбата, ет их взаимного сродства. Необло-димо различать влияние этих факторов на величину адсорбции. 4 и на константу адсорбционного равновесия К- Чем сильнее взаимодействие адсорбент — адсорбат, тем больше К и тем большая величина мономолекулярной адсорбции А достигается при тех >i e равновесных давлениях 1глн концентрациях. Обычно считают, что сродство адсорбента к адсорбату (илп К) тем сильнее, чем больЛс-нх склонность к образованию связей одной природы, нанример, к дисперсионному взаимодействию, нли к диполь-динольному, или к образованию водородных связей, или к сильным химическим взаимодействиям. [c.124]

    Специфическая адсорбция газовых ионов на частицах аэрозолей значительно осложняет оценку зарядов частиц. Она характерна для частиц, имеющих химическое сродство к газовым нонам, или для систем, в которых межфазный потенциал возникает еще при их образовании. Электрический потенциал на межфазной границе может возннкнуть прн условии резко выраженного различия полярных свойств среды и дисперсной фазы. Примером могут служить аэрозоли воды илп снега ориентация молекул воды на поверхности частиц по оценке А. И. Фрумкина обусловливает электрический потенциал около 0,25 В и их положительный заряд. Электрический заряд на частицах может возникнуть и в процессе диспергирования (баллоэлектризацин) полярных веществ, когда частицы, отрываясь, захватывают заряд с поверхности макротела. Химическое сродство частиц к нонам и возникший потенциал на межфазной границе приводят к тому, что частицы аэрозоля неодинаково адсорбируют противоположно заряженные ионы, и средний их заряд в системе отличен от нуля. Опытным путем установлено, что частицы аэрозолей металлов и их оксидов обычно приобретают отрицательный заряд, а неметаллы и их оксиды заряжаются, как правило, положительно. [c.228]

    Н1 и ИЛ СПЛОШНЫХ фаз в самопроизвольное диспергироватг- е вносит основной вклад рост энтропийной составляющей, 0С0( 1 Л 10 ири отрицательных тепловых эффектах растворения. Еще большую роль энтропийная составляющая играет при самопроизвольном диспергировании ВМС (образовании молекулярных коллондиых систем), в процессе которого растет не только рассеивающая энт ропия, но и значительно сильнее энтропия, связанная с различием размеров и форм частиц дисперсной фазы и молекул дисперсионной среды. Лиофильность таких систем обеспечивается не только пли не столько сродством молекул растворителя к дисперсной фа-зе, а в основном энтропийным фактором. [c.287]

    Ответ. Различия в значениях [т ] для кадоксеновых растворов целлюлозы и амилозы могут быть объяснены как различной скелетной гибкостью макромолекул сравниваемых полисахаридов, так и различными величинами термодинамического сродства растворителя и полимера, т е. их равновесной гибкостью. [c.114]

    Из этих формул ВИДНО, ЧТО такая изомерия этиленовых соединений, называемая также геометрической изомерией, представляет собой вид цис-транс-чзомещи в том смысле, что в одной из форм одинаковые заместители у этиленовой связи (а, а на рис. 4) находятся по одну сторону двойной связи, а в изомерной форме — по ее разные стороны. Эти изомеры не могут быть совмеш,ены друг с другом никаким вращ,ением молекулы и не являются также зеркальным отображением друг друга (см. стр. 130). Такие соединения называют диастереомер н ы м и, а само явление — диастереомер и ей. Все диастерео-мерные соединения, в том числе и пространственно изомерные олефины, а также их производные, обладают различны1 1и химическими и физическими свойствами. Причина этого явления заключается в том, что в обоих изомерах расстояния между соответствующими атомами (например, между атомами а, а в изомерах на рис. 4) различны, что обусловливает разные соотношения внутреннего сродства и устойчивости, находящие свое выражение в различии химических и физических свойств. [c.46]

    По кривым испарения ТС были рассчитаны выходы из смесей фракций, выкипающих до 180°С, 250°С и 350°С, представленные на рис. 5.6. Как видно, для всех исследуемых сырьевых смесей при повышении концентрации в них нефти выход легких фракций уменьшается. Однако изменение выхода отдельных фракций происходит не монотонно, а по некоторым экстремальным зависимостям, что наиболее заметно для более легких фракций в интервалах концентраций нефти в смесях 10-15% мае. Полученные данные позволяют косвенно предположить возможность изменения качества дистиллятных фракций, получаемых при перегонке конденсатонефтяных смесей при различных соотношениях компонентов. На зависимостях, представленных на рис. 5.7 выделены кривые изменения выхода фракции 180-350°С. Рассматривая в совокупности представленные значения выходов различных фракций, можно заключить, что их величины существенно различаются в зависимости от исходной сырьевой пары газовый конденсат-нефть. По всей вероятности, компоненты исходных сырьевых смесей обладают некоторым сродством, которое определяет их взаимодействие с образованием в общих случаях коагуляционных каркасов различной прочности, иммобилизующих некоторые составляющие системы, а в других, напротив, разруше- [c.108]

    Классификация на основе природы элементарного акта. Если неподвижной фазой является твердое вещество, то элементарным актом взаимодействия анализируемого вещества (сорбата ) с твердой фазой (сорбентом) может быть 1) акт адсорбции— адсорбционная молекулярная хроматография 2) обмен ионов, содержащихся в твердой фазе, на ионы из раствора — ионообменная хроматография 3) химическое взаимодействие с образованием труднорастворимого осадка — осадочная хроматография. При адсорбционной молекулярной хроматографии жидких или газообразных веществ хроматографическое разделение основывается на различии адсорбционного сродства между компонентами разделяемой смеси и веществом твердой фазы, называемым в данном случае адсорбентом. Этот вариант хроматографии относится к классическому цветовскому варианту. [c.12]

    Если в качестве неподвижной фазы взять мелкоизмельченный сорбент и наполнить им трубку (стеклянную или металлическую), а движение подвижной фазы (жидкости или газа) осуществлять за счет перепада давления на концах этой трубки, то последняя будет представлять собой хроматографическую колонку, называемую так по аналогии с ректификационной колонкой для дистилляционного разделения. Разделяемая смесь веществ вместе с потоком подвижной фазы поступает в хроматографическую колонку. При контакте, с поверхностью неподвижной фазы каждый из компонентов разделяемой смеси распределяется между подвижной и неподвижной фазами в соответствии с его свойствами, например адсорбируемо-стью или растворимостью. Вследствие непрерывного движения подвижной фазы лишь часть распределяющегося компонента успевает вступить во взаимодействие с неподвижной фазой. Другая же егО часть продвигается дальше в направлении потока и вступает всу взаимодействие с другим участком поверхности неподвижной фазы. Поэтому распределение вещества между подвижной и неподвижной фазами происходит на небольшом слое неподвижной фазы толькО при достаточно медленном движении подвижной фазы. Поглощенные неподвижной фазой компоненты смеси не участвуют в перемещении подвижной фазы до тех пор, пока они не десорбируются и не будут снова перенесены в подвижную фазу. Поэтому каждому из них для прохождения всего слоя неподвижной фазы в колонке потребуется большее время, чем для молекул подвижной фазы. Если молекулы разных компонентов разделяемой смеси обладают различной степенью сродства к неподвижной фазе (различной адсор-бируемостью или растворимостью), то время пребывания их в этой фазе, а следовательно, и средняя скорость передвижения по колонке различны. При достаточной длине колонки это различие может привести к полному разделению смеси на составляющие ее компоненты. [c.8]

    Для молекулы аммиака сродство к протону 9,3 эВ, а для воды 7,9 эВ. Как извеотно, столь неодинаковые по силе в воде уксусная и хлорная кислоты в жидком аммиаке ионизируются нацело. Почему в жидком аммиаке различия в силе кислот нивелируются  [c.64]

    Как показывает название, в основе адсорбционной хроматографии лежит адсорбция разделяемых веи еств на твердой поверхности выбранного адсорбента. Адсорбция обусловлена или физическими ван-дер-ваальсовыми силами межмолекулярного взаимодействия в системе адсорбат—адсорбент (молекулярная хроматография), или силами химического сродства, действующими, например, в процессе реакции при обмене ионов разделяемых компонентов на поверхностные ионы применяемого ионообменного адсорбента (ионообменная хроматография). В обоих случаях главным условием для осуществления разделения должно быть различие энергии адсорбции разделяемых веществ, что равносильно различию коэффициентов адсорбции. [c.11]


Смотреть страницы где упоминается термин Сродство различие: [c.44]    [c.155]    [c.351]    [c.342]    [c.54]    [c.282]    [c.23]    [c.248]    [c.394]    [c.301]    [c.432]    [c.13]    [c.248]    [c.113]    [c.138]   
Избранные труды (1955) -- [ c.66 , c.68 , c.74 , c.87 , c.91 ]




ПОИСК





Смотрите так же термины и статьи:

Различие

Сродство



© 2025 chem21.info Реклама на сайте