Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеиновые кислоты, комплексы металлами

    Методы выделения нуклеиновых кислот. При изучении химического состава и строения нуклеиновых кислот перед исследователем всегда стоит задача выделения их из биологических объектов. В главе 2 было указано, что нуклеиновые кислоты являются составной частью сложных белков — нуклеопротеинов, содержащихся во всех клетках животных, бактерий, вирусов, растений. Нуклеиновые кислоты обладают сильно выраженными кислыми свойствами (обусловлены остатками ортофосфорной кислоты в их составе) и при физиологических значениях pH несут отрицательный заряд. Этим объясняется одно из важных свойств нуклеиновых кислот—способность к взаимодействию по типу ионной связи с основными белками (гистонами), ионами металлов (преимущественно с М "), а также с полиаминами (спермин, спермидин) и путресцином. Поэтому для вьщеления нуклеиновых кислот из комплексов с белками необходимо прежде всего разрушить эти сильные и многочисленные электростатические связи между положительно заряженными молекулами белков и отрицательно заряженными молекулами нуклеиновых кислот. Для этого измельченный путем [c.96]


    На устойчивость двойной спирали в растворе влияют многочисленные факторы. Образование упорядоченных структур является экзотермическим процессом, и поэтому спирали стремятся расплавиться при повышении температуры растворов ДНК. Из числа сил, стабилизующих нативную форму, водородные связи и диполь-дипольные взаимодействия между пуриновыми и пиримидиновыми остатками, упакованными в двойную спираль [344], должны приводить к выделению тепла. В то же время следует ожидать, что гидрофобное взаимодействие будет эндотермическим. Значение гидрофобного взаимодействия иллюстрируется тенденцией водных растворов ДНК к денатурации при добавлении органических растворителей с большими неполярными остатками [345]. Как и следовало ожидать, высокая плотность заряда, обусловленная ионизованными фосфатными остатками, расположенными вдоль цепи ДНК, обусловливает неустойчивость спиральной конформации. В результате этого добавление умеренных количеств электролитов должно стабилизовать нативную форму ДНК, что и было обнаружено при добавлении таких солей, как галогениды щелочных или щелочноземельных металлов [346, 347]. Если определить температуру плавления (Г ) как температуру, при которой изменения в спектре, характеризующие денатурацию, происходят на 50%, то Т- , по-видимому, будет иметь примерно линейную зависимость от логарифма концентрации катионов щелочных металлов. В типичном случае повышается от 36 до 82° при увеличении концентрации ионов натрия с 0,0003 до 0,1 н. Увеличение концентрации соли приводит также к сужению интервала температур, в котором происходит переход спираль — клубок. В отношении стабилизации спиральной конформации особенно эффективны некоторые двухвалентные иопы, образующие специфические комплексы с фосфатными группами основной цепи ДНК (например, Mg +). Нуклеиновая кислота как бы образует стехиометрические комплексы с этими катионами, причем Тт таких комплексов высока даже при очень слабой ионной силе. При всех условиях переход спираль — клубок происходит в удивительно узком температурном интервале, причем 90% изменений, как правило, происходит в интервале менее 10°. [c.127]

    Устойчивые комплексы нуклеиновых кислот образуются также при взаимодействии с ионами металлов, особенно многовалентными ионами. Например, рибонуклеиновая кислота с ионами бериллия дает устойчивый к диализу комплекс [291]. Связывание ионов других двухвалентных металлов, таких, как магний и кальций, может происходить главным образом за счет образования ионной пары с близлежащими первичными фосфатными группами [292]. Взаимодействие с другими металлами, такими, как ионы меди, возможно, заключается в образовании комплексов с основаниями, особенно с пуриновыми остатками [293]. Добавлением ионов двухвалентного никеля можно достичь значительной стабилизации инфекционности РНК растительных и животных вирусов, причем оптимальное соотношение равно одному иону никеля на нуклеотид [25, 294]. В рибонуклеиновых кислотах из различных биологических источников обнаружены значительные количества хрома, марганца, никеля, железа, алюминия, меди, цинка, кадмия, свинца и других металлов с общим молярным отношением 1/50 фосфатных остатков [295, 296]. Такие комплексы чрезвычайно устойчивы и отделение металлов диализом или с помощью комплексообразующих агентов представляет большие трудности действительно, между рибонуклеиновой кислотой из печени быка, ионом двухвалентного железа и 1,10-фенантролином легко образуются устойчивые смешанные комплексы [296]. Хотя присутствие в рибонуклеиновых кислотах некоторого количества этих металлов может быть. [c.414]


    Ионы металлов играют заметную роль в биохимических процессах, обусловленную отчасти их способностью связываться как с большими, так и с малыми молекулами. Большие молекулы — это нуклеиновые кислоты и белки. Комплексы ионов металлов с белками подразделяются на две основные группы. В комплексах первой группы ионы металла являются составной частью структуры белковых молекул и не могут быть выделены из белка без разрушения этой структуры. Такие белки называют металло-протеидами. Помимо них известно большое число комплексов, для которых характерно обратимое взаимодействие ионов металла с белком. Образование комплексов, принадлежащих этой второй группе, обычно стабилизирует определенную конформацию белковой части комплекса. Ярким примером важности взаимодействия между ионами металлов и малыми органическими молекулами может служить связывание АТФ с ионами металлов, абсолютно необходимое для того, чтобы молекулы АТФ могли принимать участив в ферментативных реакциях, зависящих от АТФ. [c.22]

    Исследования, проведенные в ряде стран, показали, что металлы, широко применяемые в промышленности и распространенные в окружающей среде, могут оказывать на организм человека не только токсикологическое, но и канцерогенное воздействие [935, 987]. К химическим канцерогенам относят такие металлы, как бериллий, хром, никель потенциальными канцерогенами являются кобальт, кадмий, свинец и некоторые другие металлы [931]. Понятие канцерогенность металла относится не к элементу как таковому, а к его определенному физико-химическому состоянию. Например, канцерогенность хрома может быть объяснена следующим образом. Этот элемент в виде хромат-аниона с помощью сульфатной транспортной системы проникает через клеточную мембрану, тогда как катион хром(П1) сквозь нее не проходит. Клеточная метаболическая система восстанавливает хромат до хрома(П1), который в отличие от оксоаниона хрома(VI) образует прочные комплексы внутри клетки с нуклеиновыми кислотами, протеинами и нуклеозидами, вызывая повреждения ДНК, которые в свою очередь ведут к мутации, а следовательно, и к развитию рака [931]. Согласно концепции Мартелла канцерогенность металла связана со степенью его электроположительности. Ионы электроположительных металлов образуют лабильные комплексы и большей частью не канцерогенны. Ионы же металлов с низкой электроположительностью образуют высококовалентные связи с донорными группами биолигандов и способны подвергаться только очень медленным обменным реакциям с другими лигандами, находящимися в биологических системах, что в конечном счете обусловливает канцерогенное действие этих катионов [931]. [c.500]

    Бионеорганическая химия (неорганическая биохимия) — раздел химии, изучающий комплексы ионов металлов (Ма, К, Са , Мд , Мп , Ре , 2п , Со , Мо ) с белками, нуклеиновыми кислотами, липидами и низкомолекулярными природными соединениями с позиций химии координационных соединений и квантовой химии. [c.49]

    За последние 20 лет на стыке биологии и неорганической химии возникла и быстро развивается новая научная дисциплина — био-неорганическая химия. Она изучает на молекулярном уровне взаимодействие между ионами биометаллов и биолигандами — протеинами, нуклеиновыми кислотами, их фрагментами и некоторыми другими веществами, находящимися в организме. В первую очередь изучается поведение в живом организме десяти металлов жизни — ионов натрия, калия, магния (с замкнутыми электронными оболочками) ионов марганца, железа, кобальта и меди (с недостроенной Зб(-элек-тронной оболочкой) и иона молибдена (с недостроенной 4< /-оболочкой), Результаты исследований в этой области находят широкое применение в медицине, растениеводстве и охране окружающей среды. Более подробно с ролью этих комплексов в работе клетки и организмов вы познакомитесь при изучении специальных курсов. Интересующиеся могут познакомиться с этими вопросами в специальной литературе .  [c.208]

    Большинство белков находится в живом организме не в свободном виде, а в виде комплексов с различными мономерными или полимерными органическими соединениями, с ионами металлов. В отличие от свободных белков — протеинов такие комплексы носят название протеидов. Важное значение имеют комплексы белков с нуклеиновыми кислотами, углеводами, липидами, красителями (пигментами), ионами металлов и т. д. [c.376]

    Нуклеиновые кислоты, подобно белкам, представляют собой высокомолекулярные соединения. Самые большие из всех известных макромолекул встречаются именно среди нуклеиновых кислот. Есть веские основания полагать, что у некоторых микроорганизмов вся их дезоксирибонуклеиновая кислота (ДНК) представлена, по существу, одной-единственной молекулой с молекулярным весом порядка 10 —10 и даже больше. Нуклеиновые кислоты, как показывает само их название, обладают сильно выраженными кислотными свойствами и при физиологических значениях pH несут отрицательный заряд высокой плотности. Вследствие этого они легко взаимодействуют в клетке с различного рода катионами, чаще всего с основными белками (такими, например, как гистоны и гистоноподобные комплексы), и с ионами щелочноземельных, металлов, особенно с а также [c.121]


    Ионы металлов также могут образовывать комплексы с основаниями, особенно с аденином и гуанином. Предполагается, что за счет этих комплексов стабилизируется третичная структура нуклеиновых кислот. Возможно, что связь между белками и нуклеиновыми кислотами осуществляется посредством хелата, образованного белком, ионом металла и азотистым основанием. [c.85]

    Четвертичные структуры белка образуются тогда, когда молекула белка включает в свою структуру химически связанные комплексы хлорофилла, протопорфирина железа (II), или гема, группировки из ионов металлов (Ре, Си, 2п, Со, Мо и др.), углеводы, фосфорную кислоту, жиры и т. д. В этом случае белки являются не простыми, а сложными и называются протеидами. К числу протеидов (сложных белков) относятся хромопротеиды (белок связан с молекулой — хромофором), гликопротеиды (белок связан с углеводами), липопротеиды (белок связан с липидом), фосфопротеиды (белок этерифицирован фосфорной кислотой, как, например, в казеине молока), нуклео-протеиды (белок связан с нуклеиновой кислотой). Небелковая часть молекулы протеида называется простетической группой. [c.722]

    Для понимания роли металлов, прочно связанных с нуклеиновыми кислотами, необходимо знать их электронное состояние и строение координационного комплекса. В случае железа неоценимую услугу для решения этих задач может оказать эффект Мессбауэра. [c.432]

    Во всех вирусах обнаружены ионы двухвалентных металлов (Са " , Ре +, Си и др.), которые, по-видимому, участвуют в связывании нуклеиновой кислоты и белка путем образования координационных комплексов [c.466]

    Одной из главных структурных особенностей молекул металлопорфиринов является наличие сопряженной л-системы, определяющей возможность сольватационных взаимодействий соединений данного класса с разнообразными ароматическими молекулами, которые могут носить как универсальный, так и специфический характер. Металло-комплексообразование понижает ароматичность л-системы макроцикла в металлопорфирине по сравнению с соответствующим лигандом и создает благоприятные условия для специфических л-л-вза-имодействий, приводящих к образованию л-л-комплексов как с ароматическими л-донорами, так с л-акцепторами. Взаимодействия данного типа вносят значительный вклад в формирование надструктуры хромопротеинов [14, 17], агрегацию порфиринов в растворах, образование комплексов "хозяин-гость" в кристаллах, конформационные свойства порфиринсодержащих биоструктур. Поэтому комплексообразование между порфиринами и различными ароматическими молекулами (кофеин, фенантролинпроизводные, виологены, аминокислоты, нуклеиновые кислоты и т.д.) [18, 19] изучается достаточно интенсивно. Предполагают, что комплексы данного типа образуются за счет л-л-взаимодействий между ароматическими л-системами порфиринового макроцикла и молекулярного лиганда, которые могут иметь гидрофобный (донорно-акцепторный) характер или сопровождаться переносом заряда. При этом энергия взаимодействия между двумя молекулами в л-л-комплексе может быть представлена [20]  [c.306]

    В связи с этим хелатообразователями являются аминокислоты, нуклеиновые кислоты и их производные, органические кислоты, антибиотики, ауксины, токсины микроорганизмов и др. Соединениями, обладающими свойствами хелатов, являются все содержащие металл ферменты, хлорофиллы и другие комплексы. [c.411]

    Интересные результаты были получены при исследовании связывания катионов со стереорегулярной полиметакриловой кислотой. Катион Си + был прочнее связан с изотактическим полиионом [869], а ионы магния образовывали более устойчивый комплекс с синдиотактическим полимером [870]. Эти результаты позволяют предположить, что в образовании хелатов участвуют карбоксильные группы, которые удерживаются на строго определенном расстоянии друг от друга за счет предпочтительной конформации цепи главных валентностей. Тогда относительная устойчивость комплекса должна зависеть от геометрии хелата, характерного для данного катиона. Значение предпочтительной конформации цепи главных валентностей было убедительно нродемонстрировано в случаях, когда полимер может подвергаться переходам спираль — клубок. Связыванию катионов щелочноземельных металлов с поли-а-Ь-глутаминовой кислотой, несомненно, благоприятствует спиральная конформация полимерной кислоты [871]. Наоборот, Mg + связан более слабо с нативной спиральной формой ДНК, хотя эта форма связывает Na+ гораздо сильнее, чем денатурированная нуклеиновая кислота [872]. Другая интересная проблема возникает, если связанным компонентом является органическая молекула, имеющая две катионные группы. В этом случае вполне возможно, что расположение катионов в малых молекулах будет совпадать с расположением анионных групп в полимере, и такое соответствие должно приводить к исключительно прочному взаимодействию. По-видимому, такой эффект наблюдался для хон-дроитинсульфата-А [873] и гиалуроновой кислоты [874], которые образуют прочные комплексы с кураре [c.316]

    С другой стороны, образование комплексов некоторых тяжелых металлов (Ag+, Hg +) с нуклеиновыми кислотами в определенных условиях носит избирательный характер и может быть использовано для создания различий в плавучей плотности разных типов нуклеиновых кислот. Этот и другие приемы целенаправленной модификации плавучей плотности нуклеиновых кислот (например, путем присоединения некоторых антибиотиков или красителей) будут рассмотрены ниже. [c.249]

    Среди ферментов, содержащих ионы переходных металлов, важное место принадлежит нитрогеназе. Ряд видов бактерий (в частности, находящихся в симбиозе с бобовыми растениями) и водорослей обладает способностью восстанавливать азот воздуха до аммиака. В конечном счете именно этим способом в организмы доставляется азот, необходимый как для белков, так и для нуклеиновых кислот. Такая реакция, как N2 + ЗПг-> 2NПз, в газе требует гетерогенного катализатора, давления порядка 250 атм и температуры до 450°С (процесс Габера—Боша). В бактериях эта реакция идет с участием нитрогеназы — комплекса двух белков, один из которых содержит молибден и железо, а другой — только железо. Роль Мо является определяющей. Несмотря на то, что структура нитрогеназы пока еще мало изучена, с помощью качественных методов квантовой химии, основанных на теории поля лигандов, удалось выявить роль молибдена. Активация молекулярного азота N2 происходит, по- видимому, в комплексе Ме — N = N — Ме (Ме — металл). При этом связь NN в N2 из тройной превращается практически в единичную. Рентгеноструктурный анализ показал, что в модельных комплексах N2 с металлами длина связи NN равна 0,137 нм (длина связи N=N 0,110 нм, N=N 0,123 нм, N—N 0,144 нм). [c.218]

    Отдельные очень важные классы бионеорганических соедине кий рассмотрены в книге достаточно подробно. К таким соедине киям можно отнести сидерохромы, различные ионофоры, ферри тин, трансферрины, церулоплазмин, гемэритрин, гемоцианин, кар боксипептидазы и карбоангидразу, киназы, оксидазы, ферредокси ны, гемоглобин и миогло бин, цитохромы Ь и с, цитохромоксидазы, пероксидазы и каталазы, хлорофилл, корриноиды, комплексы металлов с витамином Ве, флавином, нуклеозидами, нуклеотидами, полинуклеотидами и нуклеиновыми кислотами. Насколько нам известно, такое детальное рассмотрение строения и функций перечисленных соединений до сих пор нигде не проводилось. [c.6]

    Нуклеопротеиды образуются, как правило, в результате нековалентных взаимодействий белков и нуклеиновых кислот. В связывании принимают участие электростатические и гидрофобные взаимодействия, водородные связи, а также уже упоминавшиеся с тзкинг -взаимодействия стабилизирующую роль в комплексах часто играют ионы металлов и другие кофакторы. [c.398]

    Часть VIII о взаимодействии ионов металлов с нуклеиновыми кислотами начинается с гл. 33, в которой рассмотрены комплексы металлов с нуклеозидами и нуклеотидами они обладают некоторым сходством с металлофлавиновыми комплексами. Наконец, в гл. 34 обсуждаются комплексы металлов с полинуклеотидами и нуклеиновыми кислотами, а также их биологическое значение. [c.10]

    К простым относят Б., к-рые при полном гидролизе дают только аминокислоты. Сюда входят альбумины (растворяющиеся в чистой воде) глобулины (растворяющиеся к присутствии солей) с к л е-ропротеины, или структурные Б., составляющие основное вещество кожи, соединительной ткани, роговых образований проламины и глютелины — Б. растительного происхождения (первые растворяются в 70%-ном этаноле, вторые — в разбавленной щелочи) протамины и ги-стоны — содержат большое количество основных аминокислот, встречаются в веществе ядер клеток. К сложным Б. относят комплексы Б. с нуклеиновыми кислотами (нуклеопротеид ы), с полисахаридами (гликопротеиды и мукопро-т е и д ы), с липидами (л и п о и р о т е и д ы), с окрашенными веществами (хромопротеиды), с остатками фосфорной к-ты (фосфопротеиды), с ионами тяжелых металлов (металлопротеи-д ы). Наименее охарактеризованы производные Б.— продукты их частичного гидролиза, к-рые иногда наз. протеозами и пептонами первые, в отличие от вторых, осаждаются из р-ра, насыщенного сульфатом аммония. [c.120]

    Хелатирующая способность. В водных растворах нуклеиновые кислоты проявляют свойства активных полидентатных лигандов. Полидентат-ность нуклеиновых кислот обусловлена наличием ионизированных фосфатных групп и полярных групп азотистых оснований (карбонильных, имино- и др.), способных к образованию координационных связей с катионами металлов. С помощью ионизированных фосфатных групп нуклеиновые кислоты хелатируют катионы щелочных и щелочноземельных металлов, причем с катионами щелочных металлов нуклеиновые кислоты образуют лабильные, а с катионами щелочноземельных металлов (Mg , Са +) — более прочные комплексы. За счет взаимодействия с полярными группами азотистых оснований нуклеиновые кислоты образуют достаточно стабильные комплексы с катионами /-металлов (см. также главу 4). [c.282]

    Химическое отделение Заведующий W. D. Ollis Направление научных исследований теория химической связи в органических и неорганических молекулах спектроскопия возбужденных молекул применение рентгеновской дифракции для изучения строения жидкостей и растворов реакции атомов и радикалов в газовой фазе полярография в неводных растворителях химическая структура смешанных окислов металлов боргидриды органические реакции в сильных кислотах фотоокисление электронная и вибрационная релаксация в ароматических молекулах металлорганические соединения и комплексы переходных металлов химия фенолов, природных пигментов, алкалоидов механизм действия энзимов строение, синт. з, биосинтез и масс-спектрометрия природных О-гетероциклических соединений фотохимия нуклеиновых кислот полициклические тиофены нитроамины биосинтез. [c.270]

    Наиболее распространена в настоящее время классификация, предложенная в начале века и разделяющая белковые вещества на три основные группы простые, сложные и производные белков. К простым белкам, иначе называемым протеинами, относят те, которые при полном гидролизе образуют только аминокислоты, т. е. не содержат небелковых составных частей. В состав их входят следующие группы альбумины, глобулины, проламины, протамины, гистоны, склеропротеины, глютелины. К сложным белкам (протеидам) относят различные типы комплексов простых белков с небелковыми компонентами, такими как углеводы, нуклбиновыб кислоты, липиды, гетероциклические соединения, фосфорная кислота и др. В зависимости от природы небелковой части протеиды подразделяют на нуклеопротеиды, включающие нуклеиновые кислоты хромопротеиды, в состав которых входят различные окрашенные вещества гликопротеиды, содержащие углеводы липопротеиды, содержащие липиды металлопротеиды, включающие металлы фосфопротеиды, содержащие фосфорную кислоту. Это разделение на группы далеко не точно, так как, например, в составе характерных простых белков часто содержится некоторое количество небелковых компонентов (в альбуминах — углеводы) и т. д. Производные белки представляют собой группу, которая охарактеризована в наименьшей степени. Чаще всего здесь раньше имели в виду продукты, получающиеся в результате тех или иных изменений белков, например их энзиматического гидролиза. В последние годы из названий веществ этой группы наиболее применяются (сохранились) два — про-теозы и пептоны. И те, и другие являются продуктами неполного [c.36]

    Естественные пурины, птеридины и рибофлавин также дают с металлами комплексные соединения. Прочность этих комплексов аналогична таковой для аминокислот. Образование комплексов кислот цикла Кребса с кальцием изучал Шуберт (S hubert а. Lindenbaum, 1952) показано, что только лимонная кислота способна связывать металл. Потенциальными комплексообразова-телями клетки являются также фосфаты, нуклеотиды, нуклеиновые кислоты и др. [c.28]

    Химическое отделение Заведующий A. D. Walsh Направление научных исследований УФ-спектроскопия волновая механика реакции свободных радикалов кинетика реакций в растворах рентгенография комплексы переходных металлов стереохимия терпены и нуклеиновые кислоты. [c.256]

    Рассмотрим особенности химического строения ДНК, которые обеспечивают диапазон ее межмолекулярных взаимодействий с низкомолекулярными метаболитами. Макромолекула ДНК представляет собой полиэлектролит, сильно и неравномерно гидратированный. Аминогруппы нуклеиновых оснований являются хорошими акцепторами протонов и при установлении водородной связи в кислой области приобретают положительный заряд. Гидроксильные фуппы фосфата имеют рК ниже 2.0 и в физиологических условиях всегда отрицательно заряжены. Гидратация нуклеиновой кислоты играет важную роль в конформационной организации ДНК (А, В и С конформации) и в структуре растворителя вблизи поверхности макромолекулы, особенно со стороны ее большого желобка. В соответствии со своей ам-фолитной природой ДНК взаимодействует с ионами электролитов, так что при увеличении ионной силы раствора наблюдаются изменения как молекулярного объема и степени гидратации ДНК, так и спирализации (степени закручен-ности) ее цепей. Важное регуляторное значение имеет локальное взаимодействие ДНК с поливалентными или комплексообразующими металлами. Щелочноземельные и переходные металлы взаимодействуют с кетогруппами пиримидиновых оснований, комплексы платины способны образовывать внутримолекулярные сшивки с локальным нарушением двухспиральной структуры ДНК, кальций и магний взаимодействуют с гидроксильными фуппами фосфата. Все это многообразие взаимодействий лежит в основе нескольких подвижных уровней структурной организации ДНК в хроматине. Комплексообразование ДНК с соединениями платины лежит в основе цитостатической и проти- [c.140]

    Участие минеральных веществ в формировании третичной и четвертичной структуры биополимеров. Наиболее фундаментальный механизм участия минеральных соединений в процессах жизнедеятельности связан прежде всего с их способностью соединяться с высокомолекулярньпуга веществами—белками и нуклеиновыми кислотами. В результате указанного взаимодействия ионы металлов наряду с другими факторами обеспечивают поддержание определенной пространственной конфигурации биополимеров, которая далеко не безразлична для проявления биологической активности макромолекул. Таким образом, нормальное осуществление белками ферментативной, гормональной и других функций, беспрепятственная реализация информации, заключенной в нуклеиновых кислотах, образование надмолекулярных комплексов, формирование субклеточных частиц и т. п, немыслимы без участия катионов и анионов. [c.435]

    Можно утверждать, что в биосистемах свободных ионов /-металлов практически нет, так как они или гидролизуются, или находятся в составе координационных соединений. Чаще всего /-элементы участвуют в биохимических реакциях в составе комплексов с лигандами — аминокислотами, пептидами, белками, гормонами, нуклеиновыми кислотами и т. д. Наиболее распространенные металлоферменты, такие, как карбоангидраза, ксантинооксидаза, цитохромы и др., представляют собой биокомплексы /-металлов. Простетические группы гемоглобина, трансферрина и других сложных белков также представляют собой хелатные комплексы /-металлов (см. главу 5). [c.191]

    Феномен молекулярного импринтинга был впервые обнаружен в 1972 г. Для его реализации в водном растворе получают ма-кромолекулярные комплексы низкомолекулярных лигандов с полимерами, которые далее высушивают и промывают растворителем, избирательно освобождающим комплексы от лиганда, но не растворяющим макромолекулы [163]. Поскольку подвижность макромолекул в твердой фазе ограничена, они сохраняют конформацию, которая была индуцирована в них соответствующим лигандом, даже после его удаления из комплекса. В итоге образуется новый класс искусственных материалов, обладающих свойствами специфических рецепторов, поскольку заключают в себе отпечаток пространственной структуры лиганда-матрицы. Такие материалы обладают высоким сродством и избирательностью по отношению к лигандам, уникальной стабильностью, значительно превышающей таковую природных биоматериалов, и их довольно просто получать в большом количестве. Они активно внедряются в практику для синтеза, разделения, идентификации и связывания матричных лигандов и их производных, а также создания биосенсоров. Лигандами же могут служить микроорганизмы, белки, нуклеиновые кислоты, аминокислоты, сахара, алкалоиды, стероидные соединения, токсины, гербициды, ароматические и гетероциклические химические соединения, ионы металлов и вещества в газообразной фазе. [c.374]

    Следует помнить, что в продажных препаратах солей могут содержаться примеси тяжелых металлов, которые образуют комплексы с нуклеиновыми кислотами, существенно изменяя их свойства. Поэтому, если нет уверенности в полной чистоте соли, ее раствор следует пропустить через колонку хелатной смолы (например helex-100 фирмы Bio-Rad ), объем которой должен быть приблизительно в 10 раз меньше, чем объем солевого раствора. Во избежание забивания колонки нераство-ряющимися кристаллами раствор надо предварительно отфильтровать ч рез стекловолокнистый фильтр GF/ . В градиентный раствор, как правило, вносят также ЭДТА в концентрации 1 — 10 мМ. Всю посуду рекомендуется промывать водой, очищенной от следов тяжелых металлов также на хелатных колонках. [c.249]

    Ионы двухвалентных металлов. Концентрация ионов Mg2+ должна превышать концентрацию дезоксирибонуклеозидтрифо-сфатов (сЮТРз) в реакционной смеси на 0,5-3,0 мМ. Такой избыток необходим потому, что основным источником фосфатных групп во время ПЦР являются сЮТРз, а ионы Mg2+ образуют с ними растворимый комплекс. В то же время ионы взаимодействуют еще и с матричной ДНК, праймерами, самой ДНК-полимеразой и являются абсолютно необходимыми для функционирования любых ферментов матричного синтеза нуклеиновых кислот. Их концентрация влияет на процесс отжига праймеров, температуру плавления двойной спирали нуклеиновых кислот, активность и точность функционирования ДНК-полимеразы. В этой связи, требуется точное определение оптимальной концентрации ионов Mg2+ в реакционной смеси для каждого нового сочетания праймеров и матрицы. В общем, повышение концентрации ионов Mg2+ выше оптимальной уменьшает специфичность ПЦР, что часто сопровождается образованием шмира . [c.201]

    В химическом отношении ДНК довольно инертны, благодаря чему их долгое время считали индифферентными структурными элементами клеточного содержимого. Однако постепенно накопились данные о ряде химических реакций, свойственных нуклеиновым кислотам они прочно связывают многовалентные ионы металлов, причем Си " и дают с ДНК нерастворимые комплексы. В первую очередь поливалентные катионы вступают в реакцию с N и О гуанина. Возможно, ионы металлов принимают участие в поддержании третичной структуры нуклеиновьк кислот. [c.211]

    Этилендиаминтетрауксусная кислота (ЭДТА) и ее соли также являются ингибиторами нуклеаз и, кроме того, образуя неактивные комплексы с ионами тяжелых металлов, способствуют высвобождению РНК в процессе гомогени зации вируссодержащих тканей, ЭДТА и ее производные в настоящее время широко используют как необходимый ингредиент экстрагируемой среды нуклеиновых кислот из большинства вирусов. [c.165]


Смотреть страницы где упоминается термин Нуклеиновые кислоты, комплексы металлами: [c.27]    [c.290]    [c.478]    [c.130]    [c.194]    [c.454]    [c.186]    [c.526]    [c.194]    [c.316]    [c.394]    [c.18]    [c.394]   
Неорганическая биохимия Т 1 _2 (1978) -- [ c.126 ]




ПОИСК





Смотрите так же термины и статьи:

Кислоты Ба металлы

Комплексы кислот

Комплексы металлов комплексы металлов

Металло-азо-комплексы

Металлов комплексы

Нуклеиновые кислоты

Нуклеиновые кислоты, комплексы



© 2025 chem21.info Реклама на сайте