Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Трехатомные с электронами

    Помимо электронных энергетических уровней молекулы обладают еще энергетическими уровнями, связанными с вращательным (рис. 13-30) и колебательным (рис. 13-31) движениями. Вообще говоря, любая линейная многоатомная молекула может вращаться вокруг трех взаимно перпендикулярных осей, проходящих через ее центр тяжести, как это показано на рис, 13-30. Для линейной (в том числе и всякой двухатомной) молекулы одна из этих осей совпадает с прямой линией, на которой находятся ядра всех атомов, поэтому линейные молекулы могут совершать реальное вращение только вокруг двух остальных осей. На рис. 13-31 показаны тины колебаний двухатомной, линейной трехатомной и нелинейной трехатомной молекул. При обсуждении молекулярных колебаний часто оказывается удобным представлять себе, что связи между атомами обладают свойствами упругих пружинок, которые поэтому и изображены на рис. 13-31. [c.583]


    Энергия активации перегруппировки будет определяться разностью энергий соединения А и промежуточного комплекса В. Трехатомной структуре соответствуют три орбитали, одна из которых связывающая, а две другие вырожденные, разрыхляющие. В случае иона карбония, тенденция которого к перегруппировкам хорошо известна, имеются только два электрона, и они могут быть отнесены к самой низшей связывающей орбитали (рис. 23,1а). Свободный электрон радикала должен идти на одну из разрыхляющих орбиталей (рис. 23, 1 б), что увеличивает энергию радикала. Стабилизация и снижение энергии переходного состояния В достигается за счет перераспределения электронной плотности при движении мигрирующей группы. Это перераспределение в свою очередь определяется строением группы [336]. В то же время довольно легко протекающая 1,2-миграция атомов галогенов 293] не может быть объяснена на основании сказанного выше. [c.197]

    Многоцентровые орбитали. Описание химической связи в трехатомных линейных и уголковых, тетраэдрических и треугольных молекулах. Электронная конфигурация молекул и структурные формулы. [c.56]

    Трехатомные радикалы типов АВг или ХАБ могут быть линейного или углового строения, что зависит от распределения плотности неспаренного электрона, т. е. относительной заселенности (что иногда представляют в терминах электроотрицательности) у ато- [c.68]

    В мономолекулярных реакциях обе важнейшие орбитали ВЗМО и НСМО принадлежат одной и той же молекуле. Переход с ВЗМО электрона на НСМО приводит к изменению,распределения электронной плотности внутри молекулы, она возрастает в области перекрывания, где 5 > О, и уменьшается в области, где 1 ><0. Положение ядер при этом изменяется, они движутся в сторону области, где возросла электронная плотность. При этом происходит перестройка молекулы, ведущая к изомеризации или диссоциации. Разность в энергии ВЗМО и НСМО Играет решающую роль. Если разность невелика,, то молекула, как правило, структурно неустойчива, легко происходит изомеризация с образованием более стабильной структуры, или диссоциация. Разность энергии ВЗМО— НСМО определяет частоту максимума поглощения электронного спектра в видимой или УФ-области. Поэтому из двух молекул с близкой структурой менее устойчива бу дет та, для которой максимумы поглощения лежат в области более длинных волн окрашенные вещества менее стабильны, чем сходные неокрашенные. Сравним, например, подобные трехатомные молекулы Оз и 80г. Голубоватый озон легко распадается на О2 и О, а бесцветная ЗОг значительно стабильнее к распаду на 80 и О. [c.143]

    В согласии с ранее данным определением (см. 17) многоатомная молекула — это устойчивая система из трех ядер или более и соответствующего числа электронов. Уже у линейной трехатомной молекулы АВС для описания расположения трех ядер нужны две независимые естественные координаты т-1(А—В) и[ Г2(В—С), если угол АВС считать фиксированным и равным 180°. Потенциальная энергия молекулы при этом будет функцией двух указанных координат е(г1, Г2),и эта функция изобразится поверхностью в трехмерном пространстве. Положение минимума потенциальной поверхности определяет равновесную конфигурацию линейной трехатомной молекулы с параметрами гДА—В) и гДВ—С) и уровень электронной энергии (г )= авс- [c.171]


    В случае многоатомной молекулы электронная энергия является функцией координат всех ядер. При этом устойчивость молекулы обеспечивается наличием минимума полной энергии при некоторых определенных расположениях ядер. Заметим, что положения ядер в молекуле можно описывать разными способами. Например, пренебрегая вращением молекулы как твердого тела, в качестве координат трехатомной молекулы можно брать Г], Гг, Гз или гь Гг, ф и т. д. (рис. 21). [c.146]

    Молекула ВеНг с четырьмя электронами в валентной оболочке должна иметь линейную структуру. Однако для шестиэлектронных трехатомных молекул следует ожидать угловой конфигурации связей вследствие значительной стабилизации уровня аь Действительно, метилен СНг в соответствии с наиболее точными экспериментальными данными и неэмпирическими расчетами (рис. 42) имеет угловую структуру. Такой же структурой с валентным углом около 120° обладает ион NH2+. [c.161]

Рис. 66. Переходы между колебательными уровнями деформационного колебания для электронного перехода 41 — 12 линейной (трехатомной) молекулы в отсутствие (а) и при наличии (б) электронно-колебательного Рис. 66. <a href="/info/2990">Переходы между</a> колебательными уровнями <a href="/info/2521">деформационного колебания</a> для <a href="/info/6182">электронного перехода</a> 41 — 12 линейной (трехатомной) молекулы в отсутствие (а) и при наличии (б) электронно-колебательного
    Далее, следует особо рассматривать случаи, когда одно или оба электронных состояния вырождены и когда электронно-колебательное взаимодействие не очень слабое. На рис. 66 приводятся колебательные переходы, связанные с деформационным колебанием для электронного перехода Ш линейной трехатомной моле- [c.108]

    Моногидриды. Электронная конфигурация трехатомных моногидридов НХУ аналогична конфигурации объединенной молекулы, [c.113]

    Для того чтобы распределить 16 электронов в трехатомной системе А—В—С таким образом, чтобы вокруг атомов всех трех сортов сохранялись октеты и все связи содержали четное число электронов, существуют следующие возможности  [c.351]

    Существуют полные теоретические расчеты молекул Выполненные в настоящее время для весьма небольшого числа простейших двухатомных и ряда трехатомных молекул, подобные расчеты чрезвычайно трудоемки и даже при современной электронно-вычислительной технике их вряд ли можно будет провести для систем, содержащих более чем 20 атомов [c.57]

    Диполи представляют собой трехатомные сопряженные системы с четырьмя делокализованными т-электронами. Название 1,3-диполь определяется тем, что для этих соединений возможно написание резонансной электронной структуры с разделением зарядов, однако в действительности заряды делокализованы. Гетероатом, расположенный в центре 1,3-диполя, формально может быть в состоянии sp - или sp-гибридизации. Состояние гибридизации центрального гетероатома связано с наличием ортогональной по отношению к делокализованной т-системе двойной связи в резонансной 1,3-диполярной форме. В зависимости от этого различают два типа 1,3-диполей (рис. 4.21). [c.111]

    Примере линейной трехатомной молекулы. В основном состоянии такая молекула имеет аксиальную ось симметрии, и ее электронные состояния П, А и др. двукратно вырождены. При смещении ядер, указанном иа рис. 29 (несимметричное колебание), нарушается аксиальная симметрия молекулы. Нарушение аксиальной симметрии приводит к снятию вырождения. Например, двукратно вырожденное состояние типа П, которому в линейной молекуле соответ- [c.644]

    Хачкурузов [436] выполнил графическую оценку вращательной постоянной и частоты колебания РО по зависимости значении этих постоянных у двухатомных фторидов элементов II периода от числа валентных электронов. Найденные им значения — 1,08 и (1) 1100 см были приняты в первом издании настоящего Справочника. Однако оценка молекулярных постоянных РО на основании использования различных закономерностей в значениях постоянных других двухатомных фторидов может привести к неверным величинам, так как экспериментальные данные известны только для фторидов элементов II, III и IV групп, характер связи в которых существенно отличен от связи в таких молекулах, как РО, р2, NP и SP. Более удовлетворительные оценки молекулярных постоянных РО, по-видимому, могут быть выполнены на основании известных данных о структуре и частотах колебаний молекулы Р2О Сравнение межатомных расстояний в двухатомных и трехатомных молекулах фторидов ряда элементов показывает, что первые меньше вторых на 0,02— 0,04 А. Поскольку длина связи Р—О в молекуле Р 2О равна 1,418 А (см. стр. 241), вращательная постоянная РО, приведенная в табл. 51, вычислена для гро=1,4 А. Погрешности принятых значений В и гро имеют величины порядка 0,1 и 0,05 А соответственно. [c.240]

    N3. Термодинамические функции трехатомного азота Ng, приведенные в табл. 95 (II), были вычислены по уравнениям (11.241) — (11.242) в интервале температур 293,15—6000° К на основании значений молекулярных постоянных N3, принятых в настоящем Справочнике (см. табл. 100). Расчет был выполнен в приближении модели жесткий ротатор — гармонический осциллятор без учета возбужденных электронных состояний, и поэтому часть членов в уравнениях (11.241) и (11.242) была принята равной нулю. В табл. 111 для N3 приведены значения 9 , соответствующие принятым значениям основных частот этой молекулы, а также значения Сф и s, вычисленные по уравнениям (11.245) — (11.246). Поскольку основное электронное состояние N3 относится к типу П, при расчете Сф и s принималось рм = 4. [c.387]


    Корреляционные диаграммы позволяют в ряде задач понять в простых терминах особенности электронной структуры молекул и связанные с ней ее геометрические характеристики. Молекула ОН2 изогнута, а молекула М Нг линейная. Наиболее прямолинейный путь в исследовании геометрических характеристик сводится к вычислению полной энергии как функции угла Н-М -Н и поиск минимума на соответствующей потенциальной поверхности. А. Уолщу удалось найти с использованием корреляционных диаграмм простое качественное объяснение линейной структуры одних трехатомных молекул и изогнутой формы других см. [20]. В ходе доказательства делают существенное предположение сумма орбитальных энергий занятых состояний предполагается изменяющейся подобно полной энергии. [c.218]

    Амплитуда колебаний атомных ядер во много раз (пропорцжо-нально квадратному корню из отнощения масс) меньше, чем электронов. Поэтому атомные ядра, принадлежащие данной молекуле, вместе со всеми своими электронами, кроме валентных (т. е. атомные остовы), связанные направленными межатомными связями, представляют собой довольно резко локализованный остов молекулы. Понятно, что форма молекулы зависит от строения остова, которое в свою очередь определяется характером межатомных связей, их направлением. Но, как мы знаем, направление межатомных связей задается той или иной комбинацией атомных орбита-лей, т. е. пространственной конфигурацией соответствующих электронных волновых функций, связанной с симметрией поля сил между атомным ядром и электронами, Так, в результате коаксиальной -гибридизации трехатомные молекулы галогенидов элементов И группы в газообразном состоянии имеют остов линейной формы. Четырехатомные молекулы, например ВРз, благодаря 5р2-гибридизации приобретают остов, в котором все соединяющие атомные остовы три связи располагаются в одной плоскости под углом 120° друг к другу. Тетраэдрическое строение остова пятиатомных молекул типа СН4 и ССЦ обусловлено р -гибридизацией к такой же конфигурации остова молекул приводит х -гибриди-зация.. Существуют также октаэдрическая ( р -гибридизация, плоская квадратная 5/7 -гибридизация, тригональная бипирами-дальная ( 5,о -гибридизация, каадратная пирамидальная 5р -гиб-ридизация и др. [c.84]

    Строение трехатомных молекул состава ЭНз. Расположим ядра атомов молекулы состава ЭН2, где Э = О, 8, 8е, Те, так, как показано на рис. 4.24. Каждый атом Э имеет на внешней электронной оболочке одну в- и три р-орбитали, атомы водорода — по одной АО 1. -типа. Относитальное расположение взаимодействующих орбиталей также показано на рис. 4.24. [c.131]

    Для нелинейной трехатомной и более сложной молекулы равновесная конфигурация и уровень электронной энергии определяются положением минимума на потенциальной поверхности в многомерном пространстве. Например, для молекулы НСО — это равновесные расстояния (Н—С), г (С—О) и угол -НСО либо гДН—С), гДС—О) и гДН -О). Таким образом, многоатомная молекула — это устойчивая динамическая система из ядер и электронов, равновесная конфигурация которой определяется координатами минимума ее потенциальной поверхности. Глубина минимума определяет энергию Д1яссоциации молекулы Д. Подобно двухатомной молекуле, для многоатомной возможно множество электронных состояний, каждое из ко1 орых описывается своей потенциальной поверхностью и соответственно своим набором равновесньхх параметров, если поверхность имеет минимум. Если поверхность потенциальной энергии имеет два (или более) минимума, для молекулы возможны два (или более) изомера, отличающихся параметрами равновесной конфигурации. Если минимума на потенциальной поверхности нет, электронное состояние системы нестабильно. Низшее по энергии из стабильных электронных состояний называется основным, все остальные — возбужденными состояниями. Энергия основного состояния принимается за нуль отсчета при сравнении электронных термов молекул. [c.171]

    Рассмотрим, как строятся многоцентровые МО и как они преобразуются в эквивалентные локатсизованные двухцентровые (ЛМО). В качестве наиболее простого примера выберем трехатомную молекулу HjO. Поместим атом кислорода в центре декартовой системы координат, атомы водорода — в плоскости yz (рис. 76). Ось х перпендикулярна плоскости. Построим сначала делокализованные МО. Эти орбитали — трехдентровые. Электронные конфигурации атомов кислорода и водо- [c.190]

    Рассмотрим молекулярные орбитали другой трехатомной молекулы— радикала ВеН2, имеющей линейное строение (рис. 81). Электронные конфигурации атомов Н[Ь] и Ве[1, 25 ]. Орбиталь 1 бериллия сохраняет свой атомный характер. Молекулярные орбитали, следующие за ней, строим из 15-орбиталей атомов Н и 25- и 2р-орбиталей атома Ве. Сначала строим групповые орбитали из 15-АО водорода— 5 и 5 . Они принадлежат к той же точечной группе симметрии 2 , что и сама молекула, и имеют нид [c.195]

    Дигидриды. Как и в случае двухатомных гидридов,электронные конфигурации трехатомных дигидридов можно получить, используя объединенный атом. Принято пользоваться упрощенными обозначениями орбиталей означает самую низкую, а 2а — следующую за ней орбиталь типа 1ац означает самую низкую орбиталь типа < и т. д. В этих обозначениях в табл. 9 даны электронные конфигурации основных и первых возбужденных состояний дигидридов элементов первого периода в предположении, что они линейны. И действительно, из перечисленных в таблице дигидридов только о СН2 известно, что он линеен в своем основном состоянии возможно, что радикал ВеН2 также имеет линейную структуру, но его спектр пока еще не обнаружен. Для других дигидридов, о которых известно, что они нелинейны в своих основных состояниях, электронные конфигурации приводятся в предположении, что они линейны, с целью последующего сравнения с электронными конфигурациями нелинейных форм. У дигидрида СН2, поскольку он содержит два я-электрона, существуют три низкорасположенных [c.113]

    Негидриды. Чтобы вывести электронные конфигурации линейных трехатомных молекул или радикалов, не содержащих атомов водорода, следует рассмотреть корреляцию с разделенными атомами подобно тому, как это делалось для двухатомных молекул (рис. 16 и 17). На рис. 70 изображена корреляционная диаграмма орбитальных энергий для линейных молекул типа ХУг, показывающая изменение энергии при переходе от больших межъядерных расстояний к малым. Действительному расположению орбиталей, которым следует пользоваться при определении электронных конфигураций этих молекул, соответствует примерно середина диаграммы. В табл. 11 даны электронные конфигурации основных и первых возбужденных состояний ряда важных линейных трехатомных свободных радикалов, а также соответствующие типы симметрии. Наблюдавшиеся состояния подчеркнуты. Из таблицы видно, что обнаружены многие из предсказанных состояний и что наблюдавшиеся основные состояния находятся в согласии с предсказанными. В табл. 12 приведены вращательные постоянные и частоты деформационных колебаний в основных состояниях указанных радикалов. В тех случаях, где это возможно, приводятся также межъядерные расстояния. Интересно отметить, что частота деформационного колебания возрастает от крайне низкого значения 63 см для основного состояния радикала Сз до значения 667 см для молекулы СО2. По-видимому, это возрастание связано с заполнением орбитали 1л . [c.116]

    Эти параметры при первоначальном построении метода ППДП/2 были определены из сравнения результатов расчетов ряда двух- и трехатомных молекул, прежде всего - разностей орбитальных энергий, с данными неэмпирических расчетов этих молекул. Разности орбитальных энергий брались по той причине, что абсолютные величины этих энергий зависят от выбора начала отсчета для энергии, а это начало в неэмпирических методах, учитывающих все электроны, и в полуэмпирических методах, опирающихся на валентное приближение, различно. [c.334]

    Однако известно большое число примеров пртюоединеиия к алкенам нейтральных 4т1-электронных трехатомных реагентов, изоэлектронных аллильному аннону. Нейтральные реагенты, изоэлектронные аллильному аннону, называются 1,3- [c.1930]

    Ц. (чаще наз. 1,3-диполярным Ц.) - присоединение к молекуле, содержащей кратную связь, 1,3-диполярных соед.- трехатомных компонентов (разл. комбинации атомов С, О, N), обладающих 4 я-электронами, с образованием 5-членных гетероциклов. В качестве 1,3-диполярных соед. используют диазосоединения, азвды, азоксисоединения либо малостабильные нитрилоксвды, нитриламины, нитроны и др., вводимые в р-цию в момент образования, напр.  [c.373]

    Спектроскопическое изучение трехатомных молекул столь же важно и столь же интересно, как и анализ электростатических данных, которым мы сейчас и займемся. Как и в случае двухатомных молекул, спектры поглощения и испускания доставляют сведения о межатомных расстояниях и частотах колебаний, тогда как данные о диэлектрических свойствах и рефракции являются источником знания молекулярной поляризуемости и значений дипольных моментов. Так как поляризуемость является мерой деформации электронных орбит, она представляет свойство, общее для всех электронных систем и поэтому для всех типов молекул. Данные для трехатомных молекул включены в табл. 14. Существование постоянного электрического диполя как в случае трехатомных, так и двухатомных молекул обусловлено их асимметрией. Хотя и нет необходимости в привлечении новых принципов, следует отметить важное отличие, состоящее в том, что как поляризуемость, так и постоянный дипольный момент, наблюдаемые для трехатомных молекул, являются сложными величинами. Если геометрия молекулы известна, то обычно оказывается возможным, как показал Дж. Дж. Томсон, разложить вектор общего дипольного момента на составляющие для каждой связп. Однако для определепия удельных поляризуемостей, связанных с различными осями молекулы, требуется постановка специальных опытов. Мы ограничимся здесь рассмотрением вопроса об общей поляризуемости и о постоянном динольном моменте. [c.420]

    Для простых молекул, особенно для двух- и трехатомных, включающих атомы 1—3-го периодов, в настоящее время можно ы> числять практически все свойства изолированных молекул энергии различных состояний самой молекулы и ее ионов, энергии переходов, карты распределения электронной плотности, дипольныв и магнитные моменты и многие другие свойства. Эта информация позволяет в результате рассчитать онстанты равновесия и состав равновесной смеси при заданной температуре даже в тех случаях, когда синтез самих соединений пока невозуожен. На рисунке 1 дана схема так называемой нежесткой молекулы. Как показывают квантовомеханические расчеты, один из ее атомов может перемещаться в разные положения в соответствии с минимумами энерг ш состояния молекулы. [c.19]

    Фенолоальдегидные олигомеры образуются при взаимодействии различных фенолов (фенол, крезолы, ксиленолы, двухатомные и трехатомные фенолы) с альдегидами (формальдегид, уксусный альдегид, фурфурол). При отверждении олигомерных продуктов они превращаются в соответствующие полимеры, обычно трехмерной структуры. Пластические массы на основе фенолоальдегидных олигомеров называют фенопластами. Поликонденсация фенолов с альдегидами - это многостадийный процесс, при котором протекает ряд последовательно-параллельных реакций. В результате этих реакций могут образоваться как термопластичные, так называемые новолачные, так и термореактивные - резольные олигомеры. Основными факторами, определяющими строение и свойства фенолоальдегидных олигомеров, являются функциональность исходного фенольного компонента, природа альдегида, соотношение исходных мономеров и pH реакционной среды. Фенолы, используемые для синтеза олигомеров, могут иметь различную функциональность, под которой понимают число атомов водорода фенола, способных к замещению в реакции с альдегидами. Например, при гидроксиметилировании формальдегид присоединяется к фенолу по орто- и и<зр<з-положениям, атомы углерода в которых имеют повышенную электронную плотность благодаря влиянию гидроксильной Фуппы. В табл. 3.1 приведены некоторые характеристики фенолов, наиболее часто используемых при синтезе фенолоальдегндных олигомеров. [c.62]

    Двух- и трехатомные фенолы с гидроксилами в ор/ио-положении (пирокатехин, оксигидрохинон, флороглюцин координируются с РеС1з легче, чем фенол. Тиофенолы являются еще более слабыми донорами электронной пары, чем фенолы. [c.168]

    Энергия активации перегруппировки зависит от разницы энергий соединения I и промежуточного положения II. Трехатомная структура II имеет три орбиты, одна из которых связывающая, а две других вырожденные, антисвязывающие. Электроны антисвязывающих [c.255]

    Электронные состояния многоатомных нелинейных молекул также классифицируются по неприводимым представлениям группы симметрии, относительно которой инвариантен оператор Гамильтона соответствующей молекулы. В 19 была рассмотрена классификация электронных состояний угловых трехатомных молекул типа НгО, НаЗ и др., которые относятся к группе симметрии Сг , и четырехатомных молекул МНз, СНзС1 и др., которые относятся к группе симметрии Сз . [c.642]

    Таким образом, рассмотренный в первом издании Справочника перечень компонентов, образованных 21 элементом, отнюдь не охватывал все образующиеся в камере сгорания компоненты продуктов сгорания, но, будучи много обширнее и точнее ранее составленных перечней, позволял производить более надежные расчеты, чем это было ранее возможно. Действительно, этот Справочник содержал таблицы термодинамических свойств 178 газообразных, 27 жидких и 29 твердых компонентов продуктов сгорания (электроны, ионы, атомы, радикалы и молекулы), всего 234 компонента, в том числе 48 одноатомных, 96 двухатомных, 49 трехатомных, 21 четырех атомный, 12 пятиатомных, 3 шестиатомных, 1 семиатомный, 2 десяти атомных, 1 двенадцати атомный и 1 четырнадцатиатомный. [c.12]


Смотреть страницы где упоминается термин Трехатомные с электронами: [c.100]    [c.201]    [c.137]    [c.122]    [c.80]    [c.90]    [c.93]    [c.111]    [c.424]    [c.443]    [c.417]    [c.333]    [c.19]    [c.90]   
Секторы ЭПР и строение неорганических радикалов (1970) -- [ c.142 ]




ПОИСК







© 2025 chem21.info Реклама на сайте