Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворителя влияние энтальпию активации

    Нитрозильные соединения кобальта и железа проявляют одинаковые свойства и реагируют с данным нуклеофильным заместителем приблизительно с одинаковой скоростью . На скорость реакции соединений кобальта растворитель имеет лишь незначительное влияние. Энтальпия активации невелика, энтропия активации отрицательна. Они аналогичны параметрам активации, полученным для реакции комплексов Pt(II) (стр. 353), и подтверждают процесс бимолекулярного замещения. [c.498]


    Уинстейн и Файнберг [751 исследовали влияние температуры на скорость реакции и обнаружили, что поведение энтропии и энтальпии активации в отличие от А(л, сложным образом зависит от состава растворителя (рис. 8.7). Почти такая же картина наблюдается в водно-диоксановых смесях и в смесях воды с уксусной кислотой. [c.324]

    Хотя активационные параметры и полезны при трактовке механизмов органических реакций, их использование, однако, не имеет универсального характера. Наиболее часто осложнения вносит влияние растворителя. Увеличение сольватации активированного комплекса по сравнению с исходными соединениями может приводить к отрицательным значениям энтропии активации даже в случае диссоциативных процессов, так как при этом происходит уменьшение числа степеней свободы молекул растворителя, В то же время энтальпия активации при увеличении сольватации будет уменьшаться. В связи с этим использование параметров активации для характеристики механизмов реакций в растворах требует осторожности и подробного анализа эффектов растворителя в каждом отдельном случае. [c.220]

    Влияние парамагнитных ионов на время ядерной релаксации нашло важные применения в химии и биологии. Была изучена релаксация в воде, содержащей ионы Мп +, Ре -+ и других переходных металлов, с целью определения скорости обмена дюлекул воды между ионом и массой растворителя. В этих исследованиях были определены константы скоростей и энтальпии активации реакций. Например, для иона Мп-+ /г 3-10 сек и АЯ=  [c.299]

    Вторая трудность, которая особенно существенна для реакций в водных растворах, заключается в том, что наблюдаемые термодинамические величины сильно искажены за счет сольватационных эффектов и необходимо вводить поправки на эти эффекты, прежде чем делать заключения о внутренних энергиях реакции. Так, можно ожидать, что индуктивные и резонансные эффекты заместителей при ионизации фенолов и карбоновых кислот будут проявляться в энергиях кислоты и аниона, однако различие в кислотностях этих соединений определяется в большей степени энтропиями, а не тепло-тами ионизации [62]. Это видно из данных для замещенных бензойных кислот, приведенных в табл. 2. То же явление наблюдается для констант скоростей реакций производных фенола различие в скоростях щелочного гидролиза замещенных фенилацетатов в воде вызывается только различиями в энтропии активации [63]. Влияние растворителя на величины термодинамических параметров активации видно из того факта, что в смешанном растворителе ацетон (60%) — вода различие в скоростях гидролиза тех же эфиров почти полностью определяется различием в энтальпии активации [64]. Одна из причин влияния полярных свойств заместителей на энтропию реакции заключается в том, что диэлектрическая проницаемость, которая определяет передачу электростатического влияния от заместителя на реакционный центр, зависит от температуры и эта зависимость проявляется в энтропии реакции. [c.246]


    Таким образом, проблема влияния растворителя сводится по существу к определению свободных энтальпий сольватации исходных соединений и активированного комплекса. Из-за сложности взаимодействий между растворителем и субстратом точное количественное определение этого влияния затруднительно. Однако многие авторы пытались на эмпирической или теоретической основе найти зависимость между константой скорости или свободной энтальпией активации и характеристическими константами растворителя, например, в следующей форме [10]  [c.53]

    Активационные параметры изомеризации 1а в метилацетат согласуются с результатами квантово-химических расчетов высокого уровня сложности [64]. Энергетическая диаграмма процесса изомеризации (в шкале стандартной энтальпии образования) 1а и простейшего диоксирана 1в показана на рис. 5.1. Различие экспериментальной и расчетной энергий активации связано, по-видимому, с влиянием растворителя. [c.244]

    Соотношения линейности свободных энергий типа уравнений Гаммета и Тафта иногда рассматриваются в предположении, что существует линейное соотношение между энергиями активации и энергиями реакций, а энтропия активации внутри гомологической серии остается постоянной. Однако для такой точки зрения нет особых оснований, и, как сейчас становится ясным, свободные энергии являются значительно более простыми функциями, чем энергии, которые заметно более чувствительны к внешним факторам, например к влиянию растворителя. Известны случаи, когда для свободных энергий обнаруживается линейное соотношение и проявляется аддитивность, в то время как изменения соответствующих энергий и энтальпий не приводят к подобному соотношению. Причина этого, возможно, состоит в том, что существует общая тенденция для теплот и энтропий процессов в растворе компенсировать друг друга, так что результирующие изменения в свободной энергии оказываются много меньшими. Ниже это явление рассматривается несколько более подробно. [c.259]

    Уинстейн и Файнберг [18] нашли, что влияние растворителя на свободные энергии, энтальпии и энтропии активации очень сложно и часто зависит в одинаковой степени от изменения сольватации как реагентов, так и переходного состояния. [c.202]

    Одна из задач, которую мы надеемся решить сравнением данных по основности, — это установление зависимости между строением и реакционной способностью. Поэтому необходимо знать, какой из параметров является лучшим для корреляций энтальпия или свободная энергия. Мнения по этому поводу разделились. Химики-теоретики приписывают энтальпии большее значение в теоретическом отношении [232. Однако на практике оказывается, что для реакций в водных растворах свободная энергия передает влияние строения лучше, чем энтальпия, в то время как для реакций в газовой фазе или в неполярных растворителях энтальпия оказывается предпочтительнее [337]. Для большинства целей наилучшие сведения о влиянии строения дает сравнение констант равновесия, так же как константы скорости в большинстве случаев заключают в себе больше смысла, чем энергии или энтропии активации. Этот вопрос подробно теоретически обоснован в превосходной монографии Белла [29]. [c.199]

    Найдено, что в ряду растворителей от о-ксилола до хлороформа скорость реакции присоединения тетрацианэтилена к антрацену возрастает в 70 раз [125]. Замена этилацетатной среды на уксусную кислоту ускоряет реакцию между циклопентадиеном и акролеином в 35 раз [129]. Маловероятно, чтобы столь слабая чувствительность к природе растворителя была обусловлена биполярным активированным комплексом. Экспериментальные данные лучше согласуются со следующим механизмом сначала диен и диенофил образуют комплекс типа ДЭП/АЭП, который затем через электроноизбыточный поляризуемый активированный комплекс непосредственно превращается в продукт реакции. В некоторых случаях замена растворителя приводит к существенному изменению энтальпии активации реакции Дильса—Альдера. Определение относительных величин энтальпии сольватации исходных веществ в раствори-телях-ДЭП и АЭП методом калориметрии показало, что в растворителях-ДЭП стабилизированы реагенты, тогда как в более электроотрицательных растворителях-АЭП стабилизируется электроноизбыточный активированный комплекс [128]. Отсюда следует, что влияние растворителей на энтальпию активации реакции Дильса — Альдера с участием электронодефицитного малеинового ангидрида и тетрацианэтилена в качестве диено-фила можно объяснить электронодонорными (или электроноакцепторными) свойствами растворителя, при км сольватация диенофила возрастает в растворителях-ДЭП [128, 538—540] (см., однако, работу [130]). [c.238]

    Такой эффект можно объяснить различной биполярностью двух активированных комплексов. Если принять, что реагирующие молекулы располагаются в приблизительно параллельных плоскостях, то дипольные моменты в активированном комплексе, ведущем к образованию э/сзо-аддукта, будут направлены практически противоположно друг другу, в то время как в комплексе, из которого образуется зн<Зо-соединение, дипольные моменты направлены в одну сторону. Следовательно, результирующий дипольный момент активированного комплекса во втором случае будет значительно больше и такой комплекс будет лучше сольватироваться в более полярных растворителях, что в свою очередь приведет -к снижению энтальпии активации и к преимущественному образованию зн<Зо-аддукта. Предлагалось даже использовать логарифм отношения [эн<Зо-аддукт]/[экзо-ад-дукт] в различных растворителях в качестве основы для создания эмпирической шкалы полярности растворителей [124] (см. разд. 7.3, Примерно так же объяснили зависимость отношения [5Н(Зо-аддукт]/[зкзо-аддукт] от природы растворителя в реакции 1,3-биполярного циклоприсоединения фенилглиоксил-нитрилоксида (СбН5СОС =М—О ) к норборнадиенам [124а]. Аналогичное влияние растворителя на отношение [зн о-ад-дукт]/[зл зо-аддукт] наблюдалось в реакции [4+2]-циклопри-соединения циклопентадиена к другим производным акриловой кислоты [560]. [c.239]


    В завершение раздела обсудим влияние растворителей на реакции диспропорционирования радикалов. Небольшие эффекты растворителей обнаружены в реакции диспропорционирования 2,б-ди-7 рет -бутил-4-изопропилфеноксильного радикала на соответствующие хинонметид и фенол [уравнение (5.73)] [225]. При переходе к более полярным растворителям энтальпия активации возрастает с 21 кДж-моль в циклогексане до 32 кДж-моль в бензонитриле, однако в силу компенсирующего влияния изменения энтропии активации состав среды почти не сказывается на скорости реакции. Образование активированного комплекса можно рассматривать как присоединение двух биполярных частиц по типу голова к хвосту . Для образования такого активированного комплекса необходима десольватация одного из фе-ноксильных радикалов, поэтому в среде, в которой радикалы сильно сольватированы, энтальпия активации должна быть относительно высокой, чтобы обеспечить необходимую энергию десольватации. В таких случаях должно наблюдаться наибольшее повышение энтропии. Линейная зависимость, обнаруженная между ДЯ и (бг—1)/вг, позволяет приписать эффекты растворите- [c.267]

    Определены скорость и параметры активации термической цис->тракс-изомеризации М,М -дистеароилиндиго как в изотропных, так и в жидкокристаллических растворителях [727]. В изотропных неполярных растворителях, в том числе в бензоле, толуоле и -бутилстеарате (при температуре выше 27°С), длинные алкильные цепи бутилстеарата не оказывают никакого влияния на скорость цис->-гранс-изомеризации. Напротив, в смектическом жидкокристаллическом -бутилстеарате скорость изомеризации намного ниже. Соответствующие более высокая энтальпия активации и более положительная энтропия активации, очевидно, обусловлены тем, что г ис- гракс-изомеризация включает миграцию двух длинных стеароильных цепей. Алкильные цепи производного индиго переплетаются с упорядоченными молекулами растворителя, в результате чего их миграции пре- [c.378]

    Вопрос точности становится решающим при обсуждении влияния температуры, природы растворителя или изменений в строении реагента. Как отметил Коллинз ([10], стр. 63), из-за отсутствия точности многие выводы, касающиеся величины, направления и значимости малых различий в скоростях изотопных реакций, следует рассматривать как сомнительные. Это же пессимист 1ческое заключение относится к большому числу данных по энтропиям и энтальпиям активации, полученным из температурной зависимости констант скорости. [c.81]

    С увеличением разветвленности остатка К начинает преобладать механизм 5лг1, поскольку при этом, с одной стороны, увеличивается стабильность соответствующего иона карбения и уменьшается энтальпия активации процесса гетеролиза, а с другой стороны, создаются стерические препятствия для реакции по механизму 5д 2. Природа галогена обычно мало влияет на механизм замещения, однако существенно изменяет скорость реакции. Чем выше нуклеофильность реагента (см. раздел 1.6.1.3), тем более вероятен механизм 8 2 из-за понижения энергии активации. В то же время на реакции 5л 1 нуклеофильность не оказывает влияния. О влиянии растворителей на нуклеофильное замещение у насыщенного атома углерода см. раздел 1.5.6.4. [c.291]

    Таким образом, электростатическая модель Ингольда-Хьюза качественно правильно предсказывает влияние растворителя на скорость нуклеофильного замещения у насьпценного атома углерода. Однако она учитьшает лищь электростатическую ориентацию растворителя относительно реагентов и совершенно игнорирует специфическое донорно-акцепторное взаимодействие или образование водородных связей с молекулами растворителя, которые вместе составляют наиболее важную особенность процессов ион-дипольного и диполь-дипольного взаимодействия. Кроме того, эта теория рассматривает только одну составляющую свободной энергии активации АО, а именно энтальпию активации ЛВ, не принимая во внимание изменение энтропии активации ЛЗ, чей вклад может бьпъ очень значителен. [c.114]

    Общие выводы, которые можно предварительно сделать на основе ограниченного числа данных, доступных в настоящее время при свободнорадикальной полимеризации .а -дизамещенных мономеров (фактически единственным хорошо изученным мономером этого типа является метилметакрилат) для т-присоединения требуется энтальпия активации на 1 ккал/моль большая, чем для г-присоединения, но т-присоединение несколько предпочтительнее по энтропийному фактору. Для а-монозамещенных мономеров обычно предпочтительнее /--присоединение по величине изменения как энтропии [Д(Д5 ), однако, мало или равно нулю, если заместитель СМ- или ОАс-группа], так и энтальпии, хотя разность A AHf) не превышает 300 кал/моль и часто близка к пулю. Сольватация свободного радикала не имеет большого значения, поскольку конфигурация цепи, видимо, не зависит от выбора растворителя при полимеризации. (Возможно, однако, что существенное влияние может оказывать сильная водородная связь между мономером и растворителем, но экспериментально это не исследовалось). Короче говоря, единственной возможностью по вли-ять на конфигурацию при свободнорадикальной полимеризации винильных мономеров, доступной для экспериментатора, является изменение температуры. Однако даже в благоприятных случаях температура полимеризации слабо влияет на конфигурацию образующегося полимера. [c.164]

    Для неидеального раствора вариации отношения k s kg должны быть, по-видимому, более значительными, нежели для идеального. Это будет тогда, когда имеется заметное притяжение между растворенными частицами или же между растворителем и одним или несколькими растворенными веществами. Подобные заметно выраженные эффекты растворителя должны проявиться в изменении энергии активации, что, вообще говоря, частично компенсируется изменением частотного фактора. Энергия испарения сильно сольватированного вещества возрастает, однако этот эффект компенсируется уменьшением эффективного свободного объема. Для иллюстрации этих соображений Бенсон приводит данные по некоторым реакциям. Экспериментальные данные относительно реакции присоединения циклопентадиена к бензохинону [3, 4] в различных растворителях показывают, что, хотя энергия активации и изменяется при этом на 4 ккал1моль, аррениусовский частотный фактор А также изменяется при этом в 300 раз, так что в результате скорость изменяется всего лишь примерно в пять раз. В аналогичной (хотя и при слабее выраженных полярных эффектах) реакции димери-зации циклопентадиена в газовой фазе, а также в полярных и неполярных растворителях наблюдаются лишь небольшие изменения Е и А ц весьма незначительные изменения удельной константы скорости. Использованные Бенсоном для этой реакции данные приведены в работе Вассермана [5]. Более значительное влияние природы растворителя было обнаружено в случае реакции первого порядка декарбоксилирования малоновой кислоты. Цитируя работы Халла [6] и Кларка [7], Бенсон указывает, что для этой реакции, за исключением данных Халла [6] для воды в качестве растворителя при pH = 9, наблюдаются вариация энтальпии активации в интервале 9 ккал и изменение удельной константы скорости примерно в 12 раз. Более [c.135]

    Изучено влияние растворителя и заместителей в 2,4-динитрозорезорцинах и непредельн -,1х каучуках на скорость реакции. Проведена кинетическая обработка экспериментальных данных, определены константы скорости реакции, энергии активации, энтропии и энтальпии активации в зависимости от строения нитрозосоединения, каучука и растворителя. Высказано предиоложсиие, что реакция протекает по механизму псевдо-Дильс-Альдеровско1 о присоединения. [c.148]

    Влияние природы растворителей и температуры на стабильность галогенбензофенонов было исследовано электрохимическими методами [7, 8]. В табл. 8.2 представлены характерные данные согласно этим данным, устойчивость анион-радикалов зависит от природы растворителя и уменьшается в следующем ряду ацетонитрил >ДМФ>аммиак. Аналогичная зависимость от природы растворителя приводилась для галогеннитробензолов, где уменьшение стабильности отвечает следующему ряду ДМСО>ацетонитрил>ДМФ [9]. Параметры Аррениуса указывают на то, что различие в устойчивости анион-радикалов в разных растворителях определяется изменением энтальпии активации, которая в некоторой степени компенсируется различиями в предэксионенциальном множителе. [c.193]

    Эти примеры, выбранные из многочисленных экспериментальных данных, показывают пользу качественной теории Хьюза — Ингольда о влиянии растворителей на скорости реакций. Однако следует отметить, что эта теория имеет некоторые недостатки. Ее широкому применению мешает то, что она учитывает лишь электростатическую ориентацию молекул растворителя около растворенных частиц и пренебрегает специфической сольватацией (например, обусловленной водородными связями), важной как раз для 5iv-peaкций. Далее, теория Хьюза — Ингольда рассматривает влияние растворителя только на энтальпию активации АЯ+, причем считается, что изменения энтропии при сольватации малы по сравнению с изменениями энтальпии. Но при повторной сольватации во время образования активированного комплекса энтропия активации может стать отрицательной из-за дальнейшего уменьшения степеней свободы относительно исходного состояния. Например, энтропия активации реакции 5лг2 между анилином и ш-бромацетофеноном равна в бензоле —56, в ацетоне —39 и в этаноле —28 кал град-моль) [5]. Отрицательная энтропия активации замедляет реакцию так же, как и высокая энтальпия активации. [c.65]

    Теперь хотелось бы обратить внимание читателя на некоторые противоречия в обсуждении как эффектов растворителей, так и эффектов заместителей. Б соответствующих главах мы начинали обсуждение этих эффектов в термодинамических терминах свободной энергии. Однако затем интерпретация основывалась на электронных представлениях, т.е. на энергии активации при этом делалбсь различие между акцепторными растворителями и акцепторными заместителями, с одной стороны, и донорными растворителями и донорными заместителями с другой. В действительности изменения энтальпии не обязательно доминируют в выражении для свободной энергии активации. Следует напомнить, что, согласно уравнению (5-11), влияние изменения энтропии также может быть весьма существенным  [c.219]

    Рассматриваемые реакции диенового синтеза необычны тем, что кинетику и равновесие можно изучить как в газовой фазе, так и в полярном или неполярном растворителе. Эта область исследований еще не полностью разработана, так что предстоящее обсуждение нескольких обычно не очень точно выполненных измерений равновесия следовало бы рассматривать лищь как введение в эту проблему. Необходимо систематическое исследование влияния химических условий на изменения энтальпии и энтропии и их связи с энергией активации и предэкспоненциальным фактором уравнения Аррениуса. Было бы также интересно измерить теплоемкости веществ, участвующие в газообразной реакции Дильса — Альдера, для того, чтобы лучше понять причины изменений энтропии и оценить вклады колебательных сумм состояний. [c.54]

    В общем случае влияние растворителя на скорость реакции может определяться той величиной (ЛОсольв х+ и ДОсольв а, в), которая более резко изменяется. Если активированный комплекс действительно подобен исходной молекуле, сольватация обеих частиц меняется сходным образом. На рис. IV. 11 показано изменение энтальпий сольватации и активации в водно-этанольных смесях для реакции сольволиза иодистого диметил-грег-бутилсульфония, протекающего по механизму 5л-1  [c.159]


Смотреть страницы где упоминается термин Растворителя влияние энтальпию активации: [c.184]    [c.160]    [c.93]    [c.169]   
Основы химической кинетики (1964) -- [ c.487 ]




ПОИСК





Смотрите так же термины и статьи:

Энтальпия активации



© 2025 chem21.info Реклама на сайте