Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции поиск

    Фундаментом прогнозирования активности, селективности и других специфических свойств катализатора должна стать детальная микроскопическая теория гетерогенного катализа, опирающаяся на современные представления квантовой химии и теории твердого тела. Описывая элементарные акты реакций и превращений вещества на поверхности реального катализатора, такая теория в принципе дает возможность не только в полной мере понять механизм, кинетику и термодинамику катализа, но и предсказать каталитическую способность того или иного металла, полупроводника, диэлектрика в конкретной химической реакции. Однако незавершенность теорий катализа не позволяет однозначно предсказывать оптимальный состав промышленных катализаторов и другие их характеристики для действующих и проектируемых производств. До сих пор решение проблемы подбора катализаторов опирается в значительной мере на эмпирические подходы, сопряженные с большими затратами рутинных форм труда. Так, в поисках первого катализатора для синтеза аммиака было исследовано около 20 тыс. различных веществ [1, 2]. В 1973 г. число известных органических соединений оценивалось в 6 млн. Ежегодно только в нашей стране синтезируется более 40 тыс. новых химических соединений. Таким образом, разработка научно обоснованных целенаправленных стратегий поиска катализаторов представляет актуальную проблему современного катализа. Актуальность проблемы подтверждается еще и тем, что коло 90% промышленных химических и нефтехимических производств ведется с применением катализаторов. [c.56]


    В целом математическая модель Моно, вызвавшая появление большого числа экспериментальных исследований зависимости скорости роста популяции от концентрации субстрата в питательной среде, а также теоретических представлений в этой области, показала, с одной стороны, важность учета субстрата при анализе роста популяции, а с другой — невозможность сведения закономерностей процесса только к влиянию одного субстрата, да и еще учитываемого в простой схеме ферментативной реакции. Поиски аналогий между кинетикой сравнительно простых ферментативных реакций, проходящих в бесструктурных системах, и зависимостью протекания внутриклеточных биосинтетических процессов от концентрации внеклеточного субстрата хотя и заманчивы, но требуют осторожности. [c.80]

    На основе материала настоящей работы мы попытаемся в самых общих чертах набросать картину развития одного из основных направлений кинетики органических реакций — поисков связи между строением и реакционной способностью молекул. [c.135]

    В настоящее время очень много количественных определений неорганических ионов основано на их взаимодействии с органическими реактивами. Сущность этого взаимодействия может быть весьма разнообразна, и в каждом отдельном случае эффект определения зависит от значительного числа факторов. Всякое исследование, имеющее своей целью установление оптимальных условий указанных определений, повыщение чувствительности и избирательности соответствующих реакций, поиски новых, более совершенных реактивов и т. д., в конечном итоге сводится к изучению влияния этих факторов. Данные о них приводятся в многочисленных статьях и монографиях, и поэтому, естественно, имеют несколько отрывочный характер. Некоторое представление об этих факторах в более собранном виде можно получить при ознакомлении с монографией Кульберга [1]. Для характеристики обилия этих факторов ниже приводим их перечень, не ставя перед собой цель дать его с исчерпывающей полнотой. [c.149]

    Тихонова — поясняют понятие микроконцентрации элементов и соединений в природе и технике, описывают современные методы её определения, сущность явления катализа, наиболее распространенные в анализе каталитические реакции, поиски новых индикаторных реакций. Большое внимание уделено кинетическим методам анализа, перспективам того нового направления аналитической химии. [c.2]


    Мы потратили довольно много времени на этот простой пример, но, как бы он ни был прост, он иллюстрирует характер проблем, возникающих при оптимальном расчете. Мы ставили задачу в форме поиска минимального значения суммарного времени контакта прп фиксированной степени превращения, но это эквивалентно задаче достижения максимальной степени превращения при фиксированном суммарном времени контакта. В обоих случаях должно иметься ограничение, поскольку, если бы требуемая конечная степень полноты реакции не была задана, мы могли бы сделать время контакта равным нулю, положив а если бы во втором случае [c.196]

    На стадии лабораторных исследований проверяются основные предположения, сделанные на этапе поиска изучаются условия протекания реакций, кинетика реакций, выход продукта на сырье, выбор растворителей, катализаторов и т. д. Большое значение на этом этапе приобретают методы статистики. Они 16-14 233 [c.233]

    Конечной целью исследований каталитических процессов является разработка рациональных методов выбора наилучшего катализатора для каждой конкретной реакции. По-видимому, катализатор всегда участвует в реакции, образуя более или менее устойчивые промежуточные соединения, которые в свою очередь участвуют в дальнейших реакциях или разлагаются с образованием непосредственно конечных продуктов. Поэтому поиск нового катализатора можно начать с таких веществ, относительно которых можно предполагать, что они будут давать с реагентами промежуточные соединения. Однако вряд ли этот выбор будет окончательным, поскольку изучение катализа полно неожиданностей и промежуточное взаимодействие может быть слишком незначительным и скоропреходящим. [c.311]

    Процесс активации путем соударений является процессом в основном бимолекулярным, и скорость любой реакции, активируемой за счет соударений, казалось бы, должна быть прямо пропорциональна квадрату давления (или концентрации). Между тем скорость мономолекулярной реакции пропорциональна первой степени давления (или концентрации). Следовательно, активация при мономолекулярных превращениях осуществляется не в результате соударений, а за счет какого-то другого процесса. Поэтому первые попытки теоретически объяснить мономолекулярные реакции сводились к поискам механизма активации (без учета молекулярных столкновений в реагирующей системе). Было, например, сделано предположение, что активация [c.162]

    В табл. 16 приведены также величины Кр и Xip для реакций алкилирования при 300, 500 и 600 К, поскольку эти реакции проводят при невысоких температурах. До 500 К алкилирование может протекать практически с полным израсходованием реагента, но при 600 К термодинамические ограничения снижают возможную конверсию до 73—98%. В настоящее время ведется активный поиск гетерогенных катализаторов алкилирования, проявляющих активность при сравнительно высоких температурах. Поэтому целесообразно использовать невысокие концентрации олефина в исходной смеси. [c.130]

    Этот пример показывает, почему химикам интересно знать, самопроизвольна ли каждая реакция, т.е. иметь представление о ее естественной тенденции к осуществлению. Если изучаемая химическая реакция является самопроизвольной, но медленной, можно попытаться ускорить ее протекание. Чаще всего для этого достаточно повысить температуру или подобрать катализатор. Действие катализаторов будет подробнее обсуждаться в гл. 22. Но вкратце уже сейчас можно определить катализатор как вещество, которое помогает самопроизвольной реакции протекать быстрее, обеспечивая ей более легкий путь. При достаточно высокой температуре бензин быстро горит в воздухе. Роль искры зажигания в автомобильном двигателе заключается в создании исходной высокой температуры. Выделяющееся в результате реакции тепло поддерживает высокую температуру, необходимую для дальнейшего протекания реакции. Но если подобрать подходящий катализатор, бензин будет соединяться с кислородом и при комнатной температуре, потому что в естественных условиях реакция между этими веществами является самопроизвольной, хотя и медленной. Однако никакой катализатор никогда не заставит соединяться диоксид углерода и воду с образованием бензина и кислорода при комнатной температуре и умеренных давлениях, и только невежественный химик потратит время на поиски такого катализатора. Короче говоря, понимание различия между самопроизвольными и несамопроизвольными реакциями помогает химику увидеть границы возможного. Если реакция возможна, но пока еще не найден путь ее осуществления, целесообразно заниматься поисками таких путей. Если же процесс принципиально невозможен, не следует тратить на него время. [c.169]

    Скорость разложения NO чрезвычайно низка, хотя эта реакция и является самопроизвольной. Один из подходов к решению проблемы фотохимического смога заключается в поиске катализатора реакции [c.196]

    Химику важно знать, протекает ли интересующая его реакция самопроизвольно в термодинамическом смысле. Если она осуществляется медленно, но самопроизвольно, можно подобрать какие-либо средства, скажем катализаторы, которые ускорят процесс. Если же реакция не является самопроизвольной, поиск ее ускорителя бессмыслен с самого начала чтобы осуществить желаемую реакцию, нужно изыскивать другие средства.  [c.6]


    Можно привести много других примеров самопроизвольно протекающих процессов, которые сопровождаются поглощением теплоты. Однако невозможно определить положение равновесия путем поиска минимума энтальпии. Энтальпия не является мерой способности реакции к самопроизвольному протеканию. [c.68]

    Основываясь на расчетах электронной структуры молекул и твердых тел, можно выделить три направления поиска эффективных катализаторов 1) анализ протекания химической реакции в силовых полях, создаваемых поверхностями испытуемых катализаторов 2) сравнительная характеристика электронной структуры сорбционных комплексов для разных катализаторов 3) при [c.60]

    Главы 1—4, за исключением раздела Многомерный прямолинейный и одномерный криволинейный поиски путей реакции , написаны Ю. М. Жоровым авторами этого, раздела являются Г. М. Панченков- и О. В, Корпусов. Остальные разделы подготовлены авторами совместно. Отдавая себе отчет в том, что предлагаемый материал не является совершенным, авторы будут благодарны за все советы и замечания по содержанию книги. [c.6]

    Отмечено также, что чем ниже давление, тем вьпие должна быть начальная температура для достижения одинаковой степени превращения. Например, если при 16 МИа начальная температура 360 С, то при 7 МПа требуется 375 °С. Это, в свою очередь, усугубляет повышенное коксообразование, что ведет к увеличению дезактивации катализатора. Проблема снижения рабочего давления в реакторах процессов каталитического гидрооблагораживання является предметом многочисленных исследований и поисков. Несмотря на множество патентов на процессы с пониженным давлением, в литературе до сих пор пока нет публикаций, свидетельствующих об их практической реализации. Для рассматриваемых процессов, реакции которых протекают с очень большими диффузионными осложнениями, влияние давления практически равнозначно проблеме создания эффективного катализатора, стойкого к дезактива--ции отложениями углерода и металлов и обладающего повышенной селективностью в основньгх реакциях гидрогенолиза гетероатомных соединений. [c.67]

    Хорошо известным является то положение, что развитие науки происходит не путем монотонного наращивания запаса знаний, т. е. не кумулятивно, а посредством смены двух фаз, резко отличных друг от друга как по темпам, так и по способам генерирования новой научной информации. В соответствии с марксистской концепцией развити.ч науки эти фазы обычно называют революционной и эволюцио1шо11 илн интенсивной и экстенсивной. Если говорить конкретно только о химии, то одной из отличительных черт эволюционной фазы ее развития является решение различных тактических задач приемущественно экспериментального характера в рамках готовой гипотезы или теории, К тактическим задачам относятся, например, исследования кинетических параметров реакций, поиск оптимальных термодинамических условий осуществления процессов, органический синтез новых соединений в русле теории химического строения и т. д. [c.7]

    Однако колориметрическое определение бериллия несколько осложняется отсутствием достаточно избирательных цветных реакций, поиски которых в последние годы ведутся весьма интенсивно. В результате этих работ описаны методы определения бериллия, использующие арсеназо 35, 361, альберон (хромазурол 5) 137, 38], кислотный хром-синий ]< 139], эрио-хромцианин 140, 41], 8-оксихинальдин [42, 431 и др. Синтезы новых органических реагентов, содержащих характерные для бериллия атомные группировки, ведутся в соответствии с воззрениями проф. В. И. Кузнецова. Благодаря систематическому изучению 144] многочисленных производных хромотроповой кислоты с общей формулой К - N N ОН ОН [c.82]

    Хотя опыты изменения органических остатков под действием микроорганизмов, проведенные в лаборатории при атмосферном давлении (Им-шенецкий [46]), показали, что основная масса органических отложений — целлюлоза — превращается в вещества, из которых под влиянием глин нефти не образуются, а именно в метан, водород, этиловый спирт, уксусную кислоту и другие легкие продукты, преобразующиеся под в лиянием глин в газы и смолы, однако вполне очевидно, что углерод и водород целлюлозы не могли не принять участия в образовании нефти, а следовательно, наряду с микроорганизмами, на целлюлозу должны были влиять еще какие-то факторы, которые приводят к увеличению молекулярного веса продуктов реакции. Поиски этих факторов показали, что совместное влияние глин и давления (пока доведенного до 10 атм.) приводит к изменению реакций бактериального превращения целлюлозы. [c.400]

    Если в производстве предполагается изменение некоторых параметров с течением времени, то исследование их влияния на технологические процессы должно являться обязательной составной частью разработки процесса. И исследование это начинается уже на лабораторной стадии. В этом случае обязателен тщательный анализ потоков, причем особое внимание следует уделять поиску незначительных примесей, а воздействие любых выявленных побочных продуктов на скорости реакций и качество конечных продуктов надлежит исследовать на синтезироваи-Н111Х смесях с резко повышенным содержанием побочных продуктов. Благодаря этому, можтю будет установить максимально допустимую концентрацию и разработать системы удаления нежелательных примесей. [c.234]

    Относительная сложность определения детонационной стойкости бензинов на одноцилиндровых моторных установках, полноразмерных двигателях и автомобилях стимулировала поиски более простых лабораторньк методов оценки октановых чисел бензинов. Удачным и надежным методом является лабораторный метод Монирекс [40]. Метод основан на измерении скорости реакций окисления бензина, предшествующих детона- [c.39]

    В зарубежной литературе последних лет появились ряд публикаций, посвященных вопросам поиска оптимальной поровой структуры катализаторов для процессов каталитического гидрооблагораживання нефтяных остатков с применением математических методов, основанных на принципах диффузионной кинетики [60, 61, 62]. Наиболее интересные результаты получены на баае развиваемых в последнее время представлений о протекании основных реакций в режиме конфигурационной диффузии. Учитывая большое влияние на эффективность используемых катализаторов накопления в порах отложений кокса и металлов, необратимо снижающих активность катализаторов, наибольшее внимание уделяется анализу закономерностей изменения физико-химических свойств гранул катализатора в процессе длительной эксплуатации. В качестве примера рассмотрим результаты анализа влияния размера пор катализаторов на скорость деметаллизации нефтяных остатков [60]. Авторы предложили следующую зависимость для определения скорости деметаллизации с учетом физических свойств катализатора и времени его работь  [c.83]

    Подбор значений кинетических констант, наилучшим образом удовлетворяющих экспериментальным данным, — задача трудная во всех тех случаях, когда реальный процесс представляет собой систему нескольких или многих параллельно и последовательно текущих реакций. К сожалению, именно эти случаи наиболее типичны для процессов органического синтеза. Безусловно, надежнее и быстрее проводить подбор констант на цифровых вычислительных машинах путем минимизации суммы квадратов отклонений опытных и расчетных данных одним из методов направленного поиска при планировании эксперимента (см. книгу В. В. Налимова стр. 159). Следует отметить, что выбор кинетической схемы и значений кинетических констант должен производиться на основе химико-математического анализа системы. — Доп. ред. [c.36]

    Выбор способа проведения каталитического гидрооблагораживання в условиях лабораторной или пилотной установки в значйтельной мере зависит от того, какова цель исследования - поиск новых катализаторов, изучение кинетики основных реакций, испытание катализаторов, выбранных для промьшленной реализации, изучение дезактивации его. Чтобы оценить эффектипность катализатора, необходимо знать его активность и селективность, а также продолжительность его работы при получении продукта с заданными основными показателями качества. (Определение последней характеристики является наиболее длительной, трудоемкой и дорогой операцией и ее, как правило, проводят после завершения всех исследований в относительно кратковременных опытах. [c.90]

    II 400—450 обработанное щелочью железо может быть катализатором для синтеза продукта, подобного полученному в лабораториях Баденской анплиновой и содовой фабрики при использовании подщелоченного кобальта. Они нашли также, что при снижении давления со 100—150 ат до 7 ат доля углеводородов в продукте реакции значительно возрастает, а доля кислородсодержащих соединений соответственно падает. Однако произнодительность катализатора при синтезе под давлением 7 ат резко сния ается. Эти наблюдения послужили исходным толчком для интенсивных поисков катализаторов, более активных в синтезе при невысоких давлениях. Большинство катализаторов, испытанных Фишером и Троп-шем в 1925—1930 гг., обладали низкой активностью и были нестабильны [c.519]

    Катализаторы. Несмотря на изучение конверсии парафиновых углеводородов до соответствующих моноолефинов многими исследователями, в период с 1919 по 1930 г., удовлетворительного катализатора реакции найдено не было. Применение Фреем и Гуппке [17] для изучения равновесия этих реакций катализатора из окиси хрома определило основное направление поисков промышленных катализаторов. Фрей и ГуппКе установили возможность получения путем дегид  [c.194]

    Как уже отмечалось выше, одним из наиболее ранних применений реакции алкилирования ароматических углеводородов в нефтяной промышленности было получение антиокислителей для бензина. Хотя даже предельные углеводороды, нашедшие в настоящее время применение в качестве авиационных топлив, ухудшают свои качества при хранении, однако впервые возникла проблема борьбы с окисляемостью только в связи с открытием термического крекинга, когда появились затруднения, обусловленные порчей цвета продукта и процессами смолообразования. В поисках эффективных антиокислителей многие исследователи пришли к алкилированным фенолам. В качестве ингибиторов для авиационных бензинов алкилированные фенолы пашли в настоящее время почти универсальное нрименение для моторных бензинов также считается необходимым применение ингибиторов фенольного или амипного типа. [c.507]

    В поисках более термоустойчивых соединений, чем диалкилдитиофосфаты цинка, но не уступающих им по эффективности действия, и равных по термоустойчнвости диарилдитиофосфатам цинка, но более эффективных антиокислительных присадок, за рубежом много внимания уделяют исследованию модифицированных дитиофосфатов цинка. К перспективным соединениям этого типа можно отнести дитиофосфаты цинка, в которых алкильный радикал заменен на пространственно затрудненные фенолы [28], арил-производные продуктов реакции эфиров дитиофосфорной кислоты с соединениями бора [29, 30], аддукты дифенилдитиофосфорной [c.161]

    В процессе применения разработанного ранее "Способа восстановления каталитической активности катализаторов риформинга", предназначенного для восстановления каталитической активности отравленных серой катализаторов, авторами был отмечен ещё один эффект этого способа. Сущность метода заключается в залповой подаче дистиллированной воды в зону реакции той ступени риформирования, катализатор которой подвергся отравлению серой. В ходе промышленных испытаний было замечено некоторое увеличение активности катализатора (октанового числа риформата и концентрации водорода в циркулирующем газе) при воздействии на него воды в обычных рабочих условиях, т.е. когда уровень серы в гидрогенизате соответствовал норме. Было сделано предположение о восстановлении части "молодого" кокса при выполнении способа и начат поиск более эф-фективнхы активаторов риформинга, что в результате привело к модификации способа и реализации его с помощью специально синтезированной гидроактивированной воды. [c.76]

    Что же последует за синтезом трансурановых элементов Появятся ли новые радиоактивные и очень краткоживущие частицы, подобные элементам с порядковыми номерами от 97 до 105 В настоящее время существует мнение, что есть возможность достичь новой области устойчивости, которая может включать даже нерадиоактивные элементы. Расчеты, основанные на существующих моделях оболочечного строения ядра, заставляют предположить, что элемент ffJXX со 114 протонами и 184 нейтронами (оба эти числа являются магическими в оболочечной теории адра) должен представлять собой островок устойчивости среди области неустойчивости. На рис. 23-6 дано трехмерное изображение графика, представленного на рис. 234 вдоль вертикальной оси отсчитывается мера устойчивости ядер. Если удастся найти средства получения элементов в окрестности i xx, это должно привести к целому набору сравнительно долгоживущих ядер. Поиски в указанном направлении предпринимались в Беркли в числе возможных реакций рассматривались такие  [c.423]

    Реакция алкилироваиия изопарафинов олефинами была впервые открыта и изучена в Советском Союзе, в Государственном институте высоких давлений, в 1932 г. В качестве катализатора применяли хлористый алюминий, промотированный хлористым водородом [1]. Это открытие положило начало многочисленным исследованиям реакции алкилироваиия я поискам во можных катали аторов. [c.5]

    Система ДИАХИМ [53] (Диалоговая система для химических научных исследований) была разработана в МГУ в качестве логического продолжения системы АСУМ МС (Автоматизированная Система Управления Моделями Молекулярных Систем). Система ДИАХИМ в отличие от американских систем сразу была ориентирована на работу именно с пространственными трехмерными моделями молекулярных систем. Особенностью этой системы является то, что задача автоматизации химических исследований ставится здесь как задача дискретного оптимального управления. При таком подходе все поисковые задачи (а сннтез заданного химического вещества в конечном счете — тоже поиск последовательности химических реакций, приводящих к нужному результату) оказываются тождественными по своей структуре и различаются лишь видом конкретного функционала задачи управления и физическим смыслом фазовых и управляющих переменных. [c.54]

    Формализация процессов выработки и принятия решений оператором. До сих пор подходы к формализации процессов принятия человеко-машинных решений при управлении сложными объектами базировались в основном на теоретико-игровом, семиотическом принципах, методах теории идентификации и планирования эксперимента [206]. К недостаткам таких методов применительно к системам принятия решений можно отнести трудоемкость априорного исследования всех вариантов поведения сложных объектов управления, качественный характер получаемых решений при семиотическом подходе, непредставимость оперативной статистики по реакциям объекта на управляющие воздействия в реальном масштабе времени и т. п. На этом фоне особенно перспективна концепция человеко-машинного управления. Человеко-машинные системы обладают собственными знаниями , что позволяет (автоматически или путем общения с человеком) находить управляющие решения или вырабатывать и обосновывать логические факты, не заложенные априори, вести диалог с ЛПР. Такие человеко-машинные системы принято относить к классу систем принятия решений с интеллектуальным механизмом автоматического поиска (СПРИНТ). [c.343]

    Т. М. Панченков и О. В. Корпусов [14] разработали более простой метод иахождения констант скоростей сложных реакций. Они показали, что если прямолинейные пути реакции найдены, можно избежать решения матричного уравнения (2.50) при поиске относительных констант скоростей. При прямолинейном пути реакции между концентрациями /- и, например, 1-го компонентов существует линейная зависимость  [c.42]


Смотреть страницы где упоминается термин Реакции поиск: [c.87]    [c.109]    [c.87]    [c.372]    [c.7]    [c.258]    [c.131]    [c.310]    [c.53]    [c.177]    [c.194]    [c.209]    [c.42]    [c.290]   
Автоматизированные информационные системы для химии (1973) -- [ c.231 ]




ПОИСК





Смотрите так же термины и статьи:

Алгоритмизация поиска путей синтеза с использованием известных реакций

Классификации задач поиска информации о реакциях

Линеаризация уравнений скоростей реакций при поиске констант

Методы поиска на ЭВМ значений констант скоростей химических реакций

Многомерный прямолинейный и одномерный криволинейный поиски путей реакции

Поиск переходных состояний и анализ маршрута реакции фурфурола с аммиаком Корнилаева, Е. В. Ключарева, И. А. Мельницкий, Е. А. Кантор, Хабибуллин

Поиск реакций, классификация задач

Стереоселективность реакций фотоциклоприсоединения поиск антиароматических интермедиатов

Шаг поиска



© 2025 chem21.info Реклама на сайте