Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парафин получение смазочных масел

    Экстрагированием горючего сланца нонаном под давлением при 300° С выделен продукт, подобный по своим качествам горному воску, полученному из бурых углей. При экстрагировании фурфуролом смолы полукоксования горючего сланца получены парафины и смазочные масла. [c.240]

    Работ по природе аморфных парафинов (церезинов) в нефти имеется очень мало [20—25]. Скорей всего этот продукт, полученный из высококипящих и остаточных масел, состоит в значительной степени из нормальных и изопарафинов, пластифицированных твердыми или полужидкими циклическими углеводородами или соединениями с циклическими ядрами. Последние имеют углеводородные цепи, близкие по составу с большинством жидких углеводородов в смазочных маслах [26]. Относительные количества различных типов соединений меняются для разных нефтей, окончательного ответа мы не получим, пока исследователь не сможет проанализировать все 100% взятого вещества. [c.515]


    Перегонка нефти при атмосферном давлении удаляет из нее бензин и дистиллятные компоненты топлива, оставляя мазут, который содержит смазочные масла и гудрон. Дальнейшая перегонка под вакуумом дает так называемые "вакуумные дистилляты" в верхней части колонны и гудрон в виде остатка. Простая обработка серной кислотой, известью и отбеливающей глиной превращает дистилляты в приемлемые по качеству продукты с низким индексом вязкости. Для производства продуктов с высоким и средним индексом вязкости необходимо использовать определенные виды экстракции растворителями, отделяющими окрашенные, нестабильные и имеющие низкий индекс вязкости компоненты. На конечном этапе из масла удаляют парафины путем его растворения в метилэтилкетоне (МЭК), охлаждения и фильтрации для получения масел с температурой застывания от минус 10°С до минус 20°С. Изготовитель масла может подвергнуть его финишной гидродоочистке для удаления сфы, азота и окрашивающих составляющих. Этот процесс показан в виде диаграммы на следующей странице. [c.29]

    В качестве сырья при получении смазочных масел используются вакуумные дистилляты ипи деасфальтированные растворителем нефтяные остатки. Ароматические углеводороды, по крайней мере частично, гидрируются в циклопарафины, которые затем подвергаются гидрокрекингу с образованием удаляемых более легко кипящих продуктов, ипи гидрируются в смазочные масла, температура кипения которых лежит в заданных пределах. Нормальные парафины (воск) в основном не претерпевают изменений, и их необходимо удалить /3/. Процесс ведут при давлении 70-200 атм, температуре 350-400 , с циркуляцией 1000 объемов водорода на 1 объем углеводородного сырья. Одним из катализаторов является сульфид никеля - сульфид вольфрама, нанесенные на алюмосиликат однако разработано еще несколько процессов, на которые имеются лицензии и каждый из которых имеет свой собственный катализатор /1, 4, 5, 15, 27/. [c.270]

    И жирно-нафтеновых углеводородов, у которых на долю ароматических и нафтеновых циклов падает 25% углеродных атомов, а 75% углеродных атомов — на долю парафинов (вероятно, в виде боковых алкильных цепей). В смазочном масле с индексом вязкости 30, полученном из нефти нафтенового основания, доля углеродных атомов боковых парафиновых цепей составляет 45%, а 55% падает на долю нафтеновых и ароматических циклов. В обоих случаях боковые насыщенные цепи, вероятно, разветвлены. [c.30]

    Путем многостадийных химических процессов из жирового сырья возможно получение высокостабильных синтетических масел. Вначале растительные масла гидролизуют с образованием глицерина и жирных кислот. Из глицерина получают аллиловые спирты, которые затем конденсируются с метилированным бензолом. Конечный продукт представляет собой синтетическое смазочное масло. Образующиеся после гидролиза растительного масла кислоты обрабатывают с получением парафина, который при последующем взаимодействии с метилированным бензолом также образует синтетическое масло. [c.246]


    Чтобы получить высококачественную серу, необходимо на заводе иметь несколько различных установок по удалению и получению серы. Такие установки наиболее эффективно работают, когда перерабатывается высокосернистая нефть. Производство масел и парафинов имеется не на каж-до.м заводе, что обусловлено качеством перерабатываемой нефти. Чтобы получить высококачественные масла, необходимо вакуумные фракции нефти направить на установки экстракции и депарафинизации для получения базовых масел, которые затем смешивают с присадками, чтобы получить товарные смазочные масла. [c.6]

    Парафин, получаемый как побочный продукт гидрогенизации, использовался в производстве синтетических жирных кислот или синтетических масел методами, описанными выше. Смазочные масла, полученные с установок гидрогенизации, представляли собой дистилляты относительно малой вязкости и применялись как веретенные и машинные масла или как основа для получения более вязких автомобильных масел. Табл. 79 содержит характеристику типичных масел, полученных гидрогенизацией смолы. Эти масла были весьма невысокого качества и, вероятно, их производство оправдывалось только огромной недостачей масел в Германии в период войны. [c.256]

    Первая промышленная установка пущена в эксплуатацию в 1965 г. в Тринидаде. На ней получают более 70 тыс. т нормальных парафинов в год. Их чистота превышает 99%. В основном это углеводороды Сю—С д, извлекаемые из керосиновых и газойлевых фракций и применяемые в качество детергентов и пластификаторов, а также в качестве сырья для получения спиртов и других химических производных, топлива, добавок к смазочным маслам, растворителей. [c.456]

    Термическое хлорирование расплавленного парафина и последующая конденсация монохлоридов с нафталином по Фридель-Крафтсу для получения парафлоу 1% добавка парафлоу снижает температуру застывания смазочного масла на 19,5° [c.373]

    Конденсация масел с галоидирован-ными парафинами, имеющими длинные углеродные цепи температура ниже температуры разложения масла реакцию желательно проводить в отсутствии (кислорода присутствие хлористого водорода дает лучший цвет и лучшие выходы полученное масло имеет повышенную устойчивость против окисления, улучшенные смазочные свойства и индекс вязкости смазочное масло можно с помощью селективных растворителей разделить на бедную и богатую парафином части, первая, менее ценная часть, может быть улучшена [c.424]

    Трубку можно заменять. Описанный метод выделения каждой фракции обладает тем преимуществом, что при его применении удаляется большое количество газа-носителя, сопутствующего образцу тем самым чувствительность определения при последующем исследовании на масс-спектрометре не снижается. Загрязнение образца происходит лишь вследствие попадания в него следов неподвижной фазы, котораяобладаетопределенной летучестью, и потому медленно, но непрерывно выносится из колонки. Адлард и Уитхем [7] рассмотрели разделение узких фракций парафина и смазочного масла на более узкие фракции при температуре 295° с последующим исследованием на масс-спектрометре. Во всех трех полученных фракциях имелись следы силикона, представляющего собой неподвижную фазу колонки. Он был удален перкаляцией каждой фракции в растворе изооктана на силикагеле, и лишь затем фракции исследовались на масс-спектрометре. В состав фракций соответственно входили парафиновые [c.198]

    Очень важные выводы о структуре колец в смазочных маслах сделаны Россини и сотрудниками [16, 23, 27] в результате обширных исследований нефти Понка. Масляное сырье было получено из сырой нефти в количестве 10%, твердый парафин бш удален при температуре —18° хлористым этиленом. После удаления парафинов продукт был экстрагирован при 40° жидкой двуокисью серы. Рафинат (нерастворимый в двуокиси серы) был обработан силикагелем для получения части продукта, бесцветного как вода, и части продукта, адсорбированного силикагелем. Экстракт после обработки двуокисью серы был дополнительно обработан при температуре —55° петро-лейным эфиром, при этом получились и продукт, растворимый в петро-лейном эфире, и асфальтеповая часть, остающаяся в растворе двуокиси серы.  [c.30]

    В месторождениях прибрежной низменности Мексиканского залива (область Голфа) в течение 50 лет добывается нефть промежуточно-нафтенового основания, большого удельного веса, с низким содержанием бензиновых фракций, с малым содержанием или без твердых парафинов и с высоким выходом дистиллятных смазочных масел с большим содержанием нафтеновых углеводородов. Тяжелые фракции и остатки часто содерн ат значительное количество асфальтеновых веществ и используются как котельное топливо [17, 34, 41]. Существуют, однако, исключения так, иногда нефть из более глубоких горизонтов обладает малым удельным весом, содержит много бензиновых фракций и некоторое количество серы [33, 34]. Эта нефть представляет собой сырье дпя получения прямо генного бензина с высоким октановым числом, являющегося компонентом для смешения. Смазочные масла, свободные от твердых парафинов и имеющие низкую температуру застывания, обладают значительными преимуществами, пока не будут разработаны методы дспарафинизации высоковязких фракций парафинистых нефтей. В 1952 г. в области Голфа было добыто 22%. всей добычи в США и 11% мировой добычи. [c.54]


    В Колумбии [21, Перу, Аргентине [32, 17а, 43] и Тринидаде в течение нескольких лет добывалось сравнительно мало нефти. Нефть Колумбии похожа на легкую нефть из долины Сан-Жоакин в Калифорнии. Содержание бензиновых фракций в этой нефти составляет около 10 %, отсутствие твер.цых парафинов позволяет получать из нес смазочные масла с низкой температурой застывания. Перуанская нефть обладает низким удельным весом, содержит более 40% бензиновых фракций и очень незначительные количества серы. Несколько продуктивных площадей имеется в Аргентине наиболее продуктивные месторождения дают тяжелую нефть промежуточного типа с содержанием бензиновых фракций не выше 10%. Другие месторождения дают болео легкие нефти среди них имеются нефти парафинового основания некоторые типы нефтей могут быть использованы для получения смазочных масел. В Тринидаде большинство добываемых нефтей смешанного основания и напоминают нефти Калифорнии. Бензин, получаемый из этих нефтей, обладает высоким октановым числом это согласуется с тем, что керосиновые дистилляты содержат такой высокий процент ароматических углеводородов, что требуется очистка экстракцией растворителями. Среди добываемых нефтей существуют некоторые различия, одна напоминает нефть из месторождения Понка Сити (Оклахома) с содержанием бензиновых фракций 32%. Все четыре страны вместе добывают около 2,0% мировой добычи. [c.56]

    Венецуэльский дистиллят смазочного масла, не содержащий парафинов, яв.чяется подходящим сырьем для получения смазочных масел среднего индекса вязкости он был подвергнут пятикратной периодической экстракции фурфуролом при 70° заключительной операцией явилась обработка силикагелем, В табл. 5 приведены выходы и свойства шести рафинатов, полученных таким путем. [c.390]

    В настоящей главе рассматриваются то химические свойства парафинов и циклопарафинов, которые пс вошли в предыдущие главы. В фи-зиологич( ском отношении парафины и циклопарафины, как правило, инертны и не оказывают раздражающего действия. Циклопропан применялся как анестезирующее вещество, концентрация же пропана, необходимая для оказания анестезирующего действия, слишком велика, чтобы его можно было использовать [9]. У рабочих, имеющих дело с парафином в процессе его получения, иногда развивается определенная форма рака, которая рассматривалась как профессиональное заболевание, одпако в настоящее время известно, что прямогонные и особенно крекинговые смазочные масла содержат небольшие количества веществ, которые раздражают кожу и являются канцерогенными [3]. Это справедливо также и в отношении высококипящих масел, получающихся в качестве побочного, продукта при каталитическом крекинге. Канцерогенное действие приписывается некоторым ароматическим углеводородам, содержащимся в этих маслах [23а]. Мягкий парафин, плавящийся приблизительно около 45°, широко применяется как защитное покрытие при лечении тяжелых ожогов [81]. На отсутствие токсического и раздражающего действия тщательно очищенного американского белого медицинского масла указывает широкое применение его в качестве механического слабительного средства. При производстве белого медицинского масла содержащие ароматические кольца углеводороды удаляются путем сульфирования крепкой дымящей серной кислотой. Непредельность таких масел также практически равна нулю (йодные числа, определенные по методу Хэнаса, меньше 1,0). [c.88]

    Для получения товарного смазочного масла применяются различные процессы очистки депарафинизация, жидкостная экстракция, избирательная абсорбция. При этом из масляных фракций удаляются парафин, неуглеродные соединения, конденсированная ароматика, и возможно, полициклановые углеводороды. [c.24]

    Производство масел из парафинистых нефтей. Содержание парафина в масляных фракциях обычных парафинистых нефтей увеличивается с повышением молекулярного веса фракций — приблизительно от 250 (нижний предел молекулярного веса смазочных масел) до 1000 и выше. Однако увеличение содержания парафина не носит характера прямой зависимости. Для того чтобы получить приемлемого качества смазочное масло, надо из соответствующих фракций удалить парафин. Ниже описаны процессы депарафинизации легких дистиллятов с получением очищенного твердого парафина и, в качестве остатка, — церезина и петрола-тума. Парафинистые дистилляты после депарафинизации имеют вязкость 8—15 СП при 38° С (что соответствует 50—75 сек но вискозиметру Сейболт-Упиверсал ). [c.493]

    Полученная кристаллическая масса поступает на рамный фильтрпресс, установленный в захолаживаемом помещении. Вытекающий из пресса дистиллят перерабатывается в смазочные масла, а полученный плав представляет парафиновый гач . Вымораживание и отжим могут быть проведены в одну ступень нри средней температуре — 10° С или для масел с высоким содержанием парафина — в две ступени при температурах +2° С и —18° С. Точка застывания депарафинированного масла зависит от температуры последней операции. Так как парафиновый дистиллят обычно содержит избыток газойля (разбавителя при депарафинизации), который должен быть отогнан при изготовлении смазок, отжатый дистиллят при отгонке концентрируется, и точка застывания полученной смазки будет несколько выше температуры отжима. Дистиллят, отжатый при —7° С, даст смазочное масло с температурой застывания около +2° С, а отжатый при —18° С — с температурой застывания —10° С. [c.523]

    Получение парафина или депарафинизация нефти составляет со-йершенно особенный раздел нефтепереработки. Она особенно близгл касается области приготовления смазочных масел. В самом деле депарафинизация проводится не только потому, что парафин находит себе на рынке самое широкое и разнообразное применение, но также и потому, что депарафинизация улучшает качество смазочных масел. В самом деле, присутствие твердого парафина повышает точку затвердевания фракций, отвечающих смазочным маслам. Поэтому все стремятся к удалению сырого парафина и максимальному форсированию производства парафина, ограниченному лишь емкостью рынка для этого продукта. [c.124]

    НИИ получения синтетической нефти из органических материалов. Особо значительными в этом отношении являются опыты К. Энглера и его учеников (1888 г.). Исходным материалом для своих опытов К. Энглер взял животные и растительные жиры. Для первого опыта был взят рыбий (сельдевый) жир. В перегонном аппарате К. Крэга при давлении в 10 аттг и при температуре 400°С было перегнано 492 кг рыбьего жира, в результате чего получились масло, горючие газы и вода, а также жир и разные кислоты. Масла было получено 299 кг (61%) уд. веса 0,8105, состоящего на 9/10 из углеводородов коричневого цвета с сильной зеленой флуоресценцией. После очистки серной кислотой и последующей нейтрализации масло было подвергнуто дробной разгонке. В его низших фракциях оказались главным образом предельные. углеводороды — от пентана до нонана включительно. Из фракций, кипящих выше 300° С, был выделен парафин с температурой плавления в 49—51° С. Кроме того, были получены смазочные масла, в состав которых входили олефины, нафтены и ароматические углеводороды, но в весьма небольших количествах. Продукт перегонки жиров под давлением по своему составу отличался от природных нефтей. К. Энглер дал ему название про- топеТролеум . Образование углистого остатка при этом не происходило, чему К. Энглер придавал особое значение, поскольку при перегонке растительных остатков (углей, торфа, древесины) в перегонном аппарате всегда образуется углистая масса. А так как в нефтяных месторождениях не наблюдается более или менее значительных скоплений угля, К. Энглер сделал вывод, что только животные жиры, без остатка превращающиеся в прото-петролиум, могли быть материнским веществом для нефти. Несколько позднее К. Энглер получил углеводороды из масел репейного, оливкового и коровьего и пчелиного воска [ ]. Штадлер получил аналогичные продукты при перегонке льняного семени. [c.311]

    Глубокие изменения, происходящие при гидрокрекинге, позволяют перерабатывать сырье различного состава и происхождения. Описано получение смазочных масел гидрокрекингом дистиллятных фракций нефти [89, 92], деасфальтированных нефтяных остатков и смесей дистиллятных фракций с деасфальтизатом [87]. Весьма хорошим сырьем являются парафины и гачи, поскольку в результате изомеризации парафиновых углеводородов получаются масла, имеющие индекс вязкости 110—150 [93—95]. [c.284]

    Весьма важным признаком является содержание в нефти парафина. Различают парафинистые нефти (парафина более 2—3%), слабопарафинистые и беспарафиновые. К парафинистым относятся нефти восточных районов и парафинистые грозненские и сурахапские нефти. Смазочные масла и дизельное топливо, полученные из парафинистых нефтей, должны быть подвергнуты депарафинизации. [c.30]

    Применение карбамида как вещества, образующего кристаллические комплексы с парафинами нормального строения, получило за последние годы широкое использование не только в научно-исследовательских учреждениях, но и на нефтеперерабатывающих заводах. В настоящее время уже имеется опыт практического применения этого метода в полузаводских масштабах для депарафини-зации дизельных и реактивных топлив, а также смазочных масел. Изложению этого опыта было посвящено несколько докладов на IV Международном нефтяном конгрессе в Риме в июне 1955 г. [80—82]. Применение указанного метода позволяет осуществить наиболее глубокую депарафинизацию средних и тяжелых дистиллятов нефти и получать низкозастывающие моторные топлива (реактивные и дизельные) и смазочные масла. Однако вопрос об экономической эффективности и технической целесообразности использования метода на практике будет решаться каждый раз в зависимости от конкретных условий. Применение избирательно действующих растворителей и холода для депарафинизации нефтяных дистиллятов с целью получения товарных нефтепродуктов в ряде случаев может оказаться более целесообразным, чем карбамидный метод. Для глубокой же дифференциации нефтяных углеводородов, предназначенных в качестве химического сырья, методы, основанные на реакциях комплексообразования отдельных групп углеводородов с карбамидом, тиокарбамидом и другими соединениями, несомненно, получат широкое распространение. [c.66]

    Одно из наиболее перспективных направлений применения процесса карбамидной депарафинизации — получение товарных нефтяных парафинов различных сортов, дальнейшее использование и переработка которых могут осуществляться по нескольким направлениям. В начале промышленного внедрения процесса карбамидной депарафинизации выделяемый мягкий парафин использовали в качестве сырья для термического крекинга. Несколько более квалифицированным можно считать использование его в качестве компонентов топлив для реактивных двигателей — когда после компаундирования выдерживаются требования по температурам застывания, помутнения и т. д. Наиболее правильно использовать мягкие парафины в нефтехимических производствах. Например, мягкие парафины после соответствующей очистки можно окислять до жирных кислот или жирных спиртов, крекировать или дегидрировать с получением непредельных соединений, сульфохлорировать с получением моющих веществ типа алкилсульфонатов, хлорировать с получением присадок к смазочным маслам, пластификаторов, средств пожаротушения и т. д. На основе мягких парафинов можно производить различные растворители без запаха, применяемые при приготовлении некоторых лаков, красок и защитных покрытий, а также в фармацевтической и парфюмерной промышленности. Можно также использовать мягкие парафины при производстве инсектицидов, не имеющих запаха, для сельского хозяйства и особенно для бытовых нужд, при изготовлении некоторых типографских красок горячей сушки и т. д. Однако шире всего парафины будут применяться при производстве синтетических жирных кислот и синтетических жирных спиртов, а также при производстве белково-витаминных концентратов. Целесообразность производства парафина различных сортов (в том числе мягкого) на базе существующих нефтеперерабатывающих заводов с последующей переработкой этих парафинов освещается в ряде работ [204, 205 и др.]. [c.131]

    Крупнокристаллический парафин удаляют из маловязких дестиллатов в одну или две стадии без разбавления дестиллатов растворителями. Первая стадия — выделение основной массы твердого парафина. Для этой цели нефтяную фракцию, например так называемый парафиновый дестиллат, охлаждают до температуры, например, 2—6°. Затем выкристаллизовавшийся твердый парафин отделяют от масла на обычных рамочных фильтрпрессах. Отфильтрованное масло обычно имеет еще высокую температуру застывания, например от 9 и до 15°. Для получения из него смазочных масел с более низкой температурой застывания необходимо провести вторую стадию депарафинизации — при более низкой температуре. Так, фильтрация того же дестиллата при —16° дает масло с температурой застывания до —15° при плотности 0,891—0,900 и вязкости ВУ50 = 2—2,3.  [c.367]

    Соляровые и смазочные масла широко применяются в технике первые в качестве моторного топлива, вторые для смазки механизмов. Вазелин, представляющий со-бой смесь жидких и твердых углеводородов, широко используется в медицине. Парафин, выделяемый из мазута некоторых сортов нефти и состоящий из смеси твердых углеводородов, применяется для изготовления свечей, в текстильной промышленности, в качестве сырья для получения различных химических веществ, например ысших карбоновых кислот. [c.64]

    Нефть является прекрасным топливом 1 кг ее дает нрн сжигании около 42 Л 1Дж. На нефтеперегонных заводах из нее выделяют ряд продуктов петролейный эфир, бензин, лигроин, керосин, различные смазочные масла, вазелин, парафин и некоторые другие. Все эти вещества Рис. Х-13. Схема неф- представляют собой смеси углеводородов от легколетучих тяного месторожде- (в петролейном эфире) до твердых при обычных условиях (в парафине). Нефтяной газ состоит в основном из газообразных углеводородов. Он может быть исиользоваи и как топливо и для каталитического получения различных продуктов (водорода, спирта, формальдегида и др.). Воды нефтяных месторождений часто содержат иод и бром. [c.316]

    Так как нефти представляют собой чрезвычайно сложные смеси многих углеводородов от имеющих низкий молекулярный вес и относительно простую химическую структуру до имеющих очень высокий молекулярный вес н очень сложное строение, то первым шагом при производстве масел является разгонка нефти на фракции, в состав которых входят углеводороды приблизительно одинакового молекулярного веса. Так как температура кипения нефтяных углеводородов приблизительно пропорциональна их молекулярным весам, перегонка разделяет нефть на фракции, молекулы которых примерно одинаковы по размеру или весу. Перегонка не дает, однако, заметного разделения по типам молекул, вследствие чего фракции смазочного масла, полученные после перегонки, содержат приблизительно то н с соотношение парафинов, нафтеиов и аролхатическнх углеводородов, что и исходная нефть. Сырые фракции смазочного масла — дистилляты — требуют поэтому дополнительной очистки для удаления нежелательных компонентов и сохранения в масле наиболее ценных. [c.109]

    Чтобы получить высококачественную серу, необходимо на заводе иметь несколько различных установок по удалению и получению серы. Наиболее эффективно работают такие установки, когда перерабатывается дешевая высокосернистая нефть. Как правило, на заводах работают установки Клаусса, на которых сероводород превращается в серу с высокой степенью конверсии. Производство масел и парафинов имеется не на каждом заводе, что обусловлено качеством перерабатываемой нефти. Чтобы получить высококачественные масла, необходимо вакуумные фракции нефти направить на установки экстракции и депарафи-низации для получения базовых масел, которые затем смешивают с присадками, чтобы получить товарные смазочные масла. [c.102]

    Производственные сточные воды нефтебаз кроме обычных загрязнений содержат в значите 1ьных количествах нефтепродукты. Их поведение в сточных водах определяется происхождением, видом и товарным сортом. Источником получения товарных нефтепродуктов (моторное и котельное топливо, смазочные масла и др.) является природная нефть. Она представляет собой очень сложную смесь органических соединений переменного состава, основная часть которой состоит из парафина и пафтеиов — углеводородов предельного ряда. Кроме них в состав нефти входят различные смолы, асфальтены, сера. [c.14]

    В промышленности вакуумная перегонка была открыта независимо и случайно. В 1867 г., когда Джошуа Меррилл перегонял 3,4 пенсильванской нефти, забило конденсатор. Перегоняемая загрузка была слишком тяжелой для использования в целях освещения и слишком легкой—для смазочного масла [30] закупорка конденсатора была вызвана, повидимому, отложением парафина в конденсаторе. Давление стало настолько большим, что пришлось погасить огонь и дать охладиться кубу, из-за чего и образовался вакуум. Когда аппарат вскрыли, в конденсаторе был найден прозрачный нейтральный дестиллят. Меррилл позже отметил, что подобный дестиллят может быть получен с помощью перегонки с перегретым водяным паром, который действует, кроме того, как добавка при азеотропной перегонке. Вскоре последовало применение вакуумной перегонки нефтяных масел в заводском масштабе, а с 1870 г. в Рочестере (штат Нью-Йорк) было начато промышленное производство вакуумных масел из нефти. Вакуумная перегонка масел в заводском масштабе в других областях промышленности получила распространение лишь в XX в. Наиболее ранними примерами из этой области является перегонка фенола и крезолов [31], а также вакуумная перегонка с паром глицерина [32—35]. Румфорд [36] в 1802 г. подробно описал процесс разгонки с применением острого пара и дал превосходное теоретическое объяснение механизма перегонки с паром, который он назвал выгоняющим паром . Этот процесс, который можно рассматривать как предтечу азеотропной вакуумной разгонки с добавкой [27, 37, 38], требует некоторой примеси инертного газа для того, чтобы ускорить перегонку и избежать толчков . Вполне возможно осуществить перегонку в вакууме с водяным паром [39—45], перегретым водяным даром [46] или парами других подходящих веществ. [c.392]

    ВОЙ и второй фракций. Октановое число бензина очень низкое (около 40), но обычно повышается с уменьшением температуры кипения фракции. Путем риформинга иТдобавления тетраэтилсвинца этот бензин можно превратить в моторный бензин удовлетворительных качеств, С другой стороны, дизельное топливо вследствие высокой парафинистости имеет высокое цетановое число, поэтому процесс очень подходит для выработки этого продукта. Найдено, что неочищенный парафин вполне пригоден для получения (путем окисления) синтетических жирных кислот и для последующего превращения их в мыло. Установлена также возможность превращения олефиновых углеводородов низкокипящих фракций путем полимеризации с хлористым алюминием в смазочные масла. На фиг. 61 изображена принципиальная схема процесса Фишера-Тропша для получения моторного топлива из угля через стадию каталитического превращения водяного газа. [c.709]

    Основным методом оценки фракций алкилсалициловых кислот, Еспользуемых для получения алкилсалицилатных присадок MA K, -АСК и АСЕ к смазочным маслам, в настоящее время является определение кислотных чисел фракций этих кислот в виде их натриевых олей [558] или в свободном виде по ГОСТ 11362—6,5. Жидкостная адсорбционная хроматография на активном силикагеле позволяет определить во фракции алкилсалициловых кислот (после разложения их натриевых солей) содержание не вошедших в реакцию карбокси-лирования групп парафино-олефиновых углеводородов, вторичных алкилфенолов и алкилсалициловых кислот [559]. Установлено, что, изменив условия жидкостной адсорбционной хроматографии, гможно во фракциях алкилсалициловых кислот в виде натриевых солей определить группы алкилсалициловых кислот. Причем не вошедшие в реакцию карбоксилирования алкилфенолы выходят из слоя силикагеля двумя фракциями в виде алкилфенолятов натрия >в смеси с парафино-олефиновыми углеводородами и алкилфенолов, с алкилфениловыми эфирами. Практически полное протекание реакции замещения катионов натрия, содержащихся в исходной пробе алкилсалицилатов, на ион водорода происходит за счет наличия необходимого числа парных ОН-групп, связанных с атомом кремния на поверхности силикагеля. Активной в этом обмене является одна из парных ОН-групп, одиночные ОН-группы неактивны [560]. [c.330]


Смотреть страницы где упоминается термин Парафин получение смазочных масел: [c.198]    [c.29]    [c.47]    [c.58]    [c.94]    [c.437]    [c.231]    [c.67]    [c.172]    [c.467]    [c.100]    [c.256]    [c.67]    [c.175]   
Химия и технология моноолефинов (1960) -- [ c.608 , c.611 ]




ПОИСК





Смотрите так же термины и статьи:

Масло масла смазочные

Смазочные масла



© 2025 chem21.info Реклама на сайте