Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магния оксихинолинат, определение

    Реактив предложен Бергом в 1927 г. и получил очень широкое применение. Этот реактив осаждает ионы многих элементов, что создает известные трудности для разделения. Однако, создавая определенную среду (pH раствора, присутствие комплексообразователей и др.), с помощью оксихинолина можно делить большое количество катионов. Так, например, для разделения алюминия и магния сначала используют в качестве среды смесь уксусной кислоты с уксуснокислым натрием или аммонием в этих условиях осаждается только оксихинолинат алюминия. Затем в фильтрате создают аммиачную среду, причем осаждается оксихинолинат магния. [c.103]


    Осаждение оксихинолином применяют для определения магния в присутствии алюминия и железа без предварительного отделения этих элементов, а также для определения магния в присутствии кальция. В первом случае магний осаждают оксихинолином из щелочного (N OH) раствора, содержащего виннокислые соли. Железо и алюминий образуют в щелочном растворе с виннокислым натрием устойчивые комплексные соединения, из раствора которых оксихинолин не осаждает этих элементов. Отделение от кальция основано на сравнительно хорошей растворимости оксихинолината кальция в горячем аммиачном растворе, в то время как оксихинолинат магния при этих условиях не растворяется. Последний метод не имеет особых преимуществ по сравнению с обычным методом отделения магния от кальция, так как и в этом случае требуется двукратное [c.398]

    Броматометрическое определение оксихинолината магния. Свойства-оксихинолина как органического осадителя были подробно рассмотрены в 22, а также при описании метода определения алюминия ( 46). [c.398]

    Некоторые данные термогравиметрического анализа представляют также интерес для количественного анализа. Так, термогравиметриче-скими измерениями было установлено, что температура полного обезвоживания гидроокиси алюминия различна в зависимости от того, какой реактив применялся для осаждения. Гидроокись алюминия, полученная осаждением гидроокисью аммония, полностью обезвоживается только при температуре более 1000°, в то время как применение для осаждения углекислого или сернистого аммония снижает температуру обезвоживания приблизительно до 420 . Этим же методом было найдено, что превращение магнийаммоннйфссфата в пирофосфат магния достигается уже при температуре около 500 Оксихинолинаты многих металлов имеют после высушивания вполне определенный состав, и их можно применять для весового определения ряда элементов. Однако это ке относится к ок-сихинолинату титана, который при повышении температуры не дает горизонтальной площадки на кривой термолиза его вес медленно уменьшается при повышении температуры вплоть до полного превращения в двуокись титана .  [c.89]

    Описан экстракционно-фотометрический метод одновременного определения алюминия и железа. Принцип метода состоит в том, что хлороформный экстракт оксихинолинатов алюминия и железа фотометрируют при 390 при 470 ммк. Метод использован для определения алюминия и железа в титане и ванадии [187]. Аналогичный вариант применен для определения алюминия и железа в магнии [188]. Экстракция оксихинолината железа и фотометрирование экстракта использованы для определения железа в крови [189]. Ванадий экстрагируют хлороформом в виде оксихинолината при pH 3,5—4,5 и полученный экстракт фотометрируют при 550 ммк [190]. Методики экстракционно-фотометрического анализа в виде оксихинолинатов разработаны для определения цинка и кадмия в присутствии больших количеств кальция [191], кальция в солях, технических продуктах и породах [192], олова в железе и стали [193], урана в присутствии тория, лантана, иттрия или самария [194] и в висмутовых сплавах [195]. Цинк и магний в форме оксихинолинатов легко экстрагируются метил-изобутил кетоном. Экстракты имеют максимумы светопоглощения [c.243]


    Ход определения. К 100—150 мл раствора, содержащего не более 0,01 г магния, прибавляют 1—2 г ЫН4С1 и 5—10 мл ЫН40Н. Если образуется аморфный осадок Mg(OH)2, его растворяют, добавляя еще некоторое количество ЫН4С1. Полученный совершенно прозрачный раствор нагревают до 60—70 °С и осаждают магний небольшим избытком спиртового раствора о-оксихинолина, прибавляя его, как обычно, небольшими порциями до тех пор, пока раствор над осадком не окрасится в желтый цвет (образуется интенсивно окрашенный оксихинолинат аммония). [c.415]

    Спектрофотометрическому определению бериллия с 8-оксихинальдином [413] мешают > 15 мг Mg и >0,1 мг А1. Поэтому при определении 0,02% бериллия в сплавах магния рекомендовано коллекторное осаждение бериллия с алюминием из аммиачного раствора, а затем отделение алюминия экстракцией 8 оксихинолината хлороформом (см. стр. 134). Небольшие количества алюминия — до 0,100 мг — не мешают определению. Си, Сс1 и Ре можно замаскировать цианидом. [c.181]

    При определении магния в алюминиевых сплавах все компоненты сплава отделяют экстракцией оксихинолинатов при pH [c.46]

    При фотометрическом определении магния в почвах оксихинолинаты А1, Си, Ге, Мн и N1 экстрагируют при pH 7,2 [c.46]

    Магний в виде оксихинолината можно отделить от щелочных металлов, которые в больших количествах мешают определению магния атомно-абсорбционным методом [939, 1192]. [c.47]

    Описан полумикрометод определения магния в известняках и доломитах 8-оксихинолином без перенесения осадка на фильтр [35,3]. В железных рудах предлагалось определять сумму окислов магния и кальция с применением осаж дения в виде оксихинолината и оксалата соответственно [809]. Однако потребность суммарного определения окислов магния и кальция возникает редко. [c.66]

    Полярографическое определение с использованием 8-оксихинолина. Магний можно определять, измеряя уменьшение высоты волны 8-оксихинолина в присутствии магния вследствие осаждения оксихинолината магния 1604, 674, 933, 934, 1176, 1189, 1253]. Полярограмма 8-оксихинолина имеет две волны с . /, = —1,39 и —1,6 в (отн. н. к.э.). У первой волны величина 1 заметно не смещается с изменением концентрации 8-оксихинолина. У второй волны слабо смещается с изменением концентрации 8-оксихинолина и значительно — при небольшом изменении pH [1176]. Для количественных определений лучше использовать волну с = —1,39 в. Уменьшение высоты волны вследствие осаждения оксихинолината магния пропорционально количеству магния в растворе, и калибровочный график прямолинейный при 5—200 мкг Мд/25 мл. Определение проводят при pH 10, создаваемом при помощи аммиачного буферного раствора, без отделения осадка оксихинолината магния. Определению магния мешают металлы, которые с 8-оксихино-лином в этих условиях образуют труднорастворимые соединения. [c.163]

    Для определения магния в чугуне описаны фотометрические методы с эриохром черным Т [64, 1081]. По одному из них [64], магний определяют после отделения основной массы железа экстрагированием метилизобутилкетоном из 6 iV H I и осаждения А1, Ti, Сг, Са и остатков железа в виде оксалатов и маскирования тяжелых металлов цианидами. Метод не очень удобен, так как включает в себя несколько операций отделения и связан с применением токсичных цианидов. По другому методу [1081], тяжелые металлы отделяют осаждением в виде оксихинолинатов, затем следы металлов удаляют экстракцией их диэтилдитиокарбаминатов метод очень продолжительный и мало приемлем для массовых анализов. [c.209]

    Имеется указание [10, 15] на возможность качественного определения 8-оксихинолином как магния (при разбавлении 1 2 000 000), так и кальция [15, 16]. Эти катионы в аммиачном растворе образуют с оксином нерастворимую внутрикомплексную соль, которая в отличие от оксихинолинатов стронция и бария обладает яркой флуоресценцией. [c.168]

    Описан фотометрический метод определения магния в никеле с 8-оксихинолином [911]. Мешающие элементы осаждают в виде оксихинолинатов, затем в присутствии бутилцеллозольва экстрагируют оксихинолинат магния хлороформом и фотометрируют окрашенный экстракт. Метод связан с использованием малодоступного бутилцеллозольва и поэтому применяется редко. [c.213]

    До 0,0005% магния в палладии определяют фотометрическим оксихинолиновым методом [270]. Палладий маскируют цианидами, оксихинолинат магния экстрагируют хлороформом при pH 10—10,2 в присутствии бутилцеллозольва и экстракт фотометрируют при 405 нм. Магний в свинце можно определять фотометрическим методом с титановым желтым [102]. Об определении магния в металлическом натрии см. в [1146]. [c.215]

    Разделение металлов в смеси основано на различной растворимости оксихинолинатов металлов в кислотах, а также на применении маскирующих веществ. В ряде случаев необходимо фазовое отделение в частности для определения алюминия в стали отделяют мешающие элементы электролизом на ртутном катоде. Мало влияет присутствие кальция и магния, а также присутствие следов железа. В данной задаче предлагается определение алюминия в растворах, где отсутствуют посторонние элементы. [c.166]


    Экстракционно-фотометрическое определение магния с 8-ок-сихинолином основано на растворении осадка оксихинолината магния в некоторых органических растворителях с образованием окрашенного раствора. В отличие от оксихинолинатов многих металлов соединение магния с 8-оксихинолином очень плохо растворимо в несмешивающихся с водой органических растворителях (хлороформ, четыреххлористый углерод, бензол п др.). Это объясняется образованием очень устойчивого дигидрата Mg(0x)2 2H20 (Ох — анион оксихинолина), в котором все шесть координационных мест магния насыщены. Полученный высушиванием при 180° С безводный оксихинолинат магния хорошо растворяется в безводных хлороформе и других органических растворителях, но в присутствии небольших 1<оличеств воды экстракты мутнеют из-за выделения оксихинолината магния. После замены входящей в комплекс воды полярными органическими молекулами оксихинолинат хорошо растворяется в органических растворителях. [c.154]

    Отделение мешающих элементов. Практическое значение имеют методы определения алюминия, в присутствии железа и титана, разделение алюминия и магния, алюминия и меди и др. Для определения алю , иния в первом случае предварительно осаждают железо оксихинолином из сильно уксуснокислого раствора (20% СН3СООН), содержащего винную кислоту. Винную кислоту приливают для того, чтобы связать титан в ком плекс и предотвратить гидролиз его солей. После отделения железа осаждают оксихинолином титан. Осадок оксихинолината титана образуется только в слабокислом растворе при рН>5, однако в этом случае может также осаждаться и алюминий. Для удержания алюминия в растворе туда приливают раствор щавелевокислого аммония (или малоновой кислоты). К фильтрату после осаждения титана приливают избыток гидроокиси аммония (до щелочной реакции) и осаждают алюминии оксихинолином. Этим методом можно определить все три элемента при их совместном присутствии. [c.185]

    Магний сернокислый, термическое разложение 347 Магний углекислый, открытие в резиновых смесях 7551 Магний фтористый. система MgF2 - KF(NaF)- Н2О 462 -464 Магнитная восприимчивость,, установка для ее определения 2308 Магния гидроокись pH осаждения 733 исследование 289 Магния окись идентификация в резиновых-смесях 6695, 7550, 7551 определение ее в порошке металлического магния 6181 Магния оксихинолинат, растворимость 336 Макаронные изделия, определение влажности 8025 Макробюретки 1625 Макромикробюретка 1626 Малеиновая кислота анализ смеси со фталиевой кислотой 7303 полярографический анализ 7675, 7677 Мальтоза, определение 6573, 8332-Марганец, см. также перманганат [c.368]

    Определение магния этим методом можно вести в присутствии А1 + и Ре +, которые предварительно связывают в виннокислые комплексы. В присутствии Са + определение Mg + тоже возмол<но, так как оксихинолинат кальция довольно хорошо растворим в горячем аммиачном растворе. Однако здесь необходимо переосаж-демие, так как при первом осаждении немного Са + увлекается в осадок. [c.415]

    Главным достоинством оксихинолинового метода определения магкия, броматометрическим титрованием по сравнению с методом определекия в виде магний-аммоний-фосфата (см. 42) является значительно большая быстрота анализа и точность определения. В 42 указывалось ыа трудности получения чистого осадка MgNH4P04, соответствующего по своему составу химической формуле, а также на осложнения при получении весовой формы Mg2P20,. Между тем, при правильном выполнении определения по оксихинолиновому методу, эти недостатки исключаются. В 46 указывалось, что при осаждении оксихинолинатов металлов почти не наблюдается явлений соосаждения и адсорбции при осаждении легко получить чистый осадок, состав которого соответствует химической формуле, а при броматометрическом окончании определения отпадают затруднения, связанные с превращением осадка в весовую форму. [c.399]

    Примером может служить вышеогшсанный оксихннолинат цинка или оксихинолинат магния МцЬг, (символом НЬ обозначена молекула 8-оксихинолина), осаждающийся из растворов в виде осадка темнозеленого цвета и используемый для определения магния. [c.201]

    Фотометрическое титрование позволяет автоматизировать процесс определения кальция. В нескольких работах [1203, 1205] описано автоматическое титрование кальция в присутствии индикатора калькона (к = 650 нм). Разработана методика опре-делеЕшя кальция и магния, основанная на предварительном экстракционном отделении А1, В1, Сс1, Со, Си, Оа, 1п, Ре, Hg, N1, Т1 в впде оксихинолинатов и ТЬ, 8п, Т1, , 1), 2п, 2т, Мо, V, РЬ, Се, Ве, Сг в виде ацетилацетонатов в экстракторе непрерывного действия и последующем комплексонометрическом титровании кальция с фотометрической установкой конечной точки в присутствии калькона (Са) и эриохром черного Т (Са + Mg). [c.48]

    По приведенной методике можно отделять от магния значительные количества мешающих элементов (при отделении небольших количеств их используют меньше диэтилдитиокарбамината и растворителя). Сочетание экстракции диэтилдитиокарбаминатов с осаждением полуторных окислов уротропином позволяет отделять одновременно все металлы, обычно сопутствующие магнию и мешающие его определению (кроме кальция) [420]. Предложено удалять примеси комбинированной экстракцией оксихинолинатов и диэтилд1СТиокарбаминатов [1041]. [c.46]

    Магний в виде оксихинальдината отделяют от кремния и щелочных металлов, мешающих определению его атомно-абсорбционным методом [1192]. Экстракцию проводят по методике для экстрагирования оксихинолината магния (см. выше), используя [c.48]

    Ацетоксихинолин в водных растворах гидролизуется с выделением 8-оксихинолина, осаждающего магний (pH 10). При осаждении 25 мг магния оптимальное количество реагента составляет 2,1 мл 20%-ного раствора 8-ацетоксихиполина. Осадитель надо вводить по каплям в течение 3—4 мин. в холодный аммиачный раствор магния. Реакционная смесь должна стоять 2,25 часа, и после этого ее надо нагревать в течение 20—30 мии. при 50— 60° С. Фильтрование и дальнейший анализ проводят, как при обычном осаждении оксихинолината. Метод пригоден для определения 5—25 мг Mg и дает возможность отделять 12 мг магния от 1 г Na или К и от 15 мг Ва. [c.66]

    Ранее широко применялся метод, основанный на осаждении фосфата магния и аммония, растворении осадка в кислоте и фо-тометрировании синего фосфорномолибденового комплекса [330, 332, 333, 339, 558, 693, 868, 938, 1147, 1243, 1244]. Применялось также много фотометрических методов с использованием 8-оксихинолина измерением поглощения 8-оксихинолина, связанного в осадок оксихинолината магния, в кислом растворе при 358 нм [649], превращением связанного с магнием 8-оксихинолина в азокраситель [500, 950], по образованию молибденовой сини с реагентом Фолина — Дениса [676, 1289], по образованию зеленого комплекса с Fe Ig в кислой среде [730, 798, 1259] метод, основанный на осаждении оксихинолината магния, добавлении раствора (NH4)2 e(NO3)e к фильтрату и фотометрировании избытка церия при 315 нм [1003]. Предлагались методы определения по уменьшению поглощения комплексона III при 225 нм в присутствии магния [671], а также определения с дипикриламином [1107], окситриазеном [322, 323], гипоиодидом [26], с дилитуро-вой кислотой [931], нефелометрическое определение с нафтол-гидроксаматом натрия [535]. [c.159]

    Раствор KBrOg добавляют к раствору оксихинолината магния в кислоте медленно, при постоянном перемешивании до тех пор, пока красновато-желтый цвет раствора не перейдет в чисто-желтый. Если расходуется много КВгОд, вводят еще 5—10 мл НС1. Количество необходимого КВгОд удобно устанавливать с помощью индикаторов (метиловый красный, метиловый оранжевый, индиго-кармин). Быстрое исчезновение окраски индикатора указывает на наличие избытка брома. Индикаторы сами реагируют с бромом, поэтому их надо вводить в минимальном количестве. Для получения точных результатов важен определенный избыток КВгОд и КВг. Если добавлен большой избыток реагента, то осаждается нерастворимый иод — при титровании тиосульфатом натрия синяя окраска возвращается очень быстро и получаются завышенные результаты. Для устранения большого избытка смеси КВгО, — КВг лучше использовать индикатор метиловый оранжевый [801]. Обратное титрование тиосульфатом проводят не позже чем через 10 мин. после добавления КВгОд, сразу же после прибавления KJ при энергичном перемешивании. [c.99]

    Другие методы. Проводилось изучение возможности использования магнезона I и магнезона II для амперометрического титрования магпия [199]. По-видимому, эти реагенты не заслуживают внимания, так как с магнием не образуют соединений определенного состава. О методе определения, основанном на осаждении оксихинолината магния, обработке его бромом и амперометрическом титровании избытка брома арсенитом натрия см. в [824]. [c.111]

    При экстракции в присутствии и-бутиламина определению 120 мкг Mg не мешают 260 мкг К, 390 мкг Na, 80 мкг Ь1, 100 мкг Са, 180 мкг 8г, 230 мкг Ва, 35 мкг В, 50 мг 8Ь, 15 мг Ав, по 25 мг Зе и Те, 160 мг Сг(1И), 25 мг Мо(У1), 300 мг (У1) не мешают также Ке, платиновые металлы (кроме Рс1 в больших количествах) [1233]. Са и Ве частично экстрагируются, ес.ли вводить слишком много оксихинолина и бутиламина. 8п(1У) не экстрагируется, но в количествах 3 мг мешает экстракции оксихинолината магния. При помощи 1—3 мл 30%-ной Н2О2 можно связать 240 мг Т1, 175 жг V и 100 мги (VI). Цианидами маскируют до 125 мг Си, 320 мг Ag, по 100 мг Аи и N1, по 270 мг Р(1 и Hg(II), до 10 мг Zn, С(1, Ре(П) Ре(1П) после восстановления с ВОз и Hg(I) после окисления до Hg(II) также можно маскировать цианидами. До 15 мг А1 можно связать триэтаноламином при этом на каждые 2,5 мг А1 надо вводить по 1 мл триэтаноламина. Экстракцией оксихинолинатов в отсутствие бутиламина отделяют 8с, РЗЭ, 1п, Оа, Т1(1П), 8п(П), РЬ, гг, Н , ТЬ, В1, Nb, Та, Мп(П), Мп(1П), Со в этих условиях Т1(1) удаляется неполностью. Кальций можно маскировать тартратами или цитратами [991, 1220,1233]. Не мешают ацетаты, оксалаты, цитраты, цианиды, хлориды и нитраты при pH 11-11,5 - до 0,3 М ионов 80Г 0,1 М РОГ- Комплексон III, фториды, сульфосалициловая кислота мешают экстракции [729 1233], умеренные количества РО -ионов не мешают [729]. [c.157]

    Иногда прибегают к отделению основного компонента теми или иными методами. Например, при определении магния в металлических 2г, Ге и Си предварительно отделяют 2г осаждением в виде миндалята, Ге — экстракцией эфиром хлоридного комплекса, Си — электролизом [704]. Для выделения малых количеств магния применяют методы соосаждения, например соосаждают магний на оксихинолинате железа [704]. [c.166]

    Радиоактивационное определение магния проводят также в радиохимическом варианте [834, 1024, 1097, 1160]. Последний значительно более сложный и трудоемкий, чем спектрометрический вариант, но более чувствительный. При определении магния радио-активационным методом в радиохимическом варианте для выделения магния из облученного образца используют экстрагирование оксихинолината магния [834, 1097], осаждение в виде MgNH4P04 [1160] и Мд(0Н)2 [1024]. Предложен косвенный метод радио-активационного определения магния, основанный на выделении магния в виде комплекса с 5,7-дибром-8-оксихиполином, на последующем облучении комплекса нейтронами и регистрации наведенной радиоактивности Вг(1 1д = 36 час.), пропорциональной содержанию магния в пробе [1152—1154]. Комплекс магния выделяют экстрагированием, а от избытка 5,7-дибром-8-ок-сихинолина освобождаются методом хроматографии на бумаге. [c.166]

    При определении магния в мартеновских шлаках с высоким содержанием фосфора мешающие элементы (Fe, Al, Mn и V) осаждают в виде оксихинолинатов нри pH 6,2 [214]. При онределении магния в ферромарганцевых шлаках марганец осаждают в виде МпОз добавлением КСЮд к кипящему азотнокислому раствору шлака. В фильтрате маскируют Fe, Al, Ti и следы Мп триэтаноламином и в различных аликвотных частях титруют сумму Mg и Са с тимолфталексоном и Са с флуорексоном [974]. Онисан комплексонометрический метод определения магния в вагранковых шлаках после отделения мешающих элементов экстрагированием купферонатов и диэтилдитиокарбаминатов [624]. Об определении магния в доменных и мартеновских шлаках см. также в [134], а об определении в шлаках производства металлического урана — в [952а]. [c.202]

    Комплексы 8-оксихинолина. Такие комплексы исследовались Фрейзером, Фриделем и сотрудниками [22] и Стоном [196]. Первые авторы получили спектры в области от 8 до 15 л для 8-оксихинолинатов К, Ка, Ьа(П1), 1п(П1), Са(П1), А1(1П), Ре(1П), [иОг] ", Са (II), Н (И), РЬ(П), С(1(11), 2п(Н), Мп (II), Со (II), N1(11) и Си(П), для 2-метил-8-оксихинолинатов Си (И), N (11), Со (II), Мп (II), Zn (II) и Mg (II) и 4-метил-8-оксихинолипатов Си (II), N (11), Со (II), Мп (И), 2п (II) и Mg(II). Все спектры снимались в суспензии в нуйоле. Они весьма сходны, что и не удивительно. Авторы этой работы не смогли дать определенное отнесение и поэтому не смогли прийти к каким-либо определенным выводам относительно природы связей или электронного строения. Стон [196] исследовал спектры гидратированных и безводных соединений магния и висмута с целью обнаружения отчетливых спектральных различий, которые соответствовали бы тому факту, что дигидрат соединения магния нерастворим в хлороформе, тогда как висмутовое соединение, так же как и большинство других комплексов, растворимо. Но никаких существенных различий не было обнаружено, и поэтому был сделан вывод, что молекулы построены сходным образом. Справедливость этого вывода в отношении характера связи с 8-оксихннолинатными группами [c.362]

    Системы типа В, А, St с тиоцианат- и сульфосалицилат-ионами в качестве вспомогательных лигандов были использованы при изучении ряда комплексов железа (III) [9, И, 18, 99, 100], а 8-оксихинолинат-ион и его 5-сульфоновые производные использовались как вспомогательные лиганды при определении устойчивости дитиокарбаматов меди(II) [80]. Комплексы магния и кальция с аденозинди- и трифосфатами также были изучены спектрофотометрически с 8-оксихинолинат-ионом в качестве вспомогательного лиганда [27]. Металлоиндикаторы, например мурексид, также удобны как вспомогательные лиганды [37]. Спектрофотометрия также применялась для изучения более сложных конкурирующих реакций. Например, Клейнер [90] измерял ai для тиоцианата железа (III) в присутствии ионов как алюминия, так и фтора и использовал результаты для получения значений Pi системы фторида алюминия (см. гл. 4, разд. 5). [c.341]

    При экстракции 8-оксихинолинатов щелочноземельных металлов, являющихся типичным примером координационно ненасыщенных комплексов, Умланд успешно применил в качестве добавок (к хлороформу) алифатические амины, например и. бутиламин [295—299]. На этой основе был разработан ряд экстракционно-фо-тометрических методов определения щелочноземельных элементов. Умланд применял такой же прием и при экстракции оксихинолинатов цинка и некоторых других элементов. Еще раньше (и это были, по-видимому, первые публикации такого рода) Люк [300, 301] описал способ экстракции оксихинолината магния хлороформом в присутствии бутилцеллосольва. [c.102]

    Экотракционно-флуоргшетрические методы определения алюминия основаны главным образом на использовании 8-оксихинолина. В хлороформном экстракте, полученном при pH 7—9, оксихинолинат алюм1шия обладает желто-зеленой флуоресценцией [152, 596]. Метод довольно широко используется в аналитической практике описаны, например, способы определения алюминия в ниве [597], природных водах [598], металлическом магнии [599], вольфраме и окиси вольфрама [475], окиси тория [600] и других объектах [590, 595, 601, 602]. Интенсивная флуоресценция наблюдалась и при экстракции четыреххлористым углеродом [583]. [c.193]

    Экстракционно-люминесцентные методы используются также для определения элементов второй группы периодической системы, особенно бериллия, магния и цинка. Бериллий молено определять в виде 8-оксихинолината, который экстрагируется метилизобутилкетоном из тартратного раствора при pH 9,2. Отмечено, что повышение температуры от 22 до 26° С вызывает необратимое понижение интенсявности флуоресценции и изменение цвета экстракта от светло-желтого до красно-коричневого [623, 624]. Наблюдалась также сильная флуоресценция экстрактов оксихинолината бериллия в четыреххлористом углероде [583]. Вероятно, более полезен метод определения бериллия с 8-оксихинальдином, поскольку с этим реагентом не взаимодействует алюминий [20]. 8-Оксихинальдинат можно экстрагировать при pH 8,0 0,2 хлороформом при облучении экстракта ультрафиолетовым светом возникает желтовато-зеленая флуоресценция. Избыток реагента оказывает мешающее влияние [625]. [c.195]


Смотреть страницы где упоминается термин Магния оксихинолинат, определение: [c.182]    [c.413]    [c.57]    [c.40]    [c.65]    [c.100]    [c.107]    [c.205]    [c.155]    [c.193]   
Количественный анализ (0) -- [ c.390 ]




ПОИСК





Смотрите так же термины и статьи:

Магний определение



© 2025 chem21.info Реклама на сайте