Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы оценка

    Изучение реакции изомеризации гексанов с помощью меченых атомов С позволило определить соотнощение механизмов реакции сдвига связи и циклической изомеризации в зависимости от свойств катализатора. Оценка размеров кристаллитов платины в катализаторе показала, что в случае кристаллитов размером менее 2 нм преобладают циклическая изомеризация и неселективный гидрогенолиз метилциклопентана, в то время как на более крупных кристаллитах преобладают сдвиг связи и селективный гидрогенолиз (рис. 1.6). [c.16]


    При рассмотрении механизма действия катализаторов, оценке их активности и особенно при составлении кинетических уравнений нроцессов на данных катализаторах нужно иметь в виду тот факт, что взаимодействие между катализатором и средой не ограничивается влиянием катализатора на реакционную среду, а наблюдается и обратное влияние среды на катализатор. Четко вопрос о влиянии среды на катализатор, вероятно, впервые рассматривался Брунсом 99] и Боресковым [100]. [c.49]

    Разработка [11, 33] позволяет сократить время определения активности катализаторов, оценки длительности эксплуатации и степени его дезактивации. [c.22]

    При рассмотрении механизма действия катализаторов, оценке их активности и особенно при составлении кинетических уравнений процессов на данных катализаторах нужно иметь в виду тот факт, что взаимодействие между катализатором и средой не ограничивается влиянием катализатора на реакционную среду, а наблюдается и обратное влияние среды на [c.67]

    Стабильность консистентных смазок против окисления оценивается по количеству органических кислот, образовавшихся нри нагревании смазки, нанесенной тонким слоем на медную пластинку, служащую катализатором. Оценка производится по изменению кислотного числа смазки и выражается как разность кислотных чисел смазки до и после окисления в мг КОН на 1 г смазки [c.660]

    Для исследования кинетики реакций с полимеризующими-ся продуктами в присутствии водяного пара разработана и применена модель реактора с поршневым турбулизатором [35]. Исследование методом конкурирующих реакций [23] позволило определять относительную адсорбционную и реакционную способность углеводородов. Импульсный микрокаталитический метод дал возможность изучения кинетики процесса при нестационарном состоянии катализатора. Оценка величины поверхности серебра [21] и окислов меди [22] на поверхности носителя хемо-сорбционным методом позволила определять удельную поверхность и удельную активность контактов. Наиболее быстрым и удобным является хроматографическое определение общей величины поверхности контактов [1]. Применение инфракрасной спектрометрии дало возможность уточнить детали механизма окисления этилена на серебре. [c.23]

    В этих уравнениях 5 — поверхность катализатора. Оценка достоверности моделей 1 и 2 показала, что экспериментальным данным в большей степени соответствует уравнение [c.180]


    На сегодня, по-видимому, можно сказать, что в кинетической области каталитическая активность и селективность являются самым тонким индикатором на изменения в катализаторе. Естественно, что принципиально все изменения в катализаторах можно обнаружить. Однако такая возможность далеко не всегда превращается в действительность, так как физические методы часто бывают слишком грубы для этой цели, их чувствительность недостаточна. Более того, проведение фазового анализа катализаторов, оценка их дисперсности и пористой структуры стали возможными совсем недавно, лишь с применением для этой цели рентгеновских методов, электронной микроскопии и некоторых других методов. [c.4]

    Наиболее сильно ускоряют эти процессы температура, катализаторы, кислород, свет и т. п. Оценка стабильности топлив может производиться как по скорости окислительных процессов, так и по количеству образующихся продуктов, окисления, полимеризации, уплотнения. [c.27]

    Кратко рассмотрим системы газ — твердое тело с наличием реакции в пределах твердой фазы. Такие системы представляют интерес в каталитических реакциях, когда катализатор выступает в виде микропористого твердого тела, через которое могут мигрировать реагенты и реакционные продукты под влиянием градиента концентрации, следуя закону диффузии Фика. Эффективный коэффициент диффузии зависит от механизма диффузии через поры (которая может быть обычной газовой диффузией или кнудсенов-ской диффузней, сопровождающейся мобильностью адсорбированных слоев), а также от геометрии пор. Проблемы оценки корректной величины эквивалентного коэффициента диффузии по известным значениям диаметров пор и их геометрии обсуждались в некоторых аспектах Франк-Каменецким [11], а также в работах [12-15]. [c.46]

    Уравнения (VI.4) и (VI.5) совместно с граничными условиями (VI.15) и ( 1.16) позволяют рассмотреть на основе единой математической модели частные случаи состояния процессов в реакторах с псевдоожиженным слоем катализатора [46], что удобнее делать, исходя из оценок величины критериев Рег и N. [c.129]

    Таким образом, на примере вышеописанного эксперимента, можно сделать вывод, что изучение вопросов агрегатного состояния сырья при внсоких температурах с оценкой степени проникновения компонентов сырья в поры реальных катализаторов и использованием метода ГПХ — один из надежных методов выявления механизма диффузии тяжелого сырья в поры катализатора. На основе таких экспериментов, очевидно, можно проводить отбор пористых носителей для создания эффективных катализаторов. Зная распределение компонентов сырья по их размерам и распределение общего объема пор катализатора по диаметрам этих пор,можно прогнозировать степень проникновения сырья в поровую структуру катализатора. [c.39]

    В большинстве публикаций приводятся данные по насыщению активности при определенных концентрациях металлов. В то же время эти сведения не однозначны относительно содержания металлов, при котором происходит насыщение активности. Оптимальными называются значения содержания металлов на оксиде алюминия, находящиеся в широких пределах - от 0,2 до 25% каждого. Соотношение кобальта (никеля) к молибдену от 0,25 До 5 [67]. Возрастание активности с увеличением содержания кобальта или никеля объясняется модификацией структуры Мо8, способствующей образованию активных центров. За пределами оптимума кобальт начинает блокировать активные центры. Естественно, количественно такая картина будет определяться многими факторами синтеза катализаторов и даже методом его оценки. [c.101]

    Весьма важным является определение конца пробега катализатора и тем более прогнозирование длительности его работы. Вследствие большого числа переменных, определяющих конечный результат, вопрос этот является весьма сложным и на сегодня пока отсутствует общепризнанный метод. Это определяется продолжительностью эксперимента по оценке общей длительности работы данного катализатора, на конкретном сырье, в определенных условиях, что делает весьма дорогим накопление в достаточном объеме экспериментального материала. [c.140]

    Это удачный вид номограммы, обобщающей большое число переменных. Однако в ней не учитывается характеристика катализатора. Кроме того, лить один показатель — содержание металлов в сырье — может оказаться недостаточным для полной характеристики сырья, чтобы эта номограмма могла быть использована при переработке остатков любого типа нефтей. Поэтому необходимо ее изучение с целью оценки возможности использования для более широкого круга условий. [c.141]

    Возможна также постановка оптимальной задачи, в которой требуется определить оптимальное число ступеней в реакторе. Правда, в последнем случае в качестве критерия оптимальности нужно использовать экономические оценки эффективности процесса, включающие стоимость затрат на дополнительное оборудование при увеличении числа ступеней аппарата. Очевидно, что оптимальным в смысле эффективности применения катализатора является ступенчатый реактор с бесконечно большим числом ступеней, так как при этом результирующий температурный профиль реактора приближается к опти-мальному профилю для одноступенчатого реактора идеального вытеснения (см. рис. П1-14). [c.124]


    Расчеты константы равновесия химической реакции и изменения энергии Гиббса играют важную роль в оценке химической концепции нового метода, поскольку дают возможность определить максимально возможное количество целевого продукта. Отрицательный итог расчета заставляет отказаться от рассматриваемого процесса или искать новый способ проведения химического превращения, например, используя рециркуляцию, введение вспомогательного исходного вещества и т. д. Положительные результаты расчета еще не гарантируют возможности использования предложенного метода (скорость реакции может быть очень мала для промышленных целей), но указывают на то, что нужно провести соответствующее исследование (отыскать катализатор, ускоряющий превращение, и т. д.). [c.154]

    Исследования по алкилированию проводились не только с простейшими ароматическими углеводородами, но также с фенолами и производными пиридина. Таким образом, эта реакция к концу XIX в. уже была широко исследована и прочно утвердилась в области химического синтеза. Данный обзор не ставит своей целью ни охват всей имеющейся обширной литературы по этой теме, ни оценку огромных возможностей и технического использования применяемых катализаторов. Это уже сделано другими в прекрасных обзорных работах [20]. Здесь же задача ограничивается обсуждением тех отдельных реакций, которые применяются в нефтяной промышленности в значительных размерах. [c.488]

    Рассматриваются промессы изомеризации парафиновых углевоД родов, применяемые в СССР и за рубежом для получения компоненте автомобильных бензинов и реактивных топлив. Даются научные осн вы производства промышленных катализаторов. Приводится техник экономическая оценка процессов. [c.2]

    Кинетика и механизм реакции изомеризации зависят от типа катализатора и условий проведения реакции. В условиях гетерогенного катализа реакция изомеризации парафинов протекает по термодинамически контролируемому механизму [11]. Количественной оценкой кинетических параметров реакционной способности углеводородов является константа скорости превращения углеводорода в изомерный углеводород или смесь изомеров. Изучение путей этих превращений и состава промежуточных продуктов связано с изучением механизма реакции. [c.14]

    Оценка окислительной активности катализаторов при работе с такими многокомпонентными видами сырья, которыми являются тяжелые нефтяные остатки, представляет достаточно сложную задачу. Поэтому для корректной оценки окислительной активности были выбраны газообразные продукты окисления (СО2, СО, 50,). В табл. 1.3 приведены характеристики газообразных продуктов, определенные в начальные моменты ОКК маз та на различных катализаторах, содержащих оксиды металлов. Основным продуктом окисления, присутствующим во всех газах, является СО2. Наличие в газах промышленной установки каталитического крекинга СО2 свидетельствует о том, что при промышленном каталитическом крекинге углеводороды сырья претерпевают превращения не только по традиционным карбоний-ионному и радикально-цепному механиз.мам, но и вступают в окислительновосстановительные реакции с образованием газообразных и жидких продуктов окисления. [c.19]

    Во всех представлениях о механизме элементарного каталитического акта предполагаются стадии связывания катализатора и его освобождения. Различие состоит в том, что при двустадийном катализе процесс связывания контакта предполагается идущим до конца, до образования некоего соединения, и лищь затем следует стадия, приводящая к регенерации катализатора. При одностадийном катализе оба процесса сливаются, вырождаются в один процесс, протекающий через общий активированный комплекс. Но как в первом, так и во втором случае, для процессов, протекающих по сходному механизму, отношения скоростей должны определяться соотношением сил сродства реактантоа друг к другу и к катализатору. Оценку этих соотношений удобно получить, используя расчеты термодинамики для двухстадийной схемы. [c.22]

    Дегидрокрекинг парафинов над сульфидными катализаторами. (Оценка селективности действия У32 и ЛУЗг — К13-катализаторов.) [c.160]

    Для оценки катализатора сложной реакции наиболее важным критерием является его избирательность, зависящая от активности катализатора в отношении к возможным направлениям реакции. Количественно избирательность катализатора выражается выходом продукта. Так, если при окислении аммиака 98% его превратилось в окись азота и 2% — в молекулярный аздт, то число 98 и характеризует избирательность катализатора. Оценка катализатора сложной реакции по избирательности не исключает оценки по скорости реакции. Так, окисление аммиака может быть проведено с одинаковым выходом при 800° с участием платины или окиси железа. Избирательность обоих катализаторов одинакова. Но активность платины значительно выше, так как время, необходимое для получения одинаковых результатов на платине, приблизительно в сто раз меньше, чем на окиси железа. [c.71]

    Типичное применение теории химической абсорбции основано на использовании данных о скорости массопередачн для оценки констант скорости довольно быстрых реакций. Это представляет особый интерес в катализируемых реакциях. Случаи такого типа могут быть найдены в серии статей Данквертса с сотрудниками [9—11] по каталитическому действию различных веществ на реакцию двуокиси углерода с водой. Скорость последней может увеличиваться иод действием катализаторов, так что реакция становится конкурентной с прямой реакцией между СО2 и ОН даже при довольно высоких значениях pH, таких, например, какие наблюдаются в буферных растворах. Джеффрейс и Буль [12] пришли к такому же заключению. В случае карбонизированных растворов амина величина pH настолько мала, что даже в отсутствие катализаторов реакция двуокиси углерода с водой значима (см. раздел 14.1). Неудивительно, что в этой реакции катализатор увеличивает скорость на порядки, как показано Астарита, Марруччи и Джойя [13], [c.164]

    Применительно к процессам каталитического гидрооблагораживання остатков знание общих закономерностей превращения отдельных гетероатомных соединений может быть полезно только в части того, что, например, сера из любого серусодержащего соединения удаляется в виде сероводорода, азот из азотсодержащих соединений удаляется в виде аммиака, кислород из кислородсодержащих компонентов в виде воды и пр. Скорость тех или иных реакций превращения гетероатомных соединений может быть оценена лишь косвенно на основе изучения элементного состава сырья и продуктов, а также замером количества вьщелив-шегося сероводорода, аммиака, воды, высадившихся металлов на поверхность катализатора. Интенсивность реакций гидрирования может быть оценена также косвенно по изменению содержания водорода и углерода в жидких продуктах реакции. В связи с этим, для выявления эффективности процессов каталитического гидрооблагораживання нефтяных остатков может быть применен принцип оценки брутто-реакций . Однако, ввиду многообразия остатков, выделенных из различных типов нефтей, характеризующихся различным содержанием компонентов с надмолекулярной структурой (асфальтенов, смол), знание только данных по элементному составу недостаточны. Механизм превращения нефтяных остатков тесно связан со структурными изменениями сырья при нагреве и контакте с каталитической поверхностью. [c.47]

    Исследование диффузионной кинетики встречает ряд осложнений в связи с трудностями зкспериментального определения диффузионных параметров системы сырье-катализатор. Однако в последние годы зтот подход находит все большее оснешение в литературе. Применение методов диффузионной кинетики для обработки результатов испытания различных катализаторов позволяет более обоснованно выбирать катализаторы, носители для них, размеры зерна и ряд других важных технологических показателей, связанных с оценкой эффективности процесса. При решении проблем моделирования реактора и оптимизации процесса наиболее правильным считается использование диффузионных моделей. [c.71]

    Значение константы обычно определяется экспериментально с использованием дифференциального реактора, т. е. в условиях отсутствия влияния массопереноса и внутридиффузионных ограничений [30]. При отсутствии возможности экспериментирования с дифференциальным реактором за величину к принимается константа скорости, полученная в экспериментах на интегральном реакторе с использованием гранул катализатора с минимальным размером, допускаемым условиями эксплуатации реактора с ТФСС. Для гидрооблагораживання остатков минимальный размер гранул катализатора при использовании систем с ТФСС для оценки к, лежит в пределах 0,4-0,8 мм [30]. [c.77]

    Учитывая отмечшные выше гидродинамические факторы, влияющие на эффективность внешнего массопереноса в двухфазном потоке, следует также обращать внимание на сопротивление массопереносу внутри пор катализатора. Этот фактор заметно возрастает с утяжелением сырья и может быть определяющим при оценке эффективности процесса. Скорости транспорта водорода или, например, серусодержащих молекул в порах, заполненных жидкостью, могут быть сравнительно ниже, чем истинная (поверхностная) скорость реакции. Эти явления могут быть оценены яа основе принципов диффузионной кинетики, т. е. исходя нэ [c.93]

    Оценка катализаторов проводилась при режшие Р= 14,7 МПа и = 0,5 ч" циркуляция ВСГ= 1000 л/л. При испытании степень обессеривания для обоих образцов катализатора поддерживалась близкой за счет изменения температуры в слое. Одна и та же степень обессеривания достигалась при использовании ЛНМ-катализатора при более низкой температуре в реакторе 385 °С, чем при работе с АКМ-катализатором (395 с) (рис. 3,4). [c.103]

    Для оценки относительной величины и состава загрязнений нами проведены эксперименты на пилотной установке с загрузкой в реактор 400 см катализатора. Катйшзатор фиксировался в реакторе фарфоро- [c.115]

    Исследование поровой характеристики проведено на поро51 метре Карло-Эрба (модель 70). Создаваемое в аппарате давление от 0,1 до 196 МПа позволяет определять объем пор радиусом от 3,75 до 7500 нм. Удельная поверхность определена методом тепловой десо ции азота хроматографически. Содержание углерода и серы на катализаторе определялось сжиганием и оценкой количества по продуктам горения, ванадия, никеля, железа - химическими методами. Проба катализатора на анализ отбиралась из верхней и нижней части слоя. Подача водородно-сырьевой смеси осуществлялась восходящим потоком. [c.132]

    Известны также попытки составления математического описания на базе представлений о строении ССЕ остаточного нефтяного сырья и данных изучения распределения дезактиваторов по радиусу зерна катализатора [128]. Эм модели сложны, многопараметричны и включают ряд условных допущений и приближений ввиду отсутствия точных и надежных методик оценки ряда параметров таких, как коэффициенты диффузии, размеры структурных единиц сырья и пр. Ввиду сложности требуется применение для решения их быстродействующих ЭВМ и такие модели на современном этапе могут представить лишь общетеоретический интерес, [c.142]

    Избирательвость (селективность) катализатора. Общепринятого-метода оценки избирательного действия катализаторов крекинга нет. Часто пользуются следующим отношением для характеристики избирательности катализатора  [c.25]

    Оценка деасфальтированного пропаном мазута как сырья для процесса каталитического крекинга в кипящем слое катализатора цана в статье [130]. [c.71]

    Б а л л о д А. П., Манкаш Е. К., Орочко Д. И., Ф р о с т А. В О методах оценки активности катализаторов крекинга и способности сырья к расщеплению. Труды ВНИГИ, вып. IV, стр. 116, Гостоптехиздат, 1952. [c.296]

    Значительное увеличение скорости поглощения кислорода дизельным топливом в контакте с различными горными породами было установлено экспериментально при окислении на газометрической установке [74]. Приведенные на рис. 2.10 кинетические кривые окисления дизельного топлива указывают на увеличение в десятки раз скорости поглощения кислорода в контакте с некоторыми горными породами. Каталитическая активность горных пород связана с наличием в них активных микропримесей. Для практических целей склонность горных пород к гетерогенному активированию окисления топлив предложено определять методом сравнения, основанным на непосредственном-определении скорости окисления топлива в контакте с испытуемой горной породой и эталонным катализатором, например со сталью Ст. 3. В качестве критерия такой оценки предложен коэффициент каталитической активности [74], определяемый по выражению [c.59]

    Возможности совершенствования процессов производства высших спиртов на основе спнтез-газ далеко не исчерпаны. В настоящее время продолжаются работы по подбору и испытанию новых промоторов, обеспечивающих лучшую избирательность и более высокую активность действия катализаторов синтеза. Поэтому окончательная оценка данных процессов может быть осуществлена только после завершения этих работ. [c.192]

    Изомеризат, полученный в процессе низкотемпературной изомеризации гексановой фракции на катализаторе НИП-74 [87], был подвергнут ректификации с выделением изогексановых фракций с октановыми числами 83,9 85,3 86,8 и 91,4 (ИМ) - табл. 6.5 и 6.6. Для приготовления опытных образцов бензинов кроме изогексановых фракций использовались бензин каталитического риформинга, полученный в условиях жесткого режима на катализаторе КР-104, изопентановая фракция и алкилат (табл. 6.5). Оказалось, что добавление изомеризата улучшает октановую характеристику головной фракции и обеспечивает равномерность распределения октановых чисел по фракциям бензина (табл. 6.7). Приготовленные образцы бензинов исследовались по ГОСТ 2084-77, некоторым показателям квалификационной оценки автомобильных бензинов и были подвергнуты дорожным- детонационным испытаниям по ГОСТ 10373-75. [c.162]

    Коррозионную агрессивность масел для авиационных двигателей контролируют по потере массы катализатора при оценке термоокислительной стабильности, а также агрессивность по отношению к меди и серебру при высокой температуре (метод FTMS 5305). Для этого тщательно промытые пластинки взвешивают, закрепляют в державках и устанавливают в стаканах, в кото рых содержится по 200 мл испытуемого масла. Стаканы помещают в термостат и выдерживают 50 ч при 232 °С. По окончании испытаний пластинки снова тщательно промывают. Если после этого на пластинках сохранились углеродистые отложения, то их снимают в электролитической ванне в течение 10 мин при токе 0.5 А, используя пластинки в качестве катода. Коррозию пластинок (в мг/см2) определяют по разнице масс до и после испытаний. [c.121]

    На установках с циклической регенерацией катализатора (рис. 8а) предусмотрена регенерация катализатора в резервном реакторе, принципиально не отличающаяся от регенерации, осуществляемой в процессе ультраформинг. Любой реактор можно отключить, провести регенерацию катализатора и снова включить в процесс без снижения производительности установки. Частота отключения реакторов для регенерации катализатора зависит от требований процесса. Катализатор обычно регенерируют через 3—5 суток, длительность выжига кокса — от 16 до 24 ч. На установках применяются как алюмоплатиновые, так и алюмоплатинорениевые катализаторы. Регенеративный (сменноциклический) вариант пауэрформинга по оценке фирмы обеспечивает при работе на низкокачественном сырье устойчивые выходы высокооктановых бензинов. [c.34]


Смотреть страницы где упоминается термин Катализаторы оценка: [c.88]    [c.304]    [c.122]    [c.41]    [c.65]    [c.83]    [c.325]    [c.321]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1961-1966) Ч 1 (1969) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте