Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий окислительно-восстановительны

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    Ион металла при этом восстанавливается в одну из низших валентных форм. В результате совместного действия кислорода и углеводорода ионы металлов часто находятся в разных валентных состояниях, что в среднем соответствует некоторой дробной величине. Так, ион ванадия при окислении нафталина воздухом имеет среднюю валентность 4,3 вместо 5 в УгОб. Очевидно, что состояние иона металла определяется окислительно-восстановительными свойствами среды и зависит от соотношения кислорода и углеводорода, от наличия водяных паров и т. д. При этом в начальный период работы катализатор постепенно формируется в состояние, стабильное для данных условий синтеза, а варьирование условий может изменить его активность и селективность. [c.412]

    Использование окислительно-восстановительных систем [57] дает возможность применять гидропероксиды и пероксиды кетонов для инициирования радикальных процессов в сочетании с катализирующими их распад соединениями железа, кобальта, ванадия и других металлов при комнатной температуре и ниже, что характеризуют данные табл. 1.2 и 1.5 [3]. [c.17]

    Окислительно-восстановительное взаимодействие для систем ванадий(IV)—комплексон нехарактерно [271]. Переход комплексонатов ванадия (IV) в высшую степень окисления осуществляется только при введении в систему окислителя, например иридия(IV) или кобальта (III) [692, 693]. [c.368]

    Недавно было показано, что крысы обязательно должны получать ванадий с пищей . Вероятно, он необходим также и человеку, обычно потребляющему 2 мг ванадия в день. Организм взрослого человека содержит 30 мг ванадия. Возможная функция связана с метаболизмом липидов. Ванадий может находиться в разных состояниях окисления, от +2 до -(-5. В щелочном растворе ванадий присутствует преимущественно в виде иона У0 ", содержащего пятивалентный ванадий. Ион ванадия У0 +, имеющий двойную связь, является особенно устойчивой формой У(1У). Химические свойства ванадия позволяют считать, что он может выполнять окислительно-восстановительные функции. [c.372]

    В качестве окислительно-восстановительного индикатора при титровании солей цинка раствором ферроцианида для обнаружения меди, золота, ванадия для количественного определения нитритов и золота для кинетического определения хрома (П1). [c.134]

    Комм. К какому типу оксидов (кислотным, основным или амфотерным) относится оксид ванадия(У) Дайте характеристику его окислительно-восстановительных свойств. При ответе используйте результаты опыта Пз и справочные данные. [c.242]


    N 2+ до редко встречающихся многозарядных ионов ванадия и молибдена. Ионы металлов могут выполнять чисто структурные функции, однако чаще они прочно связаны с активным центром, принимая непосредственное участие в каталитической реакции. В этом случае роль иона металла может сводиться к стереоспецифическому образованию комплекса с молекулой субстрата, например с ее фосфатной группой. При катализе окислительно-восстановительными ферментами ион металла выступает в качестве переносчика электронов, осуществляя обратимый переход между двумя состояниями окисления. [c.149]

    Марганец относится к элементам с переменной валентностью, поэтому для его амперометрического определе] я могут быть использованы окислительно-восстановительные методы в разделе Ванадий было уже описано определение ванадия, хрома и марганца при их совместном присутствии Разумеется, такой же метод — переведение марганца (II) в перманганат-ион и последующее титрование перманганата солью Мора по току окисления железа (II) при потенциале +1,0 в (Нас. КЭ) с платиновым вращающимся электродом— может быть применен и для определения одного марганца. Этот метод особенно рекомендуется для [c.247]

    Молибден можно определять также и при помощи окислительно-восстановительных реакций. Применяя растворы хрома (И), можно определять молибден (VI) в присутствии больших количеств марганца (II), цинка, алюминия, хрома (III), кобальта и никеля. Титрование ведут с платиновым электродом по току окисления хрома (II) в кислой среде Следует заметить, что с практической стороны этот метод может встретить только одно возражение трудность сохранения постоянства титра раствора хрома (И), учитывая очень легкую окисляемость последнего. То же относится и к раствору ванадия (И), который рекомендуют для титрования молибдена С. И. Гусев и Э. М. Николаева Раствор ванадия (II) также необходимо хранить в атмосфере СОг и в ней же проводить все титрование. Титровать можно с платиновым электродом по току окисления ванадия (II) при +0,6 в (Нас. КЭ) или с ртутным капельным по току восстановления молибдена (VI) в фосфорнокислой среде при потенциале около —0,8 в (Нас. КЭ). Интересно, что при совместном присутствии молибдена и вольфрама можно получить на кривой титрования с платиновым электродом два перегиба, отвечающих (раздельно) содержанию молибдена и вольфрама. Это возможно в связи с тем, что система Мо /Мо обладает более положительным потенциалом, чем [c.265]

    Элементы подгруппы ванадия — ванадий, ниобий, тантал — имеют незаполненные й-орбитали и, следовательно, обладают склонностью к катализу окислительно-восстановительных реакций. [c.165]

    Зависимости такого типа, как на рис. 6, возможны и для каталитических реакций с совершенно другим механизмом активирования, когда наиболее полное связывание катализатора в комплекс с активатором является условием максимального активирования процесса. В качестве примера рассмотрим активирующее действие оксикарбоновых кислот в некоторых окислительно-восстановительных реакциях, катализируемых ванадием(У) и хромом(У1) [37— 40, 82]. В этих реакциях оксикарбоновые кислоты окисляются до свободных радикалов, и реакция протекает параллельно по новому пути и с большей скоростью (стр. 22). [c.39]

    Выше отмечалось, что активирующее действие оксикарбоновых кислот в некоторых окислительно-восстановительных реакциях, катализируемых ванадием(У), обусловлено протеканием параллельной реакции окисления активатора с меньшей величиной АС= =, чем для окисления непосредственно субстрата. В присутствии наиболее эффективного из этих активаторов (лимонной кислоты) величина АЯ+ возрастает на 8,0 ккал-моль Несмотря на это, реакция ускоряется, так как активатор одновременно увеличивает на 27,7 энтр. ед. [38]. [c.51]

    Этим объясняется экспериментально наблюдавшийся эффект активирования реакции такими окси- и дикарбоно-выми кислотами, как лимонная, винная, щавелевая, салициловая и другие [7—И]. Известно, что эти кислоты легко образуют с ванадием (V) комплексы, в которых затем происходит восстановление У(У) до У(1У) и окисление активатора. Особенно велика скорость этой внутрикомплексной окислительно-восстановительной реакции при высоких температурах, используемых для проведения каталитической реакции. [c.183]

    Из известных объемных методов определения ванадия чаще всего пользуются методом, предложенным Сырокомским и Степиным [105]. Этот метод основан на окислительно-восстановительной реакции, протекающей между соединением ванадия, растворенном в серной кислоте , и солью Мора  [c.152]

    Влияние температуры и скорости протекания жидкости на эффективность колонки с окислительно-восстановительными реакциями изучалось [6] на примере восстановления церия (IV), ванадия (V) и железа (III). Скорость элюирования изменялась в широком интервале при 35 °С и комнатной температуре. На рис, 20 представлены результаты восстановления церия (IV) в колонке при скоростях потока от 2 до 11 мл/мин при комнатной температуре. Очевидно, что 2 мл 0,0851 М раствора сульфата церия (IV) полностью восстанавливались при любых скоростях протекания. Напротив, в случае ванадия (V) 2 мл 0,0853 М ванадата аммония количественно восстанавливались только при скорости элюирования 2—4 мл/мин (рис. 21). Однако при увеличении температуры колонки до 35 °С ванадий (V) количественно восстанавливался даже при таких высоких скоростях потока, как 7 мл/мин (рис. 21). [c.455]


    Определение железа, никеля, хрома и ванадия на окислительно-восстановительной и ионообменной колонках. [c.559]

    Ответ. Окислительно-восстановительный потенциал металлического циика при pH 3,4 равен примерно —0,7 В, что достаточно для восстановления У0 до но не до ванадия (0). Таким образом, цвет раствора при протекании последовательных стадий восстановления будет переходить из желтого (УО " ) в голубой (У0 +), зеленый ( +) и фиолетовый (У +). Следует ожидать также появления промежуточных цветов (ве- [c.333]

    ВАНАДАТОМЕТРИЯ — титриметрич. метод колич. анализа, основанный на применении в качестве рабочего р-ра 5-валентного ванадия как окислителя (или реже р-ра солей 3-валентного ванадия как восстановителя). В кислом р-ре соли ванадила восстанавливаются до 4-валентного состояния, причем, если взят энергичный восстановитель, то возможно частичное восстановление также до 3-валентного состояния соединения 3-валентного ванадия реагируют с прибавляемым р-ром соли 5-валентного ванадия с образованием солей 4-валентного ванадия. Окислительно-восстановительный потенциал системы сильно зависит от кислотности среды, изменяясь от 4-0,97 е в 0,5 н. H2S04 до4-1,45 в в 27 н. H2SO4. Раствор ванадата аммония применяют для определения Fe , Os , Мо , а также для колич. определения ряда органич. веществ (купферон, диметилглиоксим, 8-оксихинолин, р-фурфур альдоксим и др.). Нанр. для определения кунферона по реакции  [c.262]

    В кислотно-основных реакциях растворитель, например вода, может проявлять кислотные и основные свойства, т. ё. отщеплять или присоединять протон точно так же вода в окислительно-восстановительных реакциях может терять электрон (быть восстановителем) или присоединять его (быть окислителем). Подобным же свойством обладают и такие ионы, которые могут существовать в нескольких степенях, окисления. Так, известны соединения ванадия в степенях окисления два — три—четыре — пять—В Э1ИХ соединениях V и находящиеся в промежуточных степенях окисления, способны как терять электроны (быть восстановителями), превращаясь в ионы с более высокой [c.343]

    Основную массу отходов производства резинотехнических изделий вывозят на свалки или сжигают. Это приводит к загрязнению атмосферы, подпочвенных вод, исключению из севооборота сотен гектаров земли. Отходы производства резинотехнических изделий перерабатывают с помощью различных методов деструкции нолнмеров термической, термокаталитической в присутствии соединений марганца, ванадия, меди, хрома, молибдена или вольфрама с применением химических агентов (кислот Льюиса, нитрозосоединений, окислительно-восстановительных систем и др.) биохимической, механохимической, фо-тоокислнтелыгай, ультразвуковой и др. [c.142]

    Очень интересным типом азотсодержащих соединений нефти являются порфирины. Они имеют такое же строение, как порфири-новый комплекс, входящий в молечулу хлорофилла или гема, только вместо магния (хлорофилл) или железа (гем) в порфири-новых комплексах иефти встречается ванадий или никель. Пор-с )ириновые комплексы нефти фотоактивны, они способны ускорять окислительно-восстановительные реакции, поэтому предполагают, что они принимают активное участие в процессах диспропорционирования водорода в процессе генезиса нефти. Очевидно, более глубокое изучение этих природных соединений позволит расширить наши представления о происхождении нефти, а возможно, и выделить новый вид катализаторо в с обратимыми окислительно-восстановительными функциями, способными ускорять определенные реакции подобно хлорофиллу в хивых растениях. [c.204]

    Запись данных опыта. Сделать вывод о кислотно-основных свойствах гидроксида ванадия (II). Учесть, что частичное растворение осадка в избытке щелочи обусловлено растворением гидроксида цинка (ионы Zn + образовались при окислении металлического цинка в опыте 6). Какие свойства ванадия (II) проявились в протекавшей окислительно-восстановительной реакции аписать уравнения всех наблюдавшихся реакций. [c.244]

    Если же восстановленная форма связывается в более прочный комплекс, то окислительно-восстановительный потенциал системы увеличивается. Например, для пары ванадий (V) — ванадий (IV) о= + 1,0 в. После комплексообразования с дигидропирофосфат-ионом Н2Р2О7 +1,1 в, так как комплекс ванадия (IV) более прочный, чем ванадия (V), и нормальный потенциал возрастает. Комплек-сообразование железа (III) с фосфорной кислотой препятствует сдвигу равновесия реакции [c.112]

    В последние годы большое внимание исследователей привлекают окислительно-восстановительные полимеры (редокс-полимеры, электропообменпые полимеры), что объясняется широкими перспективами их использования [216—220]. Редокс-полимеры используют для восстановления ионов железа, хрома, ванадия, церия,титана, серебра, плутония и др. [221, 222] с помощью редокс-полимеров получают перекись водорода их используют в качестве катализаторов в различных реакциях. В ряде процессов редокс-поли-меры успешно применяют для удаления кислорода из водных растворов, причем обескислороживание может проводиться с одновременным умягчением воды [223]. Это далеко не полный перечень областей применения редокс-полимеров. [c.96]

    Третий способ генерации нестабильных активных и реакционноспособных радикалов основан на переносе электрона в окислительно-восстановительных реакциях,, катализируемых ионами переходных металлов. Присоединение или отщепление одного электрона от диамагнитного субстрата приводит к возникновению радикальных частиц. Многие органические радикальные реакции включают ключевую стадию одноэлектронного переноса, инициируемого ионами меди, железа, кобальта, марганца, ванадия, церия, титана и других переходных металлов. Харакгерной особенностью этих переходных металлов является наличие двух или более относительно стабильных степеней окисления, различающихся на один электрон (Си , Ре , Ре " Со , Со Се -, Се и Т.Д.). [c.535]

    Ванадий. В литературе имеется очень мало сведений об окислительно-восстановительных характеристиках ванадия при использовании потенциостатического метода. По-видимому, большую часть полярографических данных, приведенных в работе [95], можно непосредственно применять, для кулонометрического анализа. Мейтес и Моро [168] смогли показать, что восстановление ванадия (IV) в среде соляной кислоты индуцирует восстановление водородных ионов. [c.67]

    Результаты исследования соответствуют ранее полученным экспериментальным данным [12, 19]. В неполностью окисленном твердом растворе Рез гхУ2х04 при низком парциальном давлении кислорода возможны окислительно-восстановительные реакции оксидов ванадия (У +) и железа (Ре +) с карбонатом кальция [20—22] или реакции присоединения между оксидами ванадия (У +) и СаО с образованием промежуточных фаз согласно разрезу СаО—У2О4—РегОз [23]. [c.83]

    Катализаторы пиролиза представляют собой сложную систему, основными компонентами которой являются активная масса и носитель. Носитель, обладающ.ий некоторой каталитической активностью, придает катализатору требуемые механические свойства (прочность) и способствует его стабильности. Активный компонент в большинстве предлагаемых катализаторов пиролиза состоит, в основном, из оксидов металлов переменной валентности — ванадия, ниобия, индия, железа и др. Каталитическая активность таких оксидов в процессе пиролиза связана, по-видимому, с изменением их валентности в каталитическом процессе. Так, было показано, что окисленный ванадиевый катализатор пиролиза, содержащий в качестве активного компонента пятивалентный ванадий, обладает (без предварительной активации) низкой активностью и приобретает максимальную активность только после восстановления ванадия водородом (например, водородом, содержащимся в составе продуктов пиролиза) до низшей валентности. Сильновосстановленный образец катализатора, проявляющий высокую активность с первых минут подачи сырья, содержит ванадий, восстановленный, по-видимому, до У0о,5 (одновалентное состояние), обнаруженного на его дифрактограммах. Время, необходимое для восстановления ванадия до активного состояния, зависит от температуры при 300 °С для этого требуется 15 мин, при 750 °С — менее 1 мин. Протекание окислительно-восстановительных реакций в процессе каталитического пиролиза можно предположить и для других катализаторов. [c.10]

    Пятиокись ванадия обменивает свой кислород с кислородом газовой фазы при температуре выше 450°, а каталитическое окисление протекает в этой же температурной области. Ройтер, Стукановская и Великовская [204] сопоставили скорости изотопного обмена кислорода и каталитического окисления сернистого газа. Они установили, что ири 500° скорость обмена в 10 раз меньше, чем скорость окислительно-восстановительного катализа. Если каталитическое окисление SO г протекало бы но окислительно-восстановительному механизму, то [c.95]

    Здесь уместно отметить одну важную особенность, свойственную всем элементам побочных подгрупп, кроме ШВ-группы (подгруппа скандия) усиление химической благорюдности металлов в пределах группы с увеличением атомного номера элемента. В главных подгруппах и в подгруппе скандия сверху вниз нарастают металлические свойства, а начиная именно с подгруппы титана наблюдается обратная закономерность. С этой точки зрения, элементы IVB-группы, так же как и элементы IVA-группы, являются своеобразной границей, разделяющей две противоположные тенденхщи. Отмеченное обстоятельство связано с тем, что между ПШ- и IVB-группами вклиниваются семейства /-элементов, что наглядно отражается в развернутой (32-клеточной) форме системы. При этом валентные 6s-электроны тяжелых элементов подгрупп титана, ванадия и т.д., следующих за лантаноидами, обнаруживают эффект проникновения сквозь двойной слой из bd-и 4/-электронов. Этим и обусловлено ослабление металлических свойств гафния, тантала, вольфрама и т.д. Па этой особенности основана интерпретация закономерностей изменения степеней окисления, кислотно-оснбвных и окислительно-восстановительных свойств в группах -элементов. [c.391]

    Объемные методы. Большое значение для определения ванадия имеют объемные окислительно-восстановительные методы, основанные на окислении четырехвалентного ванадия (VOg ) в пятивалентный (VOg ) раствором КМПО4 (перманганатометрический метод) или на восстановлении VO3 в VOa " раствором сернокислого железа (П) (феррометрический метод). [c.339]

    Таким образом, элементы подгруппы ванадия, являясь переходными металлами и катализируя процессы окислительно-восстановительного типа, могут использоваться для проведения процессов с участием молекулярного водорода. Металлы и их низшие окислы применяются в качестве катализаторов процессов гидрирования, проявляя при этом среднюю активность они более активны, чем ТЮа, МпО, РеаОд, но уступают по активности СгаОд, Сод04, 2пО. [c.85]

    В отличие от ванадия применение в качестве катализаторов соединений ниобия и тантала незначительно. Высокая прочность их окислов, вероятно, определяет их неспособность к катализу окислительно-восстановительных реакций. На МЬО., и Таа05 встречаются единичные реакции дегидрирования, дегидратации, конденсации [222, 228, 229—237]. [c.544]

    Измерения в растворах с рН ,5,5, из которых должна быть удалена СО2, лучше всего проводить в колбах с плотно закрытыми пробками в атмосфере воздуха или азота, которые пропущены через раствор натронной извести и промыты водой. Инертная атмосфера существенна для работы с амальгамными и многими окислительно-восстановительными электродами (см. разд. 1,А гл. 7), а также при изучении комплексов легко окисляющихся ионов металлов или лигандов. Азот лучше всего освобождать от кислорода пропусканием при 180° над активированной медью, осажденной на кизельгуре [32]. Менее удовлетворительным методом удаления кислорода является пропускание через растворы хлорида ванадия(П) [31], хлорида хрома(II) [26] или щелочной раствор дитионита натрия, содержащий катализатор р-антрахинонсульфонат натрия [12]. Водород, или азот с небольшой примесью водорода, можно очистить от кислорода в условиях комнатной температуры, если использовать техническую платиновую чернь [22]. Очищенный газ перед контактом его с испытуемым раствором следует пропустить через промывную склянку с подходящей ионной средой при температуре опыта. [c.76]

    Другая возможность состоит в том, что хемисорбированная окись углерода реагирует с кислородом поверхности, входящим в решетку. Тогда при десорбции углекислого газа поверхность остается в частично восстановленном состоянии. Кислород из газовой фазы поглощается и восстанавливает поверхность до начального состояния. При таком механизме поверхность твердого вещества активно участвует в реакции окисления. На новерхности непрерывно происходят окислительно-восстановительные циклы, и возможно, что вся она является каталитически активной. Окисление на окиси ванадия, вероятно, является одним из наглядных примеров механизма такого типа, как было показано Ньюджесом и Хиллом [59]. [c.322]

    Для гомолитических, окислительно-восстановительных реакций (окисление молекулярным кислородом и другими окислителями, синтез аммиака, спиртов, углеводородов, гидрогенизация п дегидрогенизация, конверсия окиси углерода и углеводородов парами воды и т. п.) существенное значение, напротив, приобретает, очевидно, способность катализатора проводить ток, так как катализаторами для этих реакций являются почти исключительно металлы и полупроводники. Из них особенно важную роль nrpaioi элементы с недостроенными d-оболочками и их соединения (металлы Vni группы, окислы марганца, ванадия, хрома, молибдена, вольфрама и др.), а также элементы подгруппы меди, -элект юны которых легко переходят во внешнюю 5-оболочку, освобождая вакансии в ( -зоне. [c.86]

    Наличие порфириновых комплексов в нефтях считается практически доказанным [95—97]. Найдены их специфические окислительно-восстановительные свойства и фотохимическая активность, связанная с электронными переходами в сопряженной системе [97]. Порфнриновые комплексы являются достаточно стойкими соединениями и во время перегонки переходят в нефтяной остаток не разрушаясь [62]. В исследованиях Ена и Эрдмана [21, 98] и в более поздней работе [99] показано, что в структурной упаковке асфальтенов имеются возможности для координации ионов ванадия и никеля с гетероциклическими структурами, включенными в общую полнциклическую систему, с образованием соединений типа ванадилпорфирина и ванадилфта-лоцианина, для которых методом ЭПР найдены -факторы, равные 1,965 и 1,987 соответственно. [c.84]


Смотреть страницы где упоминается термин Ванадий окислительно-восстановительны: [c.262]    [c.234]    [c.62]    [c.367]    [c.367]    [c.243]    [c.271]    [c.78]    [c.371]    [c.152]    [c.553]    [c.115]   
Фотометрическое определение элементов (1971) -- [ c.136 , c.137 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановительное ванадия



© 2025 chem21.info Реклама на сайте