Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Замещение металлоорганическими соединениями

    Как отмечалось в гл. 11, для реакций электрофильного замещения наиболее характерны такие уходящие группы, которые могут существовать в состоянии с незаполненной валентной оболочкой, для завершения которой необходима электронная пара. В случае ароматических систем самой распространенной уходящей группой является протон. В алифатических системах протон также может служить уходящей группой, но его подвижность зависит от кислотности. В насыщенных алканах подвижность протона очень мала, но электрофильное замещение зачастую легко происходит в тех положениях, где протон более кислый, например, в а-положении к карбонильной группе или при ацетиленовом атоме углерода (КС = СН). Особенно склонны к реакциям электрофильного замещения металлоорганические соединения, так как при этом образуются положительно заряженные ионы металлов [1]. Важным типом электрофильного замещения является анионное расщепление, включающее разрыв связей С—С, при котором уходящей группой является углерод (реакции 12-39—12-45). В конце данной главы рассматривается много примеров электрофильного замещения у атома азота. [c.407]


    ИХ енолов. К первым веществам ими отнесены -замещенные металлоорганические соединения типов  [c.520]

    Различия в симметрии молекул могут вызвать аномалии в летучести некоторых замещенных металлоорганических соединений, как, например, в ряду метилхлорсиланов, где у температур кипения наблюдается максимум  [c.21]

    Образование этого производного бипиридила, видимо, является результатом реакции замещения водорода металлом, с образованием металлоорганического соединения 2-литий-6- т/ ети-бутилпиридина (СУ1), которое затем присоединяется к другой молекуле пиридинового основания  [c.472]

    На примере хлорвинильных металлоорганических соединений Реутовым и Белецкой была изучена реакция электрофильного замещения в ряду непредельных соединений. При этом удалось осуществить мономолекулярное электрофильное замещение 5 1 атома металла у олефинового атома углерода на иод в высоко ионизирующем растворителе — диметилсульфоксиде. Конфигурация исходных и конечных продуктов в ходе замещения не изменялась. Это позволило сделать вывод, что стереохимия реакций у олефинового атома углерода имеет иной характер, чем замещение 5 1 у насыщенного атома углерода свободная пара электронов у ненасыщенного атома углерода способна закреплять конфигурацию  [c.233]

    Замещение галогена металлом из металлоорганического соединения. [c.467]

    На примере металлоорганических соединений (этилолово, цинк-алкилы и др.) Э. Франкланд показал, что они представляют собой производные неорганических веществ, получающиеся путем замещения эквивалентов кислорода радикалами углеводородов, например  [c.172]

    Возможны и другие типы замещения в непредельных галогени-дах или сложных эфирах аллилового спирта при действии металлоорганических соединений, как показано ниже [78]  [c.153]

    Поскольку карбоновые кислоты, за исключением угольной, находятся в высшей степени окисления, многие методы их получения основаны на окислении (разд. Б). Однако иногда следует предпочесть гидролиз производных кислот, находящихся в той же степени окисления (разд. А). В дополнение к методам получения кислот, основанным на окислении, в разд. В обсуждается восстановление двуокиси углерода под заголовком Карбоксилирование металлоорганических соединений . Хотя все методы получения карбоновых кислот можно было бы разделись на эти три типа, полезно отдельно рассмотреть методы, приводящие к глубоким изменениям. Поэтому добавлены разделы,, описывающие методы конденсации (разд. Г), щелочного расщепления (разд. Д), электрофильного замещения и присоединения (разд. Е) и перегруппировок (разд. Ж)- [c.220]


    Рутеноцен является примером металлоорганического соединения, образованного за счет я-связей, которое вступает в реакции замещения подобно ферроцену. Ввиду того что до настоящего времени рутеноцен был сравнительно малодоступен, его химические свойства изучены сравнительно мало. [c.136]

    Депротонирование по атомам углерода. а-Углеродный атом в Ы-замещенных пирролах под действием бутиллития депротонируется. Ценность реакции заключается в том, что С-литиевые про изводные пиррола нашли применение в качестве промежуточных металлоорганических соединений в целом ряде синтезов. [c.230]

    Иногда чувствительность по отношению к кислотам рассматривается как доказательство того, что эти соединения являются не чисто металлоорганическими соединениями, а какими-то комплексными веществами. Однако в настоящее время известно, что Р-замещенные металлоорганические соединения весьма легко вступают в реакции р-отщепления (ср. например, с образованием этилена при гидролизе 3-хлорэтилкремневых соединений). В этом случае реакция облегчается кислотами, протон которых присоединяется к атому кислорода спиртовой или эфирной группы ртутьорганического соединения необходима, вероятно, также координация ионов галоида с ртутью, поскольку молекулярные соединения в разбавленной азотной или серной кислоте устойчивы. Более четко координационный эффект проявляется при использовании цианида или тиоцианата калия, которые разлагают соединения в нейтральном растворе, регенерируя олефины. [c.128]

    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]

    Замещение и отщепление считаются параллельными реакциями. Главными факторами, от которых зависит направление реакции, являются pH среды и природа гидролизующего агента, в качестве которого предложено применять металлоорганические соединения, амиды щелочных металлов, алкого-ляты щелочных металлов или их гидроокиси, третичные амины, соли щелочных и щелочноземельных металлов [87]/Доля реакции отщепления тем больше, чем выше основность Гидролизующего агента и его концентрация. Этим условиям удовлетворяют гидроокись натрия и кальция. В промышленности используК Т более дешевую гидроокись кальция. [c.33]

    В. я-Ц иклопентадиенильные соединен и я в настоящее время получены для многих металлов. При взаимодействии циклопентадиена с солями двухвалентного железа в присутствии аминов образуется ферроцен, строение которого длительное время не было установлено. Для металлоорганического соединения он необычно устойчив и проявляет свойства ароматичности не присоединяет малеинового ангидрида, ацетилируется по Фриделю — Крафтсу, легко сублимируется, вступает во многие реакции замещения. Вместе с тем это соединение диамагнитно, железо не проявляет в нем своих парамагнитных свойств. На основании химических исследований установлена полная равноценность всех углеродных атомов ферроцена, спектры ЯМР выявили однотипность всех протонов. Ферроцену пришлось приписать необычную сэндвичевую структуру л-комплекса [c.43]

    В реакциях 10-87—10-95 нуклеофилом выступает карбани-онная часть металлоорганического соединения, часто реактива Гриньяра. Еще мало известно относительно механизмов этих реакций, и многие из них вовсе идут не как нуклеофильное замещение. В тех реакциях, которые все-таки представляют собой нуклеофильное замещение, атакующий атом углерода приходит со своей парой электронов, за счет которой и образуется новая связь С—С при этом не важно, свободны или нет карбанионы, действительно принимающие участие в этом процессе. Образование связи между двумя алкильными или арильными группами называется сочетанием. Реакции 10-87—10-95 могут идти с образованием как симметричных, так и несимметричных продуктов. Процессы образования несимметричных продуктов называются реакциями кросс-сочетания. Другие типы реакций сочетаний рассматриваются в дальнейших главах. [c.186]


    Изучались реакции сочетания алкилгалогенидов с другими металлоорганическими соединениями [1031]. Натрий- и калий-органические соединения более реакционноспособны, чем реактивы Гриньяра, и поэтому вступают в реакции даже с менее активными галогенидами. Сложность заключается в их приготовлении и достаточно долгом сохранении, чтобы успеть прибавить алкилгалогенид. Алкены можно синтезировать сочетанием виниллитиевых соединений с первичными галогенидами [1032] или винилгалогеиидов с алкиллитиевыми соединениями в присутствии палладия или рутения в качестве катализатора [1033]. При обработке медьорганическими соединениями п кислотами Льюиса (например, н-ВиСи-ВРз) аллилгалогениды вступают в реакцию замещения с практически полной аллильной перегруппировкой независимо от степени разветвления обоих концов аллильной системы [1034]. [c.191]

    Замещение металла в металлоорганическом соединении другим металлом служит наилучшим способом получения многих металлоорганических соединений. Как правило, новое металлоорганическое соединение КМ можно с успехом получить только в тех случаях, когда М находится перед М в ряду активности металлов, в противном случае необходимо искать какие-либо другие пути сдвига равновесия. Таким образом, обычно КМ — малореакционноспособное соединение, а М — более активный металл, чем М. Чаще всего в качестве реагента КМ используют К2Н , поскольку алкилртутные соединения [279] легко синтезировать, а ртуть расположена в конце ряда активности металлов [301]. Таким способом были получены алкильные производные Ы, N3, К, Ве, Mg, А1, Оа, 2п, С(1, Те, 5п и других металлов. Важное преимущество этого метода перед реакцией 12-37 состоит в том, что получаемые металлоорганические соединения не содержат каких-либо возможных примесей галогенидов. Метод можно использовать для выделения твердых алкильных соединений натрия и калия. Если металлы расположены близко друг к другу в ряду активности, равновесие не удается сдвинуть. Например, алкильные соединения висмута невозможно получить из алкильных соединений ртути. [c.462]

    Трудность исследования процессов замещения у олефинового атома углерода заключается прежде всего в том, что множество реакций, формальный результат которых сводится к замещению у олефинового атома углерода, на самом деле протекают через стадию присоединения с последующим отщеплением. Так протекает, например, сульфирование с помощью комплексно-связанного серного ангидрида, ацилирование в условиях реакции Фриделя — Крафтса, азосочетание с диазосоединениями. Для большого числа других реакций точно не установлено, осуществляются ли они путем прямого замещения или нет это относится к нитрованию олефинов, галогенированию с помощью бромсукцинимида, к реакции Мейервейна (взаимодействие с диазосоединениями). Наиболее подходящими для изучения пространственной направленности реакций замещения у олефинового атома углерода являются реакции обмена металлов в металлоорганических соединениях типа X—СН = СН—МеХ. [c.452]

    Замещая, например, в соляной кислоте хлор бромом, иодом или цианом или в аммиаке — азот фосфором или мышьяком, Ш. Жерар и его последователи выводили из этих основных типов производные. Обменивая типический водород на остатки (радикалы), Ш. Жерар производил от типа Нг углеводороды, металлоорганические соединения, альдегиды, кетоны и др. от типа НС1 — галогено- и цианопроизводные от тина НзО замещением водорода этилом и ацетилом получал следующие соединения  [c.167]

    В такие реакции замещения легко вступают как алифатические, так и ароматические металлоорганические соединения, которые часто даюгт высокие выходы. Однако этот метод следует использовать только в тех случаях, когда металлоорганическое соединение олее доступно, чем другие промежуточные соединения. Так, например, вряд ли кто-нибудь станет получать галогенпроизводное из реактива Гриньяра ведь реактив Гриньяра обычно получают из галогенпроизводного, а спирты — наиболее легко доступные исходные соединения. Тем не менее эта реакция является вполне удовлетворительной и ее можно использовать для обмена галогена или для идентификации соединений. Ниже приведены некоторые находящие применение реакции замещения  [c.442]

    Замещение у насыщенного атома углерода научено гаавным образом для металлоорганических соединений При этом разрывается связь С—М, а не С—Н Наиб часто встречается бимолекулярный (5 2) механизм, при к-ром происходит фронтальная атака электрофила на поляризованную связь с—М, что обеспечивает сохранение конфигурации реакц. центра, Менее распространен мoнo юлe-кулярпьн (Sb-l) механизм, при к-ром происходит гетеролиз связи С X с образованием карбаниона, а последующее присоед. электрофила может сопровождаться рацемизацией продукта. Возможен также механизм внутр. замещения (Sei) через четырехцентровое переходное состояние, напр,  [c.703]

    В синтезе карбоновых кислот больщое значение приобрели методы введения карбоксильной группы в качестве С1-единицы при взаимодействии металлоорганических соединений [7] (например, реактив Гриньяра) с твердым диоксидом углерода (Я—Вг-> К—М —Вг-> К—СО2Н) (Р-За) и замещение галогеналканов цианидом натрия с образованием нитрилов и последующим их гидролизом [8] (К—Вг К— N К СО Н) (3-2, 3-28). [c.141]

    Для реакций цинкорганических и ртутноорганических соединений с галоидангидридами кислот было найдено, что иодангидриды наиболее, а фторангидриды наименее реакционноспособны 5]. Это находится в соответствии с реакционной способностью С — Х-связей в реакциях замещения и указывает на то, что предварительное присоединение металлоорганического соединения по карбонильной группе, возможно, и не происходит. Такое предположение подтверждается интересными результатами, которые получил Кэйзон [12], изучая взаимодействие ангидрида а-этил-а-и-бутилглутаровой кислоты (П) с ди-и-бутилкадмием. Как можно было предполагать, образовались две кетонокислоты, [c.45]

    Термин металлироваиие означает замещение водорода а металл с образованием истинного металлоорганического соединения [1]. Замещение водорода на металл в таком соединении как ацетоуксусный эфир не следует относить К реакциям метал-лиршаиия, так как получаемое металлическое производное не является типичным металлоорганическим соединением. [c.333]

    Вскоре пос ге этого было найдено, что литийорганические соединения можно применять для замещения одного из активных атомов -водорода в метильной группе 2-пиколйна и хинальдина с образованием соответствующих металлоорганических соединений II и П[3]. [c.333]

    Известно также несколько случаев металлирования с применением металлоорганических соединений щелочноземельных металлов [119, 120]. Особый интерес представляет металлирование дибензотиофена иодистым фенилкальцйем, при котором замещение происходит аномально в лшга-положение по отношению к атому серы [121]. Реактив Гриньяра обычно не вызывает металлирования, за исключением тех случаев, когда реакция проводится в жестких условиях, причем выходы продуктов металлирования обычно бывают низкими [91, 122—124]. [c.357]

    Менее близко к литийорганическим соединениям стоят соли некоторых тяжелых металлов, которые также нашли применение в качестве металлирующих агентов. Среди них наиболее известны соли двухвалентной ртути [132] реакции замещения под действием этих солей исследовались еще в начальный период развития органической химии. Было найдено, что хлориды золота [133], теллура [134], таллия [135] и германия [136] также металлируют некоторые ароматические ядра. Наличие в этих металлирующих агентах сильной кислоты Льюиса и отсутствие в них сильно основного аниона заставляет предполагать, что механизм их действия отличается от мехайизма действия металлоорганических соединений Только в случае меркурирования (137 мёхйнйзм замещения водорода на атом тяжелого металла был исследовай достаточно подробно. [c.357]

    Тетразтоксисилан является основным сырьем в производстве ценных кремнийорганических продуктов, например жаростойких и электроизоляционных лаков, олигоэтилсилоксановых жидкостей и др. Важнейшим химическим свойством тетраэтоксисилана является его способность при действии металлоорганических соединений заменять этоксильную группу на органический радикал, т. е. образовывать замещенные эфиры ортокремневой кислоты, которые и являются сырьем в производстве перечисленных выше кремнийорганических продуктов. [c.121]

    Комплексы переходных металлов наряду с ферроценовыми производными представляют, пожалуй, наибольшие возможности для варьирования органического лиганда. Самым простым способом получения их является нагревание соответствующего карбонила металла с ароматическим соединением. Оптимальная температура таких реакций (идущих с отщеплением СО-групп) равна 120—150 °С, поэтому необходимо использовать соответственно высококипящие органические растворители. Лучшими оказываются такие донорные растворители, как 2-метоксиэтиловый эфир, ди-н-бутиловый эфир, диоксан и тетрагидрофуран, а также очень часто и их смеси. Для получения термически неустойчивых соединений, в первую очередь соединений Мо и W, или комплексов с очень реакционноспособными ароматическими лигандами следует применять реакцию обмена лигандов в замещенных металлкарбоиилах МЬз(СО)з, где L — донорный лигаид со слабой обратной связью. Реакции замещения L протекают в таком случае гораздо быстрее, чем замена СО-групп. Обмен лигандов можно также значительно ускорить добавкой кислот Льюиса, которые образуют с отщепляющимся лигандом прочный аддукт. Для этих трех методов получения комплексов типа М(т1-ароматический лиганд) (СО) з далее будет дано лишь по одному примеру. Полный обзор литературы по этим комплексам для М = Сг можно найти в книге [1]. Кроме того, опубликованы подробные обзорные статьи [2—4] о получении и химических свойствах этих металлоорганических соединений. [c.1972]

    Предполагаемое также присоединение элементов СиС1 по л-связи с последующим замещением Си протоном менее вероятно с позиций химии координационных и металлоорганических соединений. В кислых средах образование ацетиленидов, а тем более этиленидов невозможно. Присоединение 8+8- [c.348]

    В этих условиях все реакщда проходят как окислительно-восстановительные, при этом наблюдается замещение -N2 на Н-атом, остаток соли металла или сам металл и образуются металлоорганические соединения или на остаток арена и образуются производные дифенила. В слабополярньгх растворителях по свободнорадикальной схеме распадаются соли с анионами сильных кислот, которые сначала изомеризуются в ковалентные диазосоединения. [c.560]

    Реакции свободнорадикального присоединения и замещения, столь широко используемые в органическом синтезе, получили меньшее распространение в синтезе металлоорганических соединений. Большинство изученных процессов относится к элементам главных групп, а основное внимание было уделено реакциям присоединения. Прежде всего уместно сослаться на работы по присоединению си-лаиов, гермапов и различных соединений фосфора к углерод-углеродным двойным и тройным связям [1]. В последнее время эти реакции осуществлены с более разнообразными субстратами, например 1) присоединение силанов к галогенированным алкенам и алкинам [2, 31  [c.165]

    Свободные радикалы участвуют в процессах образования реактивов Гриньяра [70, 71] и 1,4-присоединения боранов [721. Реакции этих реагентов также могут протекать с промежуточным образованием свободных радикалов [72—77]. Однако, поскольку эти металлоорганические соединения обычно получаются и вводятся в реакции in situ и поскольку их реакции общеизвестны, они далее не рассматриваются. По аналогичным причинам не будут обсуждаться металлоорганические соединения, которые участвуют в радикальных реакциях, приводящих к синтезу органических соединений, например в реакции гомолитического замещения аллил-б с-(диметилглиоксимато)пиридинкобальта(1П) бромтрихлорметаном при получении 4,4,4-трихлорбутена-1 [78] [c.173]


Смотреть страницы где упоминается термин Замещение металлоорганическими соединениями: [c.186]    [c.170]    [c.14]    [c.345]    [c.7]    [c.126]    [c.376]    [c.326]    [c.1037]    [c.1548]    [c.1560]    [c.343]    [c.572]    [c.599]   
Основы органической химии Ч 2 (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Металлоорганические соединения



© 2024 chem21.info Реклама на сайте